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One of the main research areas in biology from the mid-1980s through the 1990s

was the elucidation of signaling pathways governing cell responses. These studies

brought, among other molecules, the small GTPase Rho to the epicenter. Rho sig-

naling research has since expanded to all areas of biology and medicine. Here, we

describe how Rho emerged as a key molecule governing cell morphogenesis and

movement, how it was linked to actin reorganization, and how the study of Rho sig-

naling has expanded from cultured cells to whole biological systems. We then give

an overview of the current research status of Rho signaling in development, brain,

cardiovascular system, immunity and cancer, and discuss the future directions of

Rho signaling research, with emphasis on one Rho effector, ROCK*.

*The Rho GTPase family. Rho family GTPases have now expanded to

contain 20 members. Amino acid sequences of 20 Rho GTPases found in

human were aligned and the phylogenetic tree was generated by ClustalW2

software (EMBL-EBI) based on NJ algorithm. The subfamilies of the Rho

GTPases are highlighted by the circle and labeled on the right side. Rho

cited in this review refers to the original members of Rho subfamily,

RhoA, RhoB and RhoC, that are C3 substrates, and, unless specified, not

to other members of the Rho subfamily such as Rac, Cdc42, and Rnd.
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Discovery of Rho and botulinum C3
exoenzyme; the dawn of Rho research

In the mid-1980s, there was a transition in signal

transduction research. While prototypes of transmem-

brane signaling such as heterotrimeric G proteins and

G-protein coupled receptors, receptor tyrosine kinases,

channels and transporters, had been identified and

cloned, little was known on how the signals trans-

mitted within the cell evoke cell responses such as

proliferation, exocytosis and adhesion. Although

involvement of GTP in some of these responses was

reported, molecules bearing such GTP-dependent func-

tions were far from identification. An exception was

Ras, which had been identified as retrovirus-coded

oncogenes encoding a 21 kDa GTP-binding protein,

but its action mechanism also remained an enigma. In

this situation, Madaule and Axel serendipitously iden-

tified the first Ras homolog in Aplysia, and named it

Rho [1]. They further detected Rho genes in human

and rat, and suggested that those of human possibly

consist of three members, which were later named

RhoA, B, and C. However, without any biological

findings, little attention was paid to it.

One approach to discover mechanisms and princi-

ples working in biological processes is to find out

pharmacological tools interfering with such processes

by specifically targeting the molecules involved. Given

the demonstrated usefulness of cholera toxin and per-

tussis toxin as probes of heterotrimeric G-proteins, Gs

and Gi/Go, respectively [2] and the fact that most of

the bacterial toxin ADP-ribosyltransferases target

GTP-binding proteins [2], we sought a novel bacterial

ADP-ribosyltransferase activity, and identified in

preparations of botulinum C1 and D toxin an enzyme

that ADP-ribosylates a 22 kDa GTP-binding protein

in mammalian cells. We reported these findings in the

Journal of Biological Chemistry on February 5, 1987

[3]. To our surprise, the same enzyme activity was

reported in the February 9, 1987, issue of FEBS Let-

ters by Aktories and collaborators [4]. They later fur-

ther reported that this ADP-ribosyltransferase is

distinct from botulinum neurotoxins and named it C3

exoenzyme [5]. Almost 1 year later, Rubin et al. con-

firmed these findings and additionally reported that

the C3 treatment induced morphological changes in

cultured cells, typically the rounding up of fibroblasts

and epithelial cells and the neurite extension of neu-

ronal cells [6], which we also noted separately [7,8].

However, the identity of the target GTP-binding pro-

tein was not elucidated until we purified and identified

it as Rho [9–11]. Our studies thus merged researches

on Rho and C3. Chardin et al. then reported that

actin microfilaments were lost in C3-treated round-up

Vero cells [12]. The next question was therefore how

the morphological phenotype of C3-treated cells is

related to the function of Rho and how Rho is

involved in actin microfilament assembly. Because little

was known about the difference between the Rho iso-

forms, most of the early studies in the field were

focused on RhoA.

