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Abstract

Although sex chromosome meiotic drive has been observed in a variety of species for over 50 years, the genes causing drive
are only known in a few cases, and none of these cases cause distorted sex-ratios in nature. In stalk-eyed flies (Teleopsis
dalmanni), driving X chromosomes are commonly found at frequencies approaching 30% in the wild, but the genetic basis
of drive has remained elusive due to reduced recombination between driving and non-driving X chromosomes. Here, we
used RNAseq to identify transcripts that are differentially expressed between males carrying either a driving X (XSR) or a
standard X chromosome (XST), and found hundreds of these, the majority of which are X-linked. Drive-associated transcripts
show increased levels of sequence divergence (dN/dS) compared to a control set, and are predominantly expressed either in
testes or in the gonads of both sexes. Finally, we confirmed that XSR and XST are highly divergent by estimating sequence
differentiation between the RNAseq pools. We found that X-linked transcripts were often strongly differentiated (whereas
most autosomal transcripts were not), supporting the presence of a relatively large region of recombination suppression on
XSR presumably caused by one or more inversions. We have identified a group of genes that are good candidates for further
study into the causes and consequences of sex-chromosome drive, and demonstrated that meiotic drive has had a
profound effect on sequence evolution and gene expression of X-linked genes in this species.
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Introduction

Meiosis typically results in an equal transmission probability of

each allele from parent to gamete. This seemingly cooperative

outcome masks an inherent genetic conflict. Alleles on any one

chromosome would increase in frequency more rapidly if that

chromosome passed to all, instead of half, of the gametes produced.

Such selfish alleles cause meiotic drive and would be expected to

sweep quickly to high frequency or even fix. Detecting autosomal

drive is difficult because distorted segregation patterns of chromo-

somal markers must be observed. However, when a drive allele is on

a sex chromosome, the sex ratio of offspring is distorted. As a driving

sex chromosome increases in frequency, the sex ratio in the

population will become increasingly biased. If a drive allele nears

fixation, population extinction due to absence of the rare sex is

expected [1]. Alternatively, because the rare sex will have a fitness

advantage [2], alleles which act to restore the sex ratio to equality

will be favored. Potential mechanisms to counter fixation of drive

alleles include sexual selection in which standard males outcompete

drive males in mating or sperm competition [3–5], selection acting

on female XSR carriers [6], and the evolution of loci on the other sex

chromosome or autosomes that suppress drive [1].

Genomic conflicts in general, and meiotic drive in particular,

can create dynamic evolutionary systems that influence patterns of

molecular evolution and the evolution of gene expression. Drive

loci have a strong local fitness advantage, but decrease fitness of

the population because selection cannot act efficiently to remove

low-fitness drive carriers [7]. In addition, many examples of

suppressed or ‘‘cryptic’’ drive systems have been uncovered in

Drosophila in which either autosomal or Y-linked suppressors

mask the phenotypic expression of the drive allele in extant

populations [8–13]. Like the drive locus, at the time they arose,

these loci would have been strongly selected, whether or not they

provided any benefit to the organism [14]. Furthermore, the

inherent fitness advantage of drive and suppressor alleles is

expected to lead to strong effects on linked neutral polymorphism

as these alleles increase in frequency - as has been documented for

both autosomal [15,16] and sex-ratio drive [17] in Drosophila

species. In fact, the theoretical effects of meiotic drive on the

genome are so extreme that it has been invoked as a possible cause

for fundamental phenomena [18], such as homologous recombi-

nation [19] and Haldane’s Rule [20–22], with some experimental

evidence of the latter [23,24].

Although meiotic drive has been observed in many different

species, particularly dipterans (reviewed in [14]), the genetic basis

of drive is known in only a few cases, and of these, none distort sex

ratios appreciably in natural populations. Partly, this is due to the

tendency of actively driving loci to be found on sex-ratio X
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chromosomes that do not recombine with standard X chromo-

somes due to the presence of one or more inversions. This has

prevented fine mapping of the drive loci in most cases [25,26].

Intriguingly, both cases of X-chromosome drive that have been

mapped to the gene level are associated with copy number variants

and occur in Drosophila simulans. The ‘‘Paris’’ sex-ratio drive system

(also known as XSR6) recombines freely and populations

polymorphic for both the suppressor and the driver exist [8],

allowing genetic dissection using interpopulation crosses. The

element that causes drive has been mapped to a segmental

duplication of six genes on the X chromosome, with associated

changes in gene expression for some of the duplicated genes [27].

The ‘‘Winters’’ drive system is caused by an X chromosome drive

gene, Dox, which is an imperfect duplication of a previously

existing gene, MDox, and is suppressed by an autosomal retro-

duplicated gene, Nmy, which functions to silence Dox through an

RNAi-like mechanism [10,11].

In the stalk-eyed fly, Teleopsis dalmanni, males carrying a meiotic

drive X chromosome (XSR-1 or XSR-2) [28] parent mostly

daughters [29]. Drive chromosomes are present in natural

populations but appear not to recombine with standard X

chromosomes in laboratory crosses [26]. The X chromosome

gene content in T. dalmanni is mostly orthologous to Muller

element B, i.e. chromosome arm 2L in Drosophila melanogaster [30].

Thus, the genetic context for X chromosome drive in Teleopsis is

distinct from that found in the Drosophila systems described

above. Furthermore, meiotic drive associates with a number of

characters that influence male reproductive success, including eye-

stalk length [26,31], sperm precedence [32] and sperm morphol-

ogy [33]. The fate of the drive allele may be influenced by sexual

selection acting against the drive X chromosome [34], which also

causes males to have shorter than average relative eye-stalk length

[26,35]. Conversely, females carrying a drive X chromosome may

have elevated fecundity, providing a possible explanation for why

drive X chromosomes are not lost or suppressed [28]. However,

the genetic basis for most of these traits - and meiotic drive itself -

is unknown apart from the association with XSR. Like many

chromosomes carrying meiotic drive loci, XSR – or at least the

portion of XSR that causes both meiotic drive and associated

phenotypic differences – does not recombine with standard X

chromosomes [26], making identification of causal loci difficult.

To identify genes that are involved in sex-ratio drive and

associated phenotypes in T. dalmanni, we performed RNAseq on

replicate pools of testes carrying meiotic drive (XSR) and standard

(XST) X chromosomes. We aligned these reads to a transcriptome

assembled de novo, identified hundreds of transcripts differentially

expressed between XSR and XST testes, identified their expression

patterns, determined whether they were X-linked, Y-linked or

autosomal, and identified fixed differences between the two

samples. We found that drive-associated transcripts were more

likely to be X-linked and to have elevated expression in testes (as

expected) as well as in both testes and ovaries. These transcripts

were also more rapidly evolving than a control set and included a

number of interesting candidate genes with Drosophila orthologs

involved in potentially relevant molecular and biological processes.

