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Objective: To predict the sensitivity of nasopharyngeal carcinoma (NPC) to neoadjuvant
chemotherapy (NACT) based on magnetic resonance (MR) radiomics and clinical
nomograms prior to NACT.

Materials and Methods: From January 2014 to July 2015, 284 consecutive patients
with pathologically confirmed NPC underwent 3.0 T MR imaging (MRI) before initiating
NACT. The patients’ data were randomly assigned to a training set (n = 200) or a test set
(n = 84) at a ratio of 7:3. The clinical data included sex, tumor (T) stage, lymph node (N)
stage, American Joint Committee on Cancer (AJCC) stage, and the plasma concentration
of Epstein–Barr virus (EBV) DNA. The regions of interest (ROI) were manually segmented
on the axial T2-weighted imaging (T2WI) and enhanced T1-weighted imaging (T1WI)
sequences using ITK-SNAP software. The radiomics data were post-processed using AK
software. Moreover, the Maximum Relevance Minimum Redundancy (mRMR) algorithm
and the Least Absolute Shrinkage and Selection Operator (LASSO) were adopted for
dimensionality reduction to screen for the features that best predicted the treatment
efficacy, and clinical risk factors were used in combination with radiomics scores (Rad-
scores) to construct the clinical radiomics-based nomogram. DeLong’s test was utilized
to compare the area under the curve (AUC) values of the clinical radiomics-based
nomogram, radiomics model, and clinical nomogram. Decision curve analysis (DCA)
was employed to evaluate each model’s net benefit.

Results: The clinical nomogram was constructed based on data from patients who were
randomly assigned according to T2WI and enhanced T1WI sequences. In the training set,
the T2WI sequence-based clinical radiomics nomogram and the radiomics model
outperformed the clinical nomogram in predicting the NACT efficacy (AUC, 0.81 vs.
0.60, p = 0.001279 and 0.76 vs. 0.60, p = 0.03026). These findings were well-verified in
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the test set. The enhanced T1WI sequence-based clinical radiomics nomogram exhibited
better performance in predicting treatment efficacy than the clinical nomogram (AUC, 0.79
vs. 0.62, respectively; p = 0.0000834). The DCA revealed that the T2WI and clinical
radiomics-based nomograms resulted in a net benefit in predicting the NACT efficacy.

Conclusion: The clinical radiomics-based nomogram improved the prediction of NACT
efficacy, with the T2WI sequence-based clinical radiomics achieving the best effect.
Keywords: nasopharyngeal carcinoma, radiomics, magnetic resonance imaging, neoadjuvant chemotherapy,
efficacy evaluation
INTRODUCTION

Radiotherapy is the main treatment for nasopharyngeal
carcinoma (NPC), which is associated with a complicated
anatomical structure. About 70% of patients are at the local
stages (stages III–Va) (1), and about 10%–15% of patients with
locally advanced NPC will develop a primary lesion or regional
lymph node residue, or experience disease recurrence (2, 3). To
reduce the likelihood of local recurrence and distant metastasis
(DM) of NPC, chemotherapy in combination with radiotherapy
is the main recommendation at present (4). The chemotherapy
regimens include neoadjuvant, concurrent, and adjuvant
chemotherapy ; among these opt ions , neoadjuvant
chemotherapy (NACT) has been increasingly recommended
due to its tolerability and its ability to induce the early
elimination of micrometastases (5–8). The administration of
NACT prior to concurrent chemotherapy can improve the
disease-free survival (DFS) and overall survival (OS) of
patients with NPC (9).

The early prediction of a patient’s response to NACT is of
crucial importance, as it assists clinicians in formulating suitable
therapeutic regimens before treatment and minimizes
unnecessary chemotherapy-induced toxicity. At present, the
magnetic resonance (MR) technologies used to predict the
therapeutic effect of NACT include conventional MR imaging
(MRI), diffusion-weighted imaging (DWI), dynamic contrast-
enhanced MR (DCE-MR) imaging, and intravoxel incoherent
motion (IVIM) and diffusion kurtosis imaging (DKI) (10–12).
When evaluating the therapeutic effect of a treatment for NPC,
the aforementioned functional MR technologies assess the tumor
mass from the level of interest, rather than from the overall mass,
and there are differences in the parameters measured by different
equipment. Recent studies have shown that NPC survival is
related to the clinical tumor, node, metastasis (TNM) stage, the
plasma levels of Epstein-Barr virus (EBV) DNA, the EBV
antibody levels evaluated by assays, the lactic dehydrogenase
(LDH) and hemoglobin (HGB) levels, the platelet count (PLT),
and the lymphocyte (LYM) and neutrophil (NEUT) ratios. NPC
survival is also closely related to a patient’s sensitivity to
chemotherapeutic agents and radiotherapy (13), while tumor
heterogeneity is related to tumor invasion and resistance (14).