Rho as a molecular switch for actin
cytoskeleton reorganization

According to the analogy to Ras, it was thought that

Rho is activated from the GDP-bound form to the

GTP-bound form to exert its actions. So, the above

question could be addressed by comparing the C3 phe-

notype with that induced by active Rho. This was

exactly where Alan Hall and collaborators entered the

field, using their expertise in Ras biochemistry and

microinjection technique. They microinjected Val14-

RhoA, a presumably active RhoA mutant with

reduced GTPase activity, and found extensive actin fil-

ament assembly in the contracted body of microin-

jected cells [13]. Although this Val14-RhoA phenotype

appeared opposite to the above phenotype of C3-trea-

ted cells, it was not clear at this time what kind of cell

structures and what kind of cell response they repre-

sent. Ridley and Hall addressed these points [14]. They

showed that the actin filament structure induced by

active RhoA in fibroblasts represents actin stress fibers

linked to focal adhesions, that these structures are

induced by the addition of serum to the cells, and that

this induction was inhibited by microinjection of C3 or

ADP-ribosylated Rho, thus making clear that Rho

works as a molecular switch in stimulus-induced stress

fiber formation. By this time, homology cloning and

protein purification identified a variety of Ras-related

GTP-binding proteins in mammals and yeast. Dids-

bury et al. [15] isolated two cDNAs highly homolo-

gous to Rho from HL-60 kibrary, and erroneously

named Rac (Ras-related C3 substrate) 1 and 2. Ridley

and Hall therefore extended their study to examine the

function of Rac1, and reported that Rac1 induces a

different actin filament structure, membrane ruffles, in

response to PDGF [16]. Their works thus established

the paradigm that Rho GTPases function as molecular

switches for actin reorganization.

Focal adhesion induced by Rho is the multi-protein

complex of integrin and associated proteins, which is

clustered by the force of actomyosin bundles ligated
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to this complex, and serves as adhesion to extracellu-

lar matrix (ECM). Therefore, Rho-induced focal

adhesion formation facilitates cell adhesion to ECM

by increasing the integrin avidity. We confirmed

RhoA action with platelet aggregation as an example,

which is mediated by binding of platelet integrin

GPIIb/IIIa to soluble ECM ligands such as fibrino-

gen [17].

Other notable examples of Rho-regulated cell pro-

cesses were neurite retraction and cytokinesis. In the

above work on stress fibers, Ridley and Hall identified

a major RhoA activating factor in serum as lysophos-

phatidic acid (LPA). The biological activity of this

lipid was found by Wouter Moolenaar, who also

found that the addition of LPA induces neurite retrac-

tion in neuroblastoma cells. Hearing his talk at our

Department seminar, we noticed that this LPA pheno-

type was opposite to neurite extension by the C3 treat-

ment. We therefore collaborated and found that RhoA

mediates neurite retraction induced by LPA [18]. We

also collaborated with Issei Mabuchi on the role of

Rho in cytokinesis, and found that the C3 treatment

aborted cytokinesis by abolishing the contractile ring,

indicating that Rho links nuclear division to cytoplas-

mic division through induction of the contractile ring

[19]. Kishi et al. analyzed the division of Xenopus

embryos and reached the same conclusion [20].

Intriguingly, Treisman and collaborators found that

LPA also activates the transcription factor “serum

response factor (SRF)” and this activation also

requires functional RhoA [21]. Their later studies

showed that SRF activity is regulated by SRF tran-

scriptional coactivator myocardin-related transcription

factor (MAL/MRTF) and that the interaction between

SRF and MAL/MRTF is inhibited by the binding of

MAL/MRTF to G-actin [22]. Upon RhoA activation,

G-actin is incorporated into F-actin and MAL/MRTF

is subsequently released from G-actin. This facilitates

the formation of SRF-MAL/MRTF complexes and

thus the activation of SRF-dependent transcription of

genes that are involved in a variety of cellular pro-

cesses such as cell migration, cell proliferation and cell

differentiation [23].