Finally, we found that hundreds of X-linked transcripts carry fixed

differences between XSR and XST samples while only a handful of

such differences were found in autosomal transcripts. Our data

support previous studies [36,37] suggesting that the XSR haplotype

is evolving independently from XST, and reveal a group of

candidate genes that will be useful targets for future studies of

meiotic drive in this species.

Results

Differential Expression between XSR and XST Testes
We sequenced RNA collected from replicate pools of testes

dissected from T. dalmanni – Gombak males that carried the sex-

ratio meiotic drive X (XSR) or the standard X (XST) chromosome

(XSR and XST status was determined by microsatellite haplotype

following Wright 2004 [36] and Wilkinson 2006 [28]). Reads were

aligned to the T. dalmanni transcriptome (see methods) with bwa

[38] and raw read counts were corrected using RSEM [39] to

account for hits to multiple isoforms (contigs) making up the same

transcript. We then used DESeq [40] with the corrected read

counts to find transcripts that were differentially expressed

between XST and XSR testes using a FDR,0.001 cutoff and

after removing transcripts which had no expression in any of the

four samples. We found a total of 513 transcripts to be significantly

differentially expressed between transcriptomes from XSR and XST

testes. As a group, we refer to these as ‘‘drive-associated

transcripts’’. Among them, 233 were expressed at a higher level

in XSR males and 280 were expressed at a lower level in XSR

males (Table 1). A total of 113 transcripts exhibited more than 10-

fold differential expression between XSR and XST. For technical

reasons, transcripts that are significantly differentially expressed

are more likely than other genes to be expressed at a high level. In

order to prevent weakly expressed transcripts from biasing our

results, we defined a control gene set from among the remaining

transcripts by removing the most weakly expressed genes from

consideration (see Methods). We next aligned predicted proteins to

the Drosophila proteome to identify putative Drosophila orthologs

(Table 1). Among the drive-associated transcripts, 28.2% had

putative Drosophila orthologs (18.4% among control genes). Of

the remaining transcripts, 239 contain a long open reading frame,

and may be Teleopsis-specific proteins, whereas 129 had short (,50

AA) open reading frames and may be noncoding RNA genes.

Compared to drive-associated transcripts, a larger proportion of

the control transcripts had short (,50 AA) open reading frames

(52.3% vs. 25.1%, x2 = 56.88, P,4.625 e-14, Table 1). Given that

noncoding RNA genes are thought to be more narrowly and

weakly expressed compared to protein-coding genes [41,42], we

Author Summary

Sex chromosome meiotic drive causes changes in the sex-
ratios of natural populations, and may even lead to
extinction if the driving element reaches high frequency.
However, very little is known about the genes that cause
sex-ratio drive, and no causal gene has been identified in a
species that consistently exhibits distorted sex ratios in
natural populations. Several species of stalk-eyed flies in
southeast Asia – genus Teleopsis – express X chromosome
drive, but the genes underlying drive have been difficult to
locate due to reduced recombination between drive and
standard X chromosomes presumably caused by the
presence of a large inversion. Here, we use high
throughput RNA sequencing to identify over 500 tran-
scripts that are differentially expressed in the testes due to
the effects of a driving X chromosome (XSR) in T. dalmanni.
Most of these are X-linked, evolve more rapidly than
control genes, and exhibit elevated expression in the
gonads. Finally, XSR has become genetically differentiated
from standard X chromosomes – using the RNA sequence
data, we found nearly 1000 sites in X-linked transcripts and
only a handful in autosomal transcripts where there was a
fixed nucleotide difference. We conclude that XSR has led
to widespread sequence and expression divergence on the
X chromosome in T. dalmanni.

Meiotic Drive Impacts X-Linked Genes
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speculate that an excess of presumptive noncoding RNA genes in

the control gene set may be caused by the observation that drive-

associated transcripts tend to be expressed more strongly than the

average transcripts. Alternatively, protein-coding genes may be

more likely to become drive-associated than noncoding RNA

genes. Finally, we used quantitative RT-PCR to confirm

differential expression of drive-associated transcripts (Table S1).

After excluding weakly expressed samples, 11 of 11 transcripts

replicated the qualitative pattern observed in the RNA-seq data

(i.e. differentially expressed in the same direction).

Drive-Associated Transcripts Are Enriched in Gonads
We performed a multi-tissue expression analysis of drive-

associated and control transcripts using RNAseq from six T.

dalmanni tissues using tools provided on the trinity website

(trinityrnaseq.sourceforge.net [43]). We clustered differentially

expressed transcripts to identify the eight most common patterns

of gene expression and compared the number of transcripts

assigned to each cluster for drive-associated and control transcripts

(Figure 1A, Figure S1). Control transcripts were more likely than

drive-associated transcripts to have no significant pattern of

differential expression (‘‘Not differentially expressed’’), possibly

because many of them could be housekeeping genes. Testes-

associated clusters were enriched among drive-associated tran-

scripts compared to controls (x2 = 737.3, P,2.2 e-16). We also

assessed testes-specificity in drive and control transcripts by

calculating the Tau metric [44] and found more drive-associated

than control transcripts were testes-specific (57.5% vs 16.9%,

x2 = 622.7, P,2.2 e-16). This is not surprising considering the

comparison was between testes from XSR and XST males.

However, we also expect that a subset of drive-associated

transcripts are likely to be involved directly in various aspects of

spermatogenesis, given that meiotic drive affects sperm develop-

ment in T. dalmanni [26] and a closely related species [45]. Among

the other expression categories, a cluster showing elevated

expression in the gonads of both sexes was also enriched

(Figure 1B, x2 = 30.5, P,2.2 e-16), raising the possibility that

genes with pleiotropic effects on female reproduction may be

differentially expressed on XSR. Early models of sex chromosome

drive predicted that drive loci could be maintained if they also

cause increased fitness in heterozygous females [6,46]. Given that

gonad expressed genes are often tissue specific, it has been thought

unlikely that a single gene would do both, but given that an excess

of drive associated genes show elevated expression in both ovary

and testis, perhaps some of these genes are involved in both

increased female fecundity (see [28]) and meiotic drive.