At present, there are few effective tools to accurately predict a
patient’s response to NACT. However, radiomics can describe
the structural features and heterogeneity of tissue, which are
2

closely related to histopathological, proteomic, and genetic
heterogeneity, and are associated with tumor cell structure,
angiogenesis, and necrosis (15–18). Recent studies have shown
that employing a combination of MR-based radiomics with
multiple machine learning techniques can help predict the
diagnosis of NPC and evaluate the therapeutic effects of
treatment (19, 20).

Based on features related to tumor heterogeneity and the
efficacy of NACT identified from the MR-based multisequencing
radiomics conducted prior to the initiation of NACT, this study
aimed to construct a nomogram based on NPC clinic data, EBV-
DNA levels, and important laboratory indexes as a function of
radiomics to predict the sensitivity of NPC to NACT.
MATERIALS AND METHODS

Clinical Case Data
From January 2014 to July 2015, 284 consecutive patients with
pathologically confirmed NPC were selected for this study, which
was approved by the institutional ethics committee (YKT2021-
012-01). Each patient provided written informed consent before
examination. Data from 220 male and 64 female patients were
randomly assigned to either the training set (n = 200) or the test
set (n = 84) at a ratio of 7:3. The training set comprised data from
155 male and 45 female patients, with an average age of 47.1 ±
11.3 years. The test set comprised data from 65 male and 19
female patients, with an average age of 47 ± 11.0 years. According
to the World Health Organization (WHO) classification system
(21), NPC cases were pathologically classified as type I
(differentiated, chancroid), type II (differentiated, non-
chancroid), and type III (undifferentiated, non-chancroid).
There were four type I, eight type II, and 262 type III cases
included in the present study.

All enrolled patients underwent MR examinations before
treatment and at the end of the second cycle of NACT. For 5
years after the completion of treatment, all patients received
systemic follow-up examinations. The patient inclusion criteria
were as follows: (a) patients with locally advanced (stages III–
IVa), pathologically confirmed NPC; (b) patients who were
treatment naive; (c) patients who underwent re-examination
by MR techniques following two cycles of NACT; (d) patients
who underwent nasopharyngeal MR examination before and
after receiving comprehensive treatment; (e) patients with
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complete follow-up imaging data ([including skull base and neck
MRI, lung computed tomography (CT), abdominal B-scan
ultrasonography, bone emission computed tomography (ECT)
or systemic positron emission tomography (PET)/CT) that
demonstrated no recurrence within 5 years of treatment; and
(f) patients with pathologically confirmed local recurrence, DM,
or obvious metastasis revealed on multiple imaging
examinations. Based on the latter criterion, patients with local
recurrence and DM were classified in the recurrence group,
whereas those without local recurrence or DM within 5 years of
treatment were classified in the non-recurrence group. The
exclusion criteria were as follows: (a) patients with incomplete
image sequences or with images whose quality was insufficient
for assessing the diagnostic criteria and (b) patients who were
lost to follow-up.

Therapeutic Regimen
The same therapeutic regimen—namely, chemotherapy plus
intensity-modulated radiation therapy (IMRT)—was adopted
for all the enrolled patients. More specifically, all patients
received two cycles of NACT, followed by IMRT. Additionally,
all the enrolled patients received systemic examinations,
including nasopharyngoscopy, serology (EBV-DNA
quantification, EBV antibody assays, and routine blood and
biochemical analyses), enhanced MRI of the nasopharynx/skull
base/neck, multilayer helical enhanced CT of the chest, whole
abdominal ultrasonography, and systemic bone ECT; in
addition, some patients underwent systemic PET/CT
examinations. TNM classification was conducted in accordance
with the Union for International Cancer Control (UICC)/
American Joint Committee on Cancer (AJCC) classification
system (the 8th edition) (4).