Search and identification of Rho
effectors; elucidation of molecular
mechanisms of Rho actions

Both stress fibers and the contractile ring are com-

posed of actomyosin bundles and neurite retraction is

caused by their contraction. These findings led us to

hypothesize that the action of Rho is to make actin fil-

aments from actin monomers and then cross-link them

by activating myosin for contraction. So, the next issue

of Rho research was to find out molecules and mecha-

nisms underlying these steps, which are presumably

carried out by effector molecules downstream of Rho.

Since the GTP-bound and not GDP-bound Rho exerts

its actions, effector molecules were presumed to bind

selectively to the GTP-bound Rho. Isolation of small

GTPase effectors by such selective binding was her-

alded by Louis Lim and collaborators, who isolated

p65PAK (PAK1) as a Cdc42/Rac effector in 1994 [24].

Using selective binding to the GTP-bound Rho in

ligand overlay assay or yeast two hybrid systems, we

isolated several Rho effectors [25–29]. One of them is

Rho-associated coiled-coil containing kinase (ROCK),

which consists of two isoforms, ROCK-I (ROCK1)

and ROCK-II (ROCK2) [26,30]. The same enzymes

were isolated and called ROK and Rho-kinase by

Louis Lim’s group [31] and Kozo Kaibuchi’s group

[32], which correspond to ROCK-I and ROCK-II,

respectively. Another effector we isolated was a mam-

malian homolog of Diaphanous (mDia) [29], which

belongs to the formin family and consists of three iso-

forms [33]. Expression of active ROCK produced acto-

myosin bundles reminiscent of stress fibers and

extensive formation of focal adhesions in HeLa cells

[34,35] presumably through activation of myosin (see

below), and expression of active mDia increased the

density of actin filaments [29], suggesting that it

induces actin polymerization. The actin nucleation/

polymerization activity of the formin family was later

shown in yeast formin, Bni1p [36] and then mDia [37].

Co-expression of ROCK and mDia produced beauti-

fully aligned stress fibers in HeLa cells, thus reproduc-

ing the action of Rho on stress fiber formation [38].

Thus, mDia and ROCK are thought as main effectors

in Rho-induced actin reorganization (Fig. 1).

Discovery of Y-27632, a specific
ROCK inhibitor; a pivotal point from
cell biology to physiology

Smooth muscle contraction is triggered by myosin

light chain (MLC) phosphorylation. The involvement

and mechanism of ROCK in myosin activation was

revealed both biochemically and pharmacologically by

the analysis of the so called “calcium-sensitization

pathway” of smooth muscle contraction. This pathway

augments contraction at a fixed intracellular calcium

ion concentration [Ca2+]I, and was previously demon-

strated to involve GTP, RhoA and myosin phos-

phatase [39,40]. Kaibuchi’s group showed that Rho

kinase/ROCK phosphorylates myosin-binding subunit

of myosin phosphatase, thus inactivating the
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phosphatase and consequently raising MLC phospho-

rylation and contraction [41]. The involvement of

ROCK in this process was also confirmed pharmaco-

logically using Y-27632. Y-27632 was developed as a

compound that inhibits the calcium-sensitization path-

way of smooth muscle contraction, and the photo-affi-

nity cross-linking and the assay on recombinant

ROCK identified it as a selective ROCK inhibitor [42].

This inhibitor not only inhibited the calcium-sensitiza-

tion of smooth muscle selectively but also abolished

RhoA-induced formation of stress fibers and focal

adhesions. This compound further inhibits the RhoA-

mediated neurite retraction in neuroblastoma cells and

analysis of this effect revealed the RhoA-mediated

inhibition of actin depolymerization through the

ROCK-LIM kinase-cofilin pathway [43]. Thus, identifi-

cation of Rho effectors and a ROCK-specific inhibitor

facilitated elucidation of molecular mechanisms of

Rho-mediated cellular responses. The impact of the

discovery of Y-27632, however, was not limited to

analysis of cultured cells but also on intact animals, in

which Y-27632 is used to examine possible involve-

ment of Rho-ROCK signaling in various physiological

and pathophysiological processes as described below.