Drive-Associated Transcripts Are Predominantly X-Linked
The presence of an XSR haplotype in a male T. dalmanni is

sufficient to cause him to parent strongly female-biased broods,

regardless of his genetic background [26]. We determined whether

this strong X effect extended to the level of gene expression by

comparing the chromosomal linkage of drive-associated transcripts

and a control set using data from a comparative genomic

hybridization experiment. We found that drive-associated tran-

scripts were strongly enriched on the X chromosome compared to

the control set (78% vs 18%, x2 = 256, P,2.2 e-16), suggesting

that the majority of downstream effects of XSR on gene expression

are in cis rather than in trans (Figure 2). While the previous

observation [30] that the D. melanogaster 2L, i.e. Muller element B,

is orthologous to the T. dalmanni X generally holds (across all

transcripts, 9.3% violate this rule), a large proportion of drive-

associated transcripts (21.6%) have moved onto the X chromo-

some, in contrast to only 3.3% of controls (Figure 2). In D.
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melanogaster, male-specific genes have a tendency to move off of the

X [47,48], though young male-biased genes may be enriched on

the X [49]. As the X chromosome in T. dalmanni is distinct from

the D. melanogaster X, it is unclear whether the same pattern would

be expected. While the number of moving drive-associated

transcripts appears to be in large excess, drive-associated

transcripts are more likely to be on the X chromosome than are

controls, and much of the movement can be explained by the

effect of linkage in that more genes are moving onto the X

chromosome – relative to D. melanogaster - in T. dalmanni than are

moving onto the autosomes (19.2% of controls and 29.7% of

drive-associated transcripts have moved onto the X in T. dalmanni,

relative to D. melanogaster). In addition, we recently found that in T.

dalmanni, an excess of testes-specific transcripts have moved onto

the X chromosome (unpublished data), and an excess of drive-

associated transcripts are testes-specific. Indeed, among testes-

specific transcripts, 21.1% of controls and 56.8% of drive-

associated transcripts have moved onto the X chromosome from

Muller elements other than B (Figure 2). Given these factors may

be confounding, we fit nominal logistic models to predict gene

movement by chromosome linkage (A or X), drive association

(drive-associated/control), tissue source (testes or other) and

interactions among these three factors for 7,150 transcripts. We

compared three models with different interaction terms and chose

the model with the lowest AICc score (Table S2, 4-parameter

model). The best-fitting model explained 20.7% of the variation in

gene movement (x2 = 916, d.f. = 4, P,0.0001) with strong effects

of X-linkage, tissue, and the interaction between X-linkage and

tissue (all P,0.0001, Table S2) but no significant effect of drive-

association (P = 0.1745). Therefore, while the large proportion of

drive-associated transcripts moving onto the X is striking, this is

most likely not due to the effect of drive per se. Instead, we conclude

that most of the effect of XSR on expression is due to genes on the

X chromosome, regardless of whether they moved there recently

or have persisted on Muller element B since the divergence of

genus Drosophila and Teleopsis. In addition, a group of five drive-

associated transcripts was found to be Y-linked (Table 2). While

the number of Y-linked genes does not exceed expectation, they

are of interest as potential targets of sex-chromosome drive.

During spermatogenesis in drive-carrying T. dalmanni, the Y-

bearing sperm do not complete elongation. While the genetic

cause of this is unknown, in other cases of X chromosome drive

the Y chromosome is the direct target of drive. For example, in the

Slx/Sly system in mice, expression of an array of Y-linked genes is

modified by the presence of a driving X chromosome [50].

Currently, we have very little information about these Y-linked

transcripts. They lack D. melanogaster orthologs, though two of the

genes appear to be protein-coding and have orthologs in the sister

species T. whitei.

Drive-Associated Proteins Are Evolving Rapidly
Because only a small proportion of drive-associated transcripts

had Drosophila orthologs, and because the taxa diverged ,70 MYA

[51], to assess protein sequence evolution we used T. whitei, a

Figure 1. Drive-associated transcripts are enriched in the gonads. (A) K-means clustering was used to establish qualitatively distinct
expression patterns of transcripts across the six sequenced tissues; clusters enriched for transcripts expressed predominantly in testes or in ovary plus
testes are shown. Each grey line represents expression of a single transcript, and the blue line is the mean across all transcripts in the cluster. (B)
Compared to control transcripts, drive-associated transcripts were more likely to have a significant expression pattern (categories other than ‘‘Not
differentially expressed’’), and in particular were enriched for two clusters associated with expression in the testis. Drive-associated transcripts were
also enriched in a small cluster of transcripts expressed in both the ovary and the testes but not ovary alone. Control transcripts were more likely than
drive-associated transcripts to be present in one of the somatic expression clusters (head, larvae, and adult carcass and larvae).
doi:10.1371/journal.pgen.1004362.g001
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closely related species of stalk-eyed fly (,1.8–3.5 MY since most

recent common ancestor [52]) for comparison. RNA was extracted

from testes collected from a T. whitei lab population derived from

flies collected in Chiang Mai, Thailand, sequenced using Illumina

Hi-Seq paired-end reads and assembled de novo using Trinity.

Proteins were predicted from the T. whitei transcripts and aligned

to T. dalmanni predicted proteins. Because a larger proportion of

drive-associated than control transcripts are expressed in testes and

have moved between the X and autosomes (see above), we used a

generalized linear model with an exponential distribution and

reciprocal link function to determine if drive association,

expression (testis-specific or not), transcript movement, or chro-

mosome location influence protein evolution (Table S3). In the

best fitting model, significant factors positively affecting dN/dS

included expression (P,0.0001), transcript movement

(P = 0.0042), and drive-association (P = 0.0434). Testis-specific

genes have elevated dN/dS compared to genes with expression

in other tissues (median dN/dS = 0.338 vs 0.155, P,2.2e-16

Mann-Whitney U test). Genes inferred to have moved have lower

dN/dS than genes that have not moved (median dN/dS = 0.125 vs

0.136, P = 0.004, Mann-Whitney U test). Drive-associated tran-

scripts show higher dN/dS than controls (Figure 3A, median dN/

dS = 0.307 vs 0.199, P = 3.8e-7, Mann-Whitney U test) and this

holds true when only testis-specific genes are compared (Figure 3B,

dN/dS = 0.379 vs 0.336 P = 0.0284 Mann-Whitney U test).

We conclude that (as expected [53]) testis-specificity influences

much of the variation in dN/dS, but in addition, drive-associated

transcripts are more likely to be evolving rapidly even after

accounting for testis specificity. It is possible that a lack of

constraint rather than positive selection is causing the increase in

dN/dS among drive-associated transcripts, i.e. weakly deleterious

alleles are expected to fix more rapidly when recombination is

suppressed, as appears to be the case for large portions of XSR in

T. dalmanni [37]. If the accumulation of deleterious alleles among

X-linked genes due to a lack of recombination, i.e. Muller’s ratchet

[54], was the main cause of elevation in dN/dS, we would expect

X-linked genes to have higher dN/dS than autosomal genes.

However, X-linkage did not affect dN/dS in any model (Table

S3). The most likely explanation is, therefore, that recent

expression divergence in drive-associated transcripts coincides

with divergence at the sequence level.

Fixed Differences Accumulate on XSR

Recombination is suppressed between XSR and XST in T.

dalmanni [26]. This is a common feature in several extant drive

systems (see [25]) and may have evolved as a way to prevent

recombination breaking up suites of genes that are beneficial to

individuals carrying drive loci [14]. Recombination suppression

leads to accumulation of genetic differences between the

suppressed regions and is thought to be the primary mechanism

Figure 2. Drive-associated transcripts show an excess of X-linkage. Linkage of drive-associated and control genes determined from a
comparative genomic hybridization experiment and evidence of gene movement inferred from the chromosomal locations of D. melanogaster
orthologs. Based on previous analysis, X-linked genes in T. dalmanni are expected to be on 2L in D. melanogaster, so genes breaking this rule have
moved in one lineage or the other. Solid bars indicate genes that have not moved: either they are 2L in D. melanogaster and X-linked in T. dalmanni
(solid black) or not on 2L in D. melanogaster and autosomal in T. dalmanni (solid white). Stippled bars indicate genes that have moved, either onto the
X in T. dalmanni/off of 2L in D. melanogaster (dark stippled) or onto an autosome in T. dalmanni/off of a non-2L chromosome in D. melanogaster (light
stippled). Drive-associated transcripts are overwhelmingly X-linked especially if they are testes-specific (compare dark bars to light bars).
doi:10.1371/journal.pgen.1004362.g002

Table 2. Fixed differences between XST and XSR are overwhelmingly X-linked.