The NACT consisted of two cycles of 21 days each. A
platinum-based regimen in combination with gemcitabine or
paclitaxel was adopted. The specific regimen was as follows: 80–
100 mg/m2 nedaplatin (Qilu Pharmaceutical Co., Ltd.,
Shandong, China, on day 2) + 135 mg/m2 paclitaxel (Hainan
Sinochem United Pharmaceutical Co., Ltd., Hainan, China, on
day 1); 80–100 mg/m2 cis-platinum (Qilu Pharmaceutical Co.,
Ltd., Shandong, China, on days 1–3) + 135 mg/m2 paclitaxel (on
day 1), 80–100 mg/m2 nedaplatin (on day 1) or 80–100 mg/m2

cis-platinum (on days 1–3) + 1,000 mg/m2 gemcitabine (Jiangsu
Haosoh Pharmaceutical Co., Ltd., on days 1 and 8).

NPC Target Volume Delineation
The IMRT target volumes (22) were delineated. The NPC gross
tumor volume (GTV) included the primary NPC lesion and the
affected tissues, the retropharyngeal lymph node, and the neck
lymph node metastatic region. Clinical target volume 1 (CTV1)
was defined as the external expansion of GTV1 by 5–10 mm +
the corresponding nasopharyngeal mucosa and submucosa by 5
mm. CTV2 included CTV, which appropriately considered the
adjacent structures affected by the extent and location of tumor
invasion, and the structures surrounding the nasopharynx and
skull base. CTVnd included the metastatic lymph nodes in the
neck and the lymph node drainage region. The planning target
volume (PTV) included the above-mentioned target volumes
Frontiers in Oncology | www.frontiersin.org 3
expanded externally by 3 mm. The recommended prescription
doses were as follows: the total doses of PGTVNX and PGTVRPN

were 66–76 Gy; the total dose of PGTVnd was 66–70 Gy; the
total dose of PCTV1 was 60–62 Gy; and the total doses of PCTV2
and PCTVnd were 50–56 Gy.

Evaluation of the Therapeutic Effect of
NACT
Lesion regression after NACT was evaluated according to the
Response Evaluation Criteria in Solid Tumors (RECIST) and
rated as complete response (CR), partial response (PR), stable
disease (SD), and progressive disease (PD) (23). Tumor regression
was evaluated in each patient after the second NACT cycle; those
who received a PR or CR classification were categorized as the
response group, whereas those with an SD or PD classification
were categorized as the non-response group.

Imaging Method and Model Construction
An Achieva 3.0 T TX MR scanner (Philips Medical Systems, The
Netherlands) was adopted for scanning, with a 16-channel head–
neck combined coil.

For the turbo spin echo (TSE) T2-weighted imaging (T2WI)
sequence, the short inversion time inversion recovery (STIR)
sequence was adopted for fat suppression. The following setting
parameters were used: field of view (FOV) = 230 × 260 mm, layer
thickness = 5 mm, interlayer spacing = 1 mm, repetition time
(TR) = 7,620 ms, echo time (TE) = 60 ms, matrix = 290 × 174,
number of excitations (NEX) = 2, inversion time (TI) = 230 ms,
echo train length (ETL) = 17, and number of scanning slices = 37.

For the transverse enhanced T1WI sequence, the following
setting parameters were used: FOV = 230 × 260 mm, layer
thickness = 5 mm, interlayer spacing = 1 mm, TR = 500 ms, TE =
8 ms, matrix = 232 × 217, NEX = 2, ETL = 5, and number of
scanning slices = 37. Gadopentetate dimeglumine (Gd-DTPA,
0.1–0.2 mmol/kg) was injected via the elbow vein with a high-
pressure injector.

The upper bound of the NPC scanning region was the inferior
temporal lobe, whereas the lower bound was the superior
thoracic aperture.

Data Collection
All the transverse T2WI sequences and enhanced T1WI
sequences were collected before patients initiated NACT. The
original images were retrieved from the Picture Archiving and
Communication System (PACS, Shida Technological Medical
System) and saved in the Digital Imaging and Communications
in Medicine (DICOM) format. The regions of interest (ROIs) in
the above-mentioned image sequences were manually segmented
using the open source ITK-SNAP software (v.3.4.0, http://www.
itksnap.org). The ROIs represented the tumor profiles for