Thus, the discovery of Y-27632 made a pivotal point

in Rho research.

Fig. 1. (A) Simplified scheme depicting the actions of mDia and ROCK in Rho-mediated actin remodeling. Upon the activation by Rho, mDia

promotes actin nucleation and polymerization to form actin filaments and ROCK activates myosin to bundles actin filaments. The upper right

box shows the FH1FH2 of mDia1-catalyzed actin polymerization in vitro. Red arrowheads indicate the mDia1-free barbed end of F-actin

growing at slow rate, and blue arrowheads indicate the barbed end undergoing mDia1 (FH1FH2)-dependent fast growth. Times are indicated

in seconds. Scale bar, 5 lm. Modified from Yamashiro S, et al. MBoC 25, 1010–1024 (2014). The lower right box shows F-actin staining of

HeLa cells overexpressing vector control or active ROCK-I. Note that F-actin bundles are extensively induced in active ROCK-I

overexpressed cells. Modified from Ishizaki T, et al. FEBS Lett. 404, 118–124 (1997). (B) Crystal structures of Y-27632-bound (left) and

fasudil-bound (right) kinase domain of ROCK-I. Modified from Jacobs M, et al. JBC 281, 260–268 (2006).
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Rho signaling research in current
status

With the spread of the knowledge on Rho signaling in

various cell processes and the advent of various dis-

secting tools, that is, drugs, expression constructs,

RNAi and transgenic, and knockout animals, Rho sig-

naling research has spread widely to all areas of biol-

ogy. Here, we select several fields and overview their

current status.

Development and regeneration

Rho signaling functions critically in several develop-

mental processes (Fig. 2). Its typical mode of action

here is to form actomyosin bundles traversed intercel-

lularly by connecting neighboring epithelial cells

through cell-cell adhesion and contract them for tissue

morphogenesis and maintenance. Both ROCK and

mDia are involved. For example, mice-deficient in

either ROCK-I or ROCK-II fail in closure of the eye-

lid and the ventral body wall and are born with the

‘eyes open at birth’ and omphalocele phenotype. In

these mice, actin cables that encircle the eye in the

epithelial cells of the eyelid as well as those encircling

the umbilical ring are disorganized [44–46]. Although

each of ROCK-I and ROCK-II exhibits distinct roles

in many circumstances described below, they appar-

ently act functionally redundant in these closure pro-

cesses. In mDia1/3 double KO mice, apical actin belts

in neuroepithelial cells were attenuated and their apical

adherens junctions were impaired, resulting in the loss

of apical-basal polarity of neuroepithelial cells and

periventricular hyperplasia [47]. When such apical

actomyosin cables contract, it causes apical constric-

tion of epithelial cells and, making cuboidal cells to

trapezoid, bending tissues and forming three-dimen-

sional structures such as tube and invagination. This is

seen in gastrulation and neurulation, where Rho,

ROCK and mDia function [48]. In chick neural tube

formation, cadherin, Celsr1, recruits PDZ-RhoGEF at

the mediolateral adherens junctions to upregulate

Rho-ROCK signaling and cause actomyosin contrac-

tion apically in a planar-polarized manner [49,50]. A

similar role of Rho-ROCK signaling in planar cell

polarity was reported in Drosophila germ band exten-

sion [51]. Furthermore, ROCK functions also in mak-

ing convex invagination in optic-cup-like structure

formation from ES cells in culture [52]. In addition,

the polarized localization of ROCK causes biased

actomyosin activity in a single cell, and this mecha-

nism operates crucially in asymmetric cell division of

Drosophila neural stem cells [53].

YAP and TAZ are effectors of the Hippo signaling

involved in control of organ size, stem cell renewal,

regeneration and cancer [54]. They are also involved in

mechanotransduction, and translocate to the nucleus

on sensing of ECM stiffness and cell spreading in

Rho- and actomyosin tension-dependent manners [55].

Requirement of Rho signaling is also observed in acti-

vation of YAP/TAZ by Wnt signaling, in which Wnt

activates Rho through FZD-ROR-Ga12/13 pathway

and inhibits Lats1/2 [56]. This Rho-mediated activa-

tion of YAP/TAZ is required for long-term survival

and expansion of human ES cells cultured en bloc [57].