X-linked transcripts Autosomal transcripts Y-linked transcripts

Transcripts carrying fixed differences 434 8 0

Transcripts without fixed differences 1163 4554 23

Proportion of transcripts carrying fixed differences 0.2712 0.0018 0

Total fixed differences 955 11 0

doi:10.1371/journal.pgen.1004362.t002

Meiotic Drive Impacts X-Linked Genes
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leading to the degeneration of the Y chromosome [54,55]. We

hypothesized that it should therefore be possible to identify fixed

genetic differences between the suppressed regions on XSR and

XST using RNAseq data. Conversely, in a freely breeding

population there should be very few fixed differences between

autosomal genes in XSR and XST males. Indeed, we found 955

fixed differences in X-linked transcripts but only 11 fixed

differences between XSR and XST males in autosomal transcripts

(Table 2). Even more remarkably, roughly one-fourth of X-linked

transcripts contain at least one fixed difference. Given the large

number of individuals sampled (,60 for each drive and standard

individuals, see methods), this excess of X-linked fixed differences

cannot be explained by the fact that the X chromosome was

sampled at half the depth of the autosomes (see Figure S2). If the

entire X chromosome were nonrecombining, a simple null

expectation would be that fixed differences should be randomly

distributed across the transcripts based only on their length. We

performed a simulation to test this hypothesis. Based on the

observed per-basepair frequency of fixed differences in X-linked

(6.35 e-04) and autosomal transcripts (2.06 e-06) and the known

lengths of all transcripts used in this study, we performed 10,000

draws from the binomial distribution to determine the expected

number of genes carrying one or more fixed differences on each

type of chromosome. We found more genes with no fixed

differences (Figure 4), and more genes with six or more fixed

differences (Figure 4, inset) than the X expectation. These data

could be interpreted in one of two ways. First, this increased

‘‘clustering’’ of X-linked fixed differences could be due to repeated

selection on multiple sites in certain transcripts. Indeed, theory

predicts that genes modifying drive would be under positive

selection after drive arose [56]. Alternatively, the excess of genes

with no fixed differences could be due to free recombination on a

relatively large portion of the X chromosome, either currently or

historically. For example, if the drive X chromosome slowly

accumulated multiple inversions in order to become fully non-

recombining, then that could explain the presence of fewer fixed

differences if some of the inversions are more recent than others.

Potential Functions of Drive-Associated Transcripts
Observed differences in transcription may be the direct result of

genetic changes responsible for meiotic drive, or may impact other

functions through linkage to the drive locus. While many drive-

associated transcripts are expressed in the testis and hence may be

directly involved in drive, others have higher expression in other

tissues. To further understand what functions drive-associated

transcripts might have, we first used the DAVID functional

analysis tool [57] to determine whether drive-associated transcripts

with Drosophila orthologs were enriched for any gene ontology

(GO) terms. We found that at a 5% FDR cutoff, four ion binding

GO terms (GO:0008270, GO:0043169, GO:0043167, and

GO:0046872) were enriched among drive-associated transcripts

(Table S4). None of these terms were enriched in the control gene

set, despite the fact that the control genes are a much larger

sample giving increased power. The genes in these GO categories

were functionally diverse, and included a cytochrome P450,

calmodulin, chiffon (an eggshell protein), and many others. In total,

37 drive-associated transcripts had at least one significant GO

term (Table S4).

In T. dalmanni sperm bundles from drive males contain

approximately 50% arrested sperm [33]. The molecular mecha-

nism leading to arrest is not known, but inspection of spermatid

bundles indicates that Y-bearing sperm fail to complete elongation

in drive males. In one example of sex chromosome meiotic drive in

Drosophila melanogaster the Y-sister chromatids fail to segregate

during meiosis II, ultimately leading to arrest of Y sperm

development prior to elongation [58]. It may also be the case

Figure 3. Drive-associated transcripts show elevated rates of protein evolution. (A) Drive-associated transcripts (red) show higher dN/dS,
calculated for all transcripts with orthologs in the T. whitei testes transcriptome, than controls (blue) and this holds true when (B) only testes-specific
genes are compared. Across all genes, testes-specific genes have elevated median dN/dS compared to genes with expression in other tissues
(compare A to B).
doi:10.1371/journal.pgen.1004362.g003
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that Y-bearing sperm undergo apoptosis or another form of

regulated cell death. Among drive-associated transcripts, we found

several with Drosophila orthologs involved in centrosome func-

tion, meiosis, mitosis, fertility, and apoptosis (Table S5). These

genes may be causal to drive, or they may be misregulated due to

the action of upstream drive genes. We also found several genes

that are important to male and female fertility in Drosophila.

Fs(1)N causes sterility in females when lost [59], Tom7 [60] and

Hexo1 [61] are involved in sperm transfer and spermatogenesis

respectively, and the loss of tj (traffic jam) causes sterility in both

sexes [62]. Interestingly, one group of drive-associated transcripts

are known to affect brain and eye development in D. melanogaster.

Misregulation of these genes – if extended to development - could

underlie some of the traits associated with drive [28], such as

changes in behavior and eye span (Table S5). Previously, we

identified a group of genes differentially expressed in T. dalmanni

males selected for longer and shorter eyespan [63]. Two of these

genes, chiffon, and CG4598 were also drive-associated and may be

involved in the genetic link between shorter eyespan and meiotic

drive [64]. Chiffon has a variety of functions, one of which is exon

guidance in photoreceptors [65], CG4598 is a member of the

Crotonase subfamily and is of unknown function.

Finally, genes that have differences in expression may be good

candidates for the proximal causes of meiotic drive and associated

phenotypes, but a heritable difference in sequence is required to

trigger drive. As a first attempt to identify possible candidate genes,

we identified a subset of X-linked, drive-associated transcripts that

contained fixed differences between XSR and XST. We determined

whether these fixed differences fell into the protein-coding regions

or the UTRs of genes, and whether they were synonymous or

nonsynonymous if protein-coding. We identified 24 drive-associ-

ated transcripts (of 46 drive-associated transcripts carrying fixed

differences) that carried at least one nonsynonymous fixed

difference between XST and XSR (Table 3). Many of these genes

are also evolving fairly rapidly between T. dalmanni and T. whitei,

with dN/dS values well above the average for all genes, though

not necessarily due to positive selection (i.e. dN/dS is not .1).

While most of these genes are testes specific (Tau is .0.95), six of

24 fall into the ovary and testis expression category, implying they

could function in both male and female reproduction. A gene

called klarsicht also contains two nonsynonymous fixed differences

and reduced expression in XSR testes. This gene – a transport

regulator - has been linked to a variety of functions including eye

development [66]. Interestingly, it was recently discovered that klar

mutants affect nonrandom segregation of sister chromatids in

germline stem cells of the testis [67]. While klar mutants did not

affect segregation of chromosome pairs, the association with

nonrandom chromosome segregation is intriguing and worthy of

future investigation.

Discussion

Although distortion of sex ratio due to meiotic drive has been

observed in a variety of species for over 50 years [46,68–73], the

genetic causes of sex chromosome drive remain obscure in the vast

majority of cases. Sex chromosome meiotic drive is notoriously

recalcitrant to traditional genetic dissection due to its tendency to

associate with chromosomal inversions, presumably as a result of

meiotic drive involving the combined action of multiple loci

[4,69,74]. In addition, X-chromosome drive is predicted to have

consequences for processes ranging from sexual selection to the

evolution of the genome. As populations become biased towards

one sex or the other, inter- and intra- sexual selective pressures

diverge. As females become increasingly common and if male

reproduction is at all costly, males may become choosy [75].

Meanwhile, females employing strategies that increase their

chances of mating with a standard male would benefit, as more

of their offspring would be the rare (male) sex [2]. This might

occur through female preference for a linked trait [34] or multiple

mating [76]. Meanwhile, sex-ratio meiotic drive is expected to

favor Y-linked and autosomal alleles that suppress drive, subjecting

the genome to strong local selection pressures. Fixation of alleles

causing or modifying drive may be nonadaptive or even

maladaptive.

To gain insight into the genetic differences between non-

recombining drive and standard X chromosomes, we used

RNAseq to measure differences in expression between drive and

standard testes from a species, T. dalmanni, with high frequencies of

unsuppressed X chromosome meiotic drive and a wealth of

biological data associated with the drive system. We sequenced

testes from males carrying XSR and standard X chromosomes and

identified a group of genes that are significantly differentially

expressed, including a number of candidate genes whose D.

melanogaster orthologs have been associated with male sterility and

chromosomal nondisjunction during mitotic and meiotic divisions,

and some of which carried fixed differences. While some of these

genes may have diverged in expression due to neutral processes

associated with sequence divergence of XSR from standard X

chromosomes, others may either impact, or be impacted by

Figure 4. Fixed differences in X-linked genes are not uniformly
distributed across the X. There are 955 fixed differences on the X
chromosome between the XSR and XST transcriptomes across 27% of
the X-linked transcripts. We compared the observed counts of
transcripts with various numbers of fixed differences (blue line) to the
expected distribution of fixed differences across genes if fixed
differences were distributed randomly across these genes using draws
from the binomial distribution with fixed differences appearing at a rate
proportional to the observed per-basepair rate of fixed differences on
the X (black) or autosomes (red). Compared to the X expectation there
was an excess of X-linked transcripts with zero fixed differences (A).
There was also an excess of transcripts with six or more fixed differences
(B). Together these data suggest that fixed differences on the X are
clustered non-uniformly with some transcripts having more fixed
differences than expected.
doi:10.1371/journal.pgen.1004362.g004
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meiotic drive directly. Interestingly, some of the genes whose

expression changed in XSR males are also strongly expressed in

other tissues and may be involved in other observed phenotypic

differences between drive and non-drive males, including genes

that may be involved in differences between drive and standard

males in the sexually selected exaggerated eye stalk phenotype

[64]. XSR males are generally at a reproductive disadvantage as

they are less able to directly compete with other males for matings

due to reduced ornament size [64] and for fertilizations after

copulation due to weaker sperm competitive ability [32].

Conversely, heterozygous female carriers of XSR have higher

fecundity than their XST sisters [28]. It has been suggested that the

overdominant effect of XSR on female fecundity may be one

reason why drive is still expressed in the population, rather than

being suppressed as in many Drosophila spp. We found that drive-

associated transcripts were enriched for genes showing elevated

expression in both the testis and ovary. If loci impact both drive in

males and fecundity in females, natural selection may select

against suppression of the activity of these genes. In fact, models of

drive demonstrate that in the absence of frequency dependent

selection, a stable drive polymorphism may still be maintained

when female fecundity and drive are impacted by the same locus,

or tightly linked loci [6,46]. Due to the relative scarcity of genes

that impact both male and female reproduction [77], it has been

thought unlikely that the same locus would impact both traits [14].

The excess of drive-associated genes expressed in both tissues

provides a counter example that warrants further investigation.

In addition to identifying specific candidate genes that may be

involved in meiotic drive in T. dalmanni, we identified a number of

patterns associated with genes that are differentially expressed

between XSR and XST testes. First, we found that the X

chromosome carried a majority (,80%) of the genes whose

expression differed between XSR and XST testes. In addition, we

found that there was a large excess of gene movement from the

autosomes to the X chromosome relative to Drosophila, especially

among testes-specific genes, though this type of movement was

enriched in control genes as well as drive-associated transcripts

(Figure 2). Inheritance of XSR is generally sufficient to induce drive

regardless of the genetic background, implying that segregating

suppressors of XSR are absent or rare in nature. However,

although the XSR chromosome has a strong genetic effect to

induce meiotic drive, it is not necessarily obvious that changes in

expression should be limited to the X chromosome. Meiotic drive

genes on XSR could in principle act as ‘‘triggers’’ that alter

expression of genes in trans across the genome. Alternatively, cis

regulatory mutations, copy number changes, and the accumula-

tion of null alleles [54] could affect the expression of genes on XSR

directly. Our finding of a large X effect on drive-associated

expression, along with the accumulation of many fixed genetic

differences between XSR and XST genes, suggests that cis effects

dominate trans effects in the case of sex chromosome meiotic drive.

This is consistent with the hypothesis that stable persistence of a

sex chromosome drive polymorphism requires that a suite of co-

adapted genes be inherited together, often in the form of a large

inversion or series of inversions [14]. Another possibility is that a

meiotic drive trigger gene could impact expression preferentially

on the X chromosome (chromosome-specific gene regulation).

This is seen in the Slx/Sly system in mice, although in that case sex-

linked genes are either up- or down-regulated by SLX or SLY

respectively rather than causing a variety of expression changes

(Coquet et al 2012).

We also found that these genes are evolving more rapidly at the

protein level (dN/dS), and this increased evolutionary rate could

not be entirely explained by a tendency of these genes to be

testes-specific or linked to the X chromosome. By virtue of

violating Mendelian inheritance, drive alleles produce a strong

local fitness advantage, and if not suppressed, are expected to

increase in frequency in the population, both removing polymor-

phism and bringing hitchhiking variants with them [1]. It is

possible that much of the acceleration in the rate of protein

evolution we observe is due to relaxed purifying selection during

such a sweep (see [78,79]). Alternatively, as XSR reaches higher

frequency in the population, other genes in the genome may begin

to evolve to adapt to the new genetic context. Theory predicts, for

example, rapid evolution of modifier and suppressor loci should

occur [56,80]. Although we have not previously identified these

loci, it is plausible that some differentially expressed loci may be

modifiers of drive.