Interestingly and paradoxically, dissociated human ES

cells exhibit Rho-ROCK-mediated hyperactivation of

myosin and the resultant contraction induces their

death, which can be rescued by Y-27632 [58–60].

Brain morphogenesis and function

Rho signaling is involved in brain morphogenesis and

functions including axonogenesis, neuronal migration

and synaptic plasticity. Neurite retraction in cultured

neuron is mediated by ROCK [61,62] and ROCK2

KO mice exhibited enhanced axonogenesis after spinal

cord injury and recovered faster than the control mice

[63]. The Rho-ROCK signaling is now recognized as

the final common pathway to limit axonogenesis in

CNS trauma and the potential of ROCK inhibitor in

axonal regeneration is being examined [64]. Notably,

this Rho-ROCK action operates in not only such

pathophysiological process but also neuronal develop-

ment. Kaibuchi’s group recently showed that the grow-

ing axon transmits long-range Ca2+ waves to other

neurites, activates RhoA-ROCK pathway there and

suppresses their axonogenesis to allow the formation

of a single axon in neurons [65]. Rho signaling also

works in neuronal migration; mice deficient in mDia1

and 3 in combination exhibit deficit in tangential

migration of interneuron precursors from subventricu-

lar zone to the olfactory bulb [66]. Moreover, Rho sig-

naling plays critical roles in synaptic plasticity. The

dendritic spine is the site of memory. Rac and Rho

work antagonistically in shaping dendritic spines,

growth and shrinkage, respectively, and ROCK medi-

ates the latter Rho action [67]. By this action, ROCK

apparently is involved in some types of mental retarda-

tion, where a Rho GTPase activating protein named

oligophrenin-1 is mutated; down-regulation of oligo-

phrenin-1 results in spine shrinkage, which is rescued

by ROCK inhibitor [68]. In addition to these postsy-

naptic actions, ROCK functions in synaptic vesicle

retrieval in the presynaptic terminal to contribute to

the homeostatic balance of vesicle exocytosis and
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endocytosis at synapse [69]. Furthermore, Rho signal-

ing is involved in plasticity of the presynaptic terminal.

Deguchi et al. [70] found that social isolation of mice

induces inactivation of Nucleus accumbens neurons,

which then leads to mDia and ROCK-dependent con-

traction of their terminals in the Ventral tegmental

area and reduces synaptic transmission there, which

causes enhanced anxiety behavior in these animals.

These actions of Rho-ROCK signaling could be

involved in synaptic plasticity in the lateral amygdala

associated with fear conditioning as well as that in pre-

limbic prefrontal cortex associated with goal-directed

decision making, both of which is sensitive to ROCK

inhibition [71,72].

Cardiovascular system

Since Y-27632 was discovered through screening for

compounds that inhibit calcium sensitization of arte-

rial contraction and shown to lower blood pressure in

various rat models of hypertension [42], much interest

has arisen naturally in the role of Rho-ROCK signal-

ing in the cardiovascular system. Such interest was

boosted further by the finding that fasudil, a drug

Fig. 2. Examples of the ROCK actions in development. The left box shows the impaired eyelid closure phenotype of ROCK-I�/� embryos.

Scanning electron micrographs of the eyes of the WT and ROCK-I�/� embryos are shown on the top and whole-mount F-actin staining of

the eyelids of WT and ROCK-I�/� embryos are shown on the bottom. Note that F-actin bundles encircling the eye (arrowheads) are impaired

in ROCK-I�/� embryos. Modified from Shimizu Y, et al. JCB 168, 941–953 (2005). The right box shows the role of ROCK in neural tube

closure. H&E staining of mouse embryo neural tube is shown on the top left (H. Kamijo, T. Ishizaki, D. Thumkeo, S. Narumiya, et al.,

unpublished results). The upper three panels show immunofluorescence micrographs of chick embryo neural tube during neural tube

closure. Modified from Nishimura T, et al. Development 141, 1987–1998 (2008) and Nishimura T, et al. Cell 149, 1084–1097 (2012). Note

concentration of ROCK-I and pMLC on the apical surface as marked by ZO-1 staining. The lower panels show stereomicroscope

micrographs of 9.5 dpc mouse embryo neural tube (H. Kamijo, T. Ishizaki, D. Thumkeo, S. Narumiya, et al., unpublished results). Note

impaired neural tube closure of ROCK-I+/�; ROCK-II�/� mouse embryo (white arrow). A model proposes the role of ROCK-mediated

actomyosin on the apical surface of neuroepithelium during neural tube closure is shown on the bottom right.
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approved in Japan for treatment of vasospasm after

subarachnoid hemorrhage, is also a ROCK inhibitor

[73], which has stimulated studies not only in animals

but also in humans. For example, fasudil is effective in

decreasing the frequency of attacks in stable angina

patients [74] and attenuating coronary artery vasos-

pasm in patients with vasospastic angina, the effect

reproduced in the porcine model with enhanced myo-

sin phosphatase activation [75]. These findings led to

the proposal of a role of ROCK in coronary vasos-

pasm. In idiopathic pulmonary hypertension, ROCK2

is highly expressed in pulmonary arteries of patients

and fasudil treatment induces acute pulmonary vasodi-

lation [76]. Consistently, the selective loss of ROCK2

in vascular smooth muscle prevents development of

chronic hypoxia-induced pulmonary hypertension in

mice, suggesting the causative relation of ROCK2 in

this disease. Other studies using ROCK1 and ROCK2

KO mice and ROCK inhibitors in various animal

models indicate the involvement of ROCK in diabetic

vasculopathy, ischemia/reperfusion injury, heart fail-

ure, cardiac hypertrophy, and fibrosis [77]. Interest-

ingly, in aortic constriction model, the cardiomyocyte-

specific deletion of ROCK2 suppressed the cardiac

hypertrophy [78], while the ROCK1 haploinsufficiency

did not prevent cardiac hypertrophy but reduced fibro-

sis under the same condition [79]. A profibrotic role of

ROCK is also reported in various organs including

lung [80].

Immunity

Early studies on the role of Rho in the immune system

focused on its role in development, activation and

migration of T cells and B cells [81]. For example,

studies on mice expressing C3 or active RhoA in T cell

lineages suggested that Rho is important in thymocyte

expansion but dispensable for T cell development itself

[82,83]. Indeed, deficiency of RhoA in T cells does not

completely suppress but significantly attenuates in T

cell receptor-dependent proliferative response [84].

Inactivation of Rho and treatment with ROCK inhibi-

tors impairs T cell migration. The most notable feature

is deficit in transendothelial migration due to impaired

uropod retraction [85], a feature shared with neural

precursors, macrophages, neutrophils and cancer cells

[66,86–88]. Recent studies have focused more on the

role of ROCK in the differentiation of T helper cell

(Th) subsets and its pathological significance [89].

Rho-ROCK signaling appears to function in both the

sensitization phase and effector phase of Th2-depen-

dent allergic inflammation. T cell-specific deletion of

RhoA impaired Th2 differentiation but not Th1 differ-

entiation in vitro and prevented OVA-induced allergic

inflammation in vivo with reduction in IgE level, cell

infiltration in the airway and Th2 cytokine production

[84]. Administration of fasudil all through the experi-

mental period mimicked these effects of RhoA defi-

ciency. In addition, inhalation of Y-27632 during the

allergen challenge could suppress airway constriction

and hypersensitivity and partially prevented cell infil-

tration to the airway in an OVA-induced asthma

model of guinea pig [90]. These effects of Y-27632

may well be due to the suppression of enhanced cal-

cium sensitization of airway smooth muscle contrac-

tion induced by allergen-sensitization [91], and effects

of ROCK inhibition on chemotaxis of inflammatory

cells. Studies using ROCK hetero-deficient mice indi-

cate that both ROCK1 and ROCK2 in lymphocytes

and nonlymphocyte cells are involved in these pro-

cesses [92,93].