Because the testes we collected were from an outbred population,

we were able to use natural variants in the XSR and XST individuals

to confirm that XSR almost certainly contains at least one inversion

that prevents genetic exchange between the XSR and XST

chromosomes. Nearly 1,000 variants have become fixed between

XSR and XST, whereas only 11 such differences exist between

autosomes carried by XSR and XST males. It would be difficult to

explain this discrepancy in any way other than a lack of genetic

exchange between XSR and XST – it is highly unlikely that freely

recombining chromosomes would pick up any fixed differences,

whether X-linked or autosomal (Figure S2). A simple simulation

(Figure 4) demonstrates that there are more genes carrying zero

fixed differences than expected if recombination was suppressed

uniformly across the X chromosome and affected all genes equally.

The apparent clustering of fixed differences could be due to some

proportion of the drive X chromosome continuing to recombine

normally with standard X chromosomes. Alternatively, the fixed

differences may cluster due to selection acting on certain genes

differently between drive and standard individuals, even when the

entire drive X is failing to recombine with standard X chromo-

somes. Further genetic analysis will be needed to discover which

regions of the XSR chromosome recombine and which do not. A

number of these fixed differences caused nonsynonymous changes

in proteins, some of which were drive-associated (Table 3). These

genes may be good initial targets for future analysis.

Finally, a large number of genetically isolated populations of T.

dalmanni – as well as the closely related species T. whitei - can be

found in southeast Asia and the valleys neighboring the Gombak

valley from which the flies used for this study were collected. Many

of these populations express sex chromosome drive ([81] and

unpublished data). Although reverse genetic dissection is difficult in

this species, these flies represent a potential natural laboratory for

the study of gene expression and meiotic drive. Sex chromosome

drive has persisted as a stable polymorphism in T. dalmanni for many

generations – possibly for millions of years, given that it exists in the

sexually dimorphic sister species in the same genus. Within such a

long timescale, drive X chromosomes may have arisen once, or they

might be evolving constantly through arms races between

suppressors and drivers. In either case, further study of teleopsid

populations and species will advance our understanding of how

meiotic drive can impact gene structure and function when it is a

constant evolutionary companion.

Methods

Sample Collection and Determination of XSR and XST

Genotype
Testes for RNAseq were dissected from mature T. dalmanni

males derived from an outbred lab population established in 1999

(cf. [28]). This population was founded from ,100 flies caught in

Meiotic Drive Impacts X-Linked Genes
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the Gombak valley in Malaysia and was maintained for

approximately 30–40 overlapping generations at that size. After

dissection, testes were transferred to RNAlater and stored at 2

20uC, and remaining tissue was used to extract DNA using Chelex

[82]. We determined XSR/XST status using three X-linked

microsatellite markers previously associated with meiotic drive

[26,28]. These three markers span the X, and previously a ‘‘drive’’

haplotype including these three loci was diagnostic for drive [37].

The frequency of drive in the 1999 population was estimated to be

24% (15/62 phenotypically screened flies) in 2003 [28] and 18%

(22/122 genotypically screened flies) in 2010. Multiplexed PCR

was performed using three fluorescently labeled primers and PCR

products were genotyped on an ABI 37306l DNA analyzer

(Applied Biosystems). Products were sized using Rox500 and

scored with GeneMapper 4.0 software (Applied Biosystems). Two

replicate samples each were pooled for individuals carrying XSR or

XST as follows: sample XSR-1, 35 testes pairs; XSR-2, 30 testes

pairs; sample XST-1, 38 testes pairs; and sample XST-2, 30 testes

pairs. RNA was extracted using the mirVana RNA Isolation Kit

(Invitrogen) according to manufacturer’s protocols for extracting

mRNA. Samples were sent to Cofactor Genomics (St. Louis, MO)

for bar-coding and library preparation and 51.5 million 60 bp

paired-end reads were obtained by sequencing all four libraries

across two lanes in an Illumina Genome Analyzer run.

Tissue Transcriptome Assembly
A T. dalmanni draft transcriptome assembly was generated using

100 bp paired end Illumina HiSeq reads from five T. dalmanni

tissues (ovaries, testes, gonadectomized females, gonadectomized

males, and third instar larvae), 84 bp paired end Illumina GA reads

from female and male heads, and the 60 bp XST and XSR testes

paired reads described above. Together, these samples produced

,308.5 million reads and ,55.5 Gbp of sequence. All reads were

assembled into a single transcriptome using Trinity (paired end

mode, –CPU 24, –kmer_method inchworm –max_memory 190G).

The resulting transcriptome assembly and associated raw read data

can be obtained from NCBI as BioProject accession PRJNA240197.

In order to be compliant with NCBI’s TSA (transcriptome sequence

assembly) database, a small number of the contigs in the original

assembly were trimmed to remove potential vector contaminants,

and a handful of contigs were shorter than the minimum 200 bp

required for TSA and could not be uploaded. These sequences are

available from the authors by request. Details of sequencing and

assembly can be found in Table S6.

Identifying Genes Differentially Expressed between XSR

and XST Samples
We used a modified version of bwa [38] that allows multiple

mapping (available as part of the Trinity RNAseq software bundle,

[83] trinityrnaseq.sourceforge.net) to align the left end reads back

to the transcriptome. We chose to align the left end only because 1)

the right end is not independent from the left and therefore adds

no additional power to the analysis and 2) the first read is typically

higher quality than the second [84]. The T. dalmanni transcriptome

assembly contains many genes that are represented by multiple

transcripts - often, these are multiple isoforms of the same gene.

After alignment with bwa, expression was quantified using RSEM

to correct for hits to multiple isoforms of the same gene. Genes

were defined as those transcripts derived from the same Trinity

component (see trinityrnaseq.sourceforge.net), and read counts

were corrected at the gene/component and isoform/seq level

based on the share of reads derived from each isoform. Corrected

gene-level read counts were used with DESeq [40] to identify

significantly differentially expressed genes between the two XSR

and two XST samples using a 0.001 FDR cutoff and using DESeq’s

independent filtering option to improve power. The highest

expressed isoform for each gene/component was identified and

used for subsequent analyses. To ensure our results were

independent of the statistical method, we also used edgeR [85]

to identify significantly differentially expressed genes and obtained

qualitatively similar results (Table S7). Only DESeq results are

presented henceforth.