The more intriguing findings on the role of ROCK

in Th subsets are that of ROCK2 in Th17 cells. This

was first reported by the Pernis group, who found

that ROCK2 is selectively activated in CD4+ T cells

under Th17 skewing conditions and phosphorylates

interferon regulatory factor-4 (IRF-4) to facilitate

Th17 cell differentiation and that administration of

ROCK inhibitor suppresses production of Th17

cytokines, IL-21 and IL-17, and ameliorates symp-

toms in autoimmune model mice [94]. Concurrently,

Kadmon Pharmaceuticals ran Phase 1 clinical trial of

a ROCK2-selective inhibitor, KD025 [95,96]. Zanin-

Zhorov et al. [96] analyzed responses of peripheral

blood mononuclear cells (PBMCs) from human sub-

jects in the above trial and found that KD025 admin-

istration in vivo significantly inhibited ex vivo secretion

of IL-21 and IL-17 from activated PBMCs. They con-

firmed this effect in human CD4+ T cells stimulated

in vitro under the Th17 skewing conditions, and found

that it is through suppression of STAT3 phosphoryla-

tion. Intriguingly, while KD025 suppresses Th17

differentiation through decreased STAT3 phosphory-

lation, it accelerates regulatory T cell (Treg) differenti-

ation through enhanced STAT5 phosphorylation. The

effect of KD025 to suppress IL-17 and IL-21 produc-

tion was then confirmed in PBMCs from patients with

rheumatoid arthritis, graft-versus-host disease, sys-

temic lupus erythematosus and inflammatory bowel

diseases [96–99]. Further, recent Phase 2 studies

showed that oral administration of KD025 reduces

clinical scores in psoriasis patients with concomitant

decrease in plasma levels of IL-17 and IL-23 and

increase in that of IL-10 [100].
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Cancer

Since many dbl-containing Rho GEFs were isolated by

transformation assay of cultured fibroblasts [101] and

Rho-GAP domain-containing DLC-1 (Deleted in Liver

Cancer-1) is downregulated in various tumors and is

regarded as a tumor suppressor [102], Rho GTPases

have been implicated in cell transformation and onco-

genesis. Indeed, earlier works showed requirement of

Rho GTPases in Ras-mediated cell-transformation

[103]. Notably, while these studies used GTPase-defi-

cient G14V or Q63L in RhoA and G12V or Q61L

Rac1 analogous to oncogenic Ras mutations, such

mutations in Rho GTPases have not been detected in

clinical cancer. On the contrary, fast cycling P29S,

P29L, and P29Q mutations in Rac1 have been identi-

fied by high-throughput sequencing of clinical human

cancers [104–106], the G17V RhoA mutation frequent

found in T cell lymphomas [107,108] and the Y42C

RhoA mutation recurrently in diffuse gastric cancer

[109]. Since biochemical properties of these RhoA

mutation are not clear, how these RhoA mutations

induces oncogenesis is an interesting question to be

solved [110]. In addition to these mutations in Rho

GTPases, more than 600 somatic coding mutations in

ROCK1 and ROCK2 have been identified in human

cancers and downregulation of miRNAs targeting

ROCK1 and ROCK2, and, consequently upregulation

of ROCKs has been shown in malignant tissues [111].

This enhanced ROCK signaling could facilitate cell

transformation for tumor cell survival and growth. Y-

27632 treatment was reported to inhibit transforma-

tion of NIH3T3 cells by Dbl and Ras [112], and condi-

tional deletion of ROCK1 and ROCK2 in

combination was shown to inhibit transformation of

cells derived from Ras-driven lung tumors and Raf-

driven melanomas [113]. ROCK signaling likely func-

tions in tumor cell invasion and metastasis, which was

first shown in the peritoneal tumor dissemination

model [88]. Tumor cells can migrate as single cells or

collectively as a cluster. Experiments in three-dimen-

sional matrix suggest that tumor cells adopt two differ-

ent modes of single-cell migratory mechanisms, Rac-

mediated elongated mesenchymal migration and

ROCK-mediated rounded amoeboid migration, which

are interconvertible and utilized in the context-depen-

dent manner [114]. ROCK signaling also enables tail

retraction in transendothelial and transepithelial

migration of tumor cells [88]. ROCK can also remodel

extracellular matrix in tumor microenvironment for

tumor invasion. Sanz-Moreno et al. [115] showed in

collagen matrix model that increased ROCK signaling

induced by cytokine contracts stromal fibroblasts to

create tracks for collective migration of squamous car-

cinoma cells. Rath et al. [116] showed that ROCK

activation in mouse pancreatic ductal adenocarcinoma

cells increased their invasive growth into a three-

dimensional collagen matrix by extensive induction of

matrix metalloproteinases and increased matrix remod-

eling. These findings combined together suggest that

Fig. 3. Milestone discoveries in Rho signaling research.
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Rho-ROCK signaling is not the primary cause but

critical for several important phenotypes of cancer,

which may be exploited therapeutically in combination

with other anticancer therapies [111].

Future prospects

Although a substantial amount of work has been done

since the discovery of Rho more than 30 years ago,

elucidating important physiological roles of this

GTPase family and their action mechanisms as

described above (Fig. 3), the whole picture of the biol-

ogy of Rho, how each member of the Rho family

GTPases is activated under what conditions in which

tissue, exerts which body function by acting on which

effectors, is still far from complete. Generation and

analysis of tissue-specific conditional knockout mice

deficient in each member of Rho GTPases, effectors

and regulatory proteins, GEFs and GAPs, could help

our understanding. This is true even for each of classic

Rho member, RhoA, RhoB, and RhoC. Most of the

earlier studies on Rho described above have been car-

ried out on RhoA, and it is not certain whether other

Rho members exert the same actions in the cell.

Although some studies suggest the redundant roles

between these RhoA, RhoB, and RhoC isoforms

[117,118], their different cellular localization and dif-

ferent regulatory modes of expression strongly suggest

that they play also context- and localization-dependent

distinct roles in the cell and possibly in the body [119].

For example, although these three Rho members simi-

larly interact with Rho effectors thus far identified,

RhoA, RhoB, and RhoC act on different effectors,

namely ROCKi/2, integrins and formin FMNL3,

respectively, and exert different functions in cancer cell

migration and morphogenesis [120]. RhoB shows

unique endosome localization, and is suggested to

exert different functions from RhoA and RhoC [121].

Furthermore, while RhoA-null mice are embryonic

lethal [122], RhoB-null and RhoC-null mice are viable

[123,124]. There are also issues on atypical Rho

GTPases such as Rnd proteins, RhoBTB proteins,

RhoH, RhoU and RhoV [119]. More remains to be

clarified on their regulatory and effector mechanisms,

and again their body function. As for Rho GTPase

activation, there are 70 Rho GEFs of Dbl homology

and 10 DOCK homologs. Studies have been in pro-

gress elucidating what physiological context each GEF

is activated and contributes to, one classic examples

being p115 RhoA-GEF coupling to Ga12/13 for cell

contraction [125]. Given such importance of Rho and

Rho regulators and effectors in many biological pro-

cesses, the studies on the dynamics of their activation

and termination, that is how Rho and Rho regulators

and effectors are activated at the right time and place,

and how this signal propagates in the living cell in a

variety of physiological processes, is an important

issue. The challenge is nanoscale imaging of spatiotem-

poral actions of Rho-Rho effectors not only in living

cultured cells but also hopefully in intact tissues or

intact body. Such studies combined with the systematic

analysis on the functions of Rho signaling at respective

sites will help to elucidate the pictures of Rho actions

in the body. Finally, our understanding on the roles of

Rho and Rho effectors in pathophysiology has just

begun. As illustrated by the recent discovery of the

role of ROCK2 in autoimmunity and the therapeutic

effects of its selective inhibitor [100], unraveling the

roles of Rho and Rho effectors further in various

pathophysiological settings by the above approach

may reveal unappreciated therapeutic possibilities.
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