Expression Analysis
The expression patterns of T. dalmanni genes were assessed using

transcriptome sequencing from six T. dalmanni tissues (ovaries, testes,

gonadectomized females, gonadectomized males, adult heads, and

third instar larvae). With the exception of the heads, each of these

tissues included two biological replicates. For the heads, one sample

was from females and the other was from males. These were treated

as biological replicates for the analysis of expression across tissues as

we were more interested in differences between tissues than between

the sexes per se. Corrected read counts for each sample were obtained

as described for the XSR versus XST comparison above. Normalized

gene-level expression values (FPKM) were determined and expres-

sion profiles were assessed using tools provided with the trinity

RNAseq package [83] as described on trinityrnaseq.sourceforge.net,

‘‘Identifying Differentially Expressed Transcripts’’ (see also, [43]). A

0.001 FDR cutoff was used to identify genes that were significantly

differentially expressed between samples. The significantly differen-

tially expressed genes were then grouped by similarity of their

expression patterns using Euclidean complete clustering. Next, we

used k-means clustering to define distinct expression pattern

groupings from among the differentially expressed genes (see Figure

S1). We tried a range of K values (6 to 12) and assessed the number

of genes and the expression profile for each cluster. We chose K = 8

for further analysis, as this number of clusters provided the maximal

number of qualitatively different expression patterns. Increasing the

cluster number to 9 added a cluster with different expression levels

but the same expression pattern as already represented by previous

clusters. In addition to the gene expression pattern analysis presented

above, we also calculated a measure of tissue specificity – Tau [44] –

for each gene using the average of the two FPKM values for each

tissue. Genes with Tau .0.95 were considered to be expressed

specifically in the highest expressed tissue. For all subsequent

analyses using the sequence of a gene (gene prediction, orthology

prediction, linkage, etc.), the highest expressed isoform (Trinity

variant) of each gene was used as the representative sequence.

RT-PCR Confirmation of Gene Expression Variation
Testes were dissected from a newly collected (August, 2012)

population of T. dalmanni Gombak. This population was used

because genotyping of ,150 flies in the 1999 population failed to

identify any males carrying the previously defined XSR haplotype

[28]. To obtain testes from drive males, we genotyped second-

generation T. dalmanni males from the 2012 Gombak population

using the three markers described above. A male was defined as

carrying a drive haplotype if he carried an ms125 allele ,152, an

ms244 allele .238, and an ms395 allele .230. Breeding studies

using the 2012 population confirm that males with these

haplotypes produce drive and reveal that other drive haplotypes

exist (unpublished data). To confirm standard status we pheno-

typed individuals for unbiased progeny sex ratios (between 0.4 and

0.6 proportion sons, 50 + progeny). RNA was extracted from pools

of 3 testes pairs using the mirVana kit (Invitrogen AM1560) and

first strand cDNA was synthesized using M-MLV reverse

transcriptase (Promega M1705). From the list of candidate genes,

18 (11 that were up in XST testes and 7 that were up in XSR testes)
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were selected for confirmation by quantitative reverse transcrip-

tion polymerase chain reaction (qRT-PCR). qRT-PCR was

conducted on a Bio-RAD CFX real-time PCR machine using

SYBR 26 RT-PCR mix (Invitrogen 4472942), 1 uL of cDNA

template and gene specific primers. In order for a primer pair to

be used, it had to have a Ct value below 32 in both replicates in at

least of one of the two conditions, otherwise we discarded it from

the analysis. Six genes were excluded using this criterion. A failure

to detect expression in RT-PCR could be for a variety of reasons:

1) the number of testes in the pool was much smaller so if there

was an expression polymorphism in the original pools it might

have been missed, 2) the population sampled for qRT-PCR was 12

years separated from the lab population so differences in

expression may be present, and 3) the total amount of RNA was

much less. Primers were also tested on genomic DNA to ensure

that failure to amplify was not due to primer failure. Expression

was quantified relative to a control gene (GAPDH-2), and when all

four samples showed robust expression, a t-test was performed on

resulting delta Ct values between the two conditions. When data

was available from all samples, the log2 expression differential was

calculated using the delta-delta Ct method [86] between XSR and

XST samples relative to GAPDH-2 (Table S1).

Control Genes
After determination of expression values for all genes (above),

we created a control gene list by removing the most weakly

expressed genes in the Trinity assembly. This step prevents

misinterpretation of results that could arise from inclusion of very

weakly expressed transcripts in the control dataset (such weakly

expressed transcripts could never be detected as drive-associated

due to a lack of statistical power). Therefore, we defined an

expression floor using the drive-associated genes. We identified the

tissue for each drive-associated gene that had the highest

expression level (the maximum expression level for that gene)

and ranked genes by this value from lowest to highest. We used the

lowest maximum expression level among the drive-associated

transcripts (FPKM = 0.86) as the expression cutoff for the control

gene set. If the highest expressed sample for a transcript had an

FPKM.0.86, it was included in the control gene set. Otherwise, it

was removed from further analysis.

Annotation of D. melanogaster Orthologs
Transcripts were annotated as having Drosophila orthologs using

blastp. First, proteins were predicted from T. dalmanni transcripts

using two methods – the longest start to stop ORF and FrameFinder

[87], which can find longer ORFs if a transcript is truncated due to

poor assembly. FrameFinder was run with the local (not strict)

model using a word probability set generated from the entire T.

dalmanni transcriptome using the Fasta2count and wordprob tools

included with FrameFinder, and options were set to disallow

frameshifts and indels (options: -I 2500 –D 2500 –F 2500 –s

False). The proteins generated by these two methods for each

transcript were aligned by blastp to the D. melanogaster proteome

(Flybase v. 5.50) and the best hit in T. dalmanni was kept for each

gene. An e-value cutoff of 0.1 was used, and only hits covering 50%

or more of the D. melanogaster protein were kept. The coverage cutoff

prevented keeping partial hits due to the assembly incorrectly

splitting a gene into two contigs, both contigs hitting different parts

of the same ortholog, and being seen, incorrectly, as paralogs. If

both the framefinder and the longest orf predictions had qualifying

hits, the best hit (by e-value, then by %ID) was kept. In the case of a

tie, the FrameFinder hit was kept. These protein hits were

annotated using the Flybase batch download tool. The gene family

size in T. dalmanni was estimated for genes with D. melanogaster

orthologs. The number of occurrences of each Flybase gene ID

(Fbgn) among the putative orthologs of the control gene set was used

to estimate the T. dalmanni gene family size for each gene.

Annotation of T. whitei Orthologs and Estimation of
dN/dS

A T. whitei transcriptome was assembled using Trinity [83]

(–max_memory 190G –CPU 24 –kmer_method inchworm,

paired-read mode) on RNAseq from a pool of approximately 30

pairs of T. whitei testes (33,753,826 100 bp paired end reads were

generated, and 60,650 contigs were assembled). The T. whitei

assembly and raw data can be obtained from the NCBI website

under the BioProject accession PRJNA241109. As with the T.

dalmanni assembly, to be compliant with NCBI’s TSA database, a

small number of the contigs in the assembly were trimmed to

remove potential vector contaminants and sequences shorter than

200 bp were removed. These sequences are available from the

authors by request. Proteins were predicted from the resulting

transcriptome assembly as with T. dalmanni using both Frame-

Finder and the longest ORF as described above (the T. whitei

transcriptome was used to create a word probability set for

FrameFinder prediction). The T. whitei proteins were aligned by

blastp to the predicted T. dalmanni proteins and hits with e values

,0.1 were kept. For each gene, whichever predicted protein had

the best hit to a predicated T. whitei protein was kept. The resulting

T. whitei and T. dalmanni protein pairs were aligned using Clustal

omega [88], and the consensus transcriptome sequences were

mapped onto the protein alignments (after trimming excess

sequence). dN/dS was predicted from each alignment greater

than 50 amino acids in length using SNAP [89]. Only consensus

sequences were used in calculating dN/dS - polymorphism in the

RNAseq data was not considered in this analysis, as such data

from RNAseq data can be unreliable (high or low levels of

coverage due to differences in gene expression may cause over or

underestimation of the number of polymorphic sites, respectively).

GO Analysis
Gene ontology analysis was performed for Drosophila orthologs

using DAVID functional annotation tools (http://david.abcc.

ncifcrf.gov, [57,90]). The list of D. melanogaster orthologs to drive-

associated transcripts was compared to the orthologs in the control

gene list and to the entire D. melanogaster proteome using DAVID’s

functional annotation tables tool. Annotations with an FDR,0.05

were considered significant when interpreting the output.

Analysis of Gene Linkage Relative to Drosophila
melanogaster

We used data from comparative genomic hybridization (CGH)

to determine linkage of genes differentially expressed between

drive and standard samples as well as the rest of the Trinity

assembly. The CGH data are accessible using accession number

GSE55601 from the NCBI Gene Expression Omnibus (GEO).

First, the log2 ratio of female to male expression was calculated for

each probe on each of four duplicate oligonucleotide Agilent

arrays containing 180K probes representing 12,000 unique genes.

These values were normalized so that the maximum number of

probes had a log2(f/m) ratio of 0, the expected value given the

nature of the array (divergence from 0 is caused by small

differences in the quality or quantity of genomic DNA from the

two sexes applied to the array). The sequences for the probes (see

GSE55601) were then aligned with BLAT (multiple matching

allowed, perfect hit required) to the Trinity assembly, giving a set

of probes matching each transcript. The median of the probe
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values for a given transcript was calculated for each array, and

then a median and a 95% confidence interval (CI) was calculated

across the four arrays. Calls for the linkage of each contig were as

follows: 1) if the upper bound of the CI was less than 22, the

transcript was called Y-linked; 2) if the lower bound of the CI was

greater than 0.5, the transcript was called X-linked; 3) if the CI

was entirely between 22 and 0.5, the transcript was called

autosomal; 4) if the CI overlapped any of these bounds, or if a

transcript had only a single probe or a single array informing on it,

it was called U. For genes with putative D. melanogaster orthologs,

the linkage of each gene was compared relative to D. melanogaster.

The X chromosome in T. dalmanni is mostly orthologous to

chromosome 2L in D. melanogaster [30]. Therefore, genes that are

X-linked in T. dalmanni and on non-2L chromosomes in D.

melanogaster have most likely moved relative to one another in one

of the two lineages. Likewise, autosomal genes in T. dalmanni that

are on 2L in D. melanogaster have most likely moved at some point

since they last shared a common ancestor.

Estimates of Genetic Differentiation in XSR and XST RNA
Samples

After alignment of the RNAseq data to the transcriptome with

bwa, SAMtools [91] was used to create pileup files across the T.

dalmanni transcriptome. Using the pileup files from XST and XSR

testes, we counted the number of sites on each transcript that were

fixed as different alleles between the two samples. We ignored sites

that were polymorphic in either the XST, XSR, or both samples. In

order for a site to be used, it had to have at least 10 reads informing

on it in both samples (‘‘106coverage’’), and there had to be at least

100 sites from a given transcript with sufficient read coverage for

that transcript to be used. To determine if an excess of fixed

differences on the X could be due to the fact that half as many X

chromosomes as autosomes are sampled in males, we used

fastsimcoal2 [92] to simulate populations of chromosomes with

100,000 SNPs using various values of Ne, a per SNP recombination

rate of 1025 per generation, and a minimum possible derived allele

frequency of 1026. We simulated 100 replicate populations with

each parameter set. In each simulation we took two samples of equal

size from each set of chromosomes, counted the number of fixed

differences between the two samples, and then averaged across each

set of parameters. Under all parameter sets, once at least 16

chromosomes were sampled, no fixed differences were observed

(Figure S2). To determine if the entire X chromosome is

nonrecombining, we used the observed probability of a fixed

difference per basepair and performed 10,000 simulated draws from

the binomial distribution for each of the transcripts that carried a

fixed base using the observed distribution of transcript lengths and

the per site rates of fixed differences in X-linked and autosomal

genes. We compared the resulting distribution of fixed differences

per transcript to observed values to determine if the observed

distribution was different from that expected if fixed differences are

randomly distributed across the X assuming the X chromosome

carried by XSR individuals was entirely nonrecombining.

Supporting Information

Figure S1 Significant patterns of differential expression across

tissues. K-means clustering was used to establish qualitatively

distinct expression patterns of transcripts across the six sequenced

tissues (ovary, testis, larva, heads, male carcass, and female

carcass), each with two replicates. Differentially expressed

transcripts were clustered into 8 expression pattern clusters as

described (methods). The number of genes in each cluster is shown

above each plot. Grey lines indicate an individual gene’s

expression pattern, while the blue marker indicates the mean

expression level for a cluster in a given sample.

(TIF)

Figure S2 Zero fixed differences between samples with pool

sizes greater than eight. We used fastsimcoal2 to generate samples

of 500 chromosomes, each containing 100,000 single nucleotide

polymorphisms. These chromosome samples were drawn from

simulated populations with various values of Ne, ranging from 100

to 1,000,000 (across top) – 100 independent samples were

generated for each value of Ne. The recombination rate between

SNPs was constant (1025) and the minimum possible frequency of

the derived allele was set to 1026. From the 500 chromosome

samples, pairs of smaller samples were drawn randomly to

simulate pools drawn from various numbers of individuals (pool

sizes 2–16 shown), and the number of fixed differences between

the pools was counted. Once at least 16 individuals were sampled

from a pool, the likelihood of finding a fixed difference was found

to be zero. When Ne was small, there was more variability in the

number of fixed differences for the smaller pool sizes.

(TIF)

Table S1 RT-PCR confirmation of drive-associated expression.

(XLSX)

Table S2 Logistic regression models of gene movement.

(XLSX)

Table S3 Generalized linear model of dN/dS.

(XLSX)

Table S4 Results of gene ontology analysis.

(XLSX)

Table S5 Transcripts having Drosophila orthologs with relevant

phenotypes.

(XLSX)

Table S6 Transcriptome sequencing and assembly details.

(XLSX)

Table S7 Comparison of EdgeR and DESeq results.

(XLSX)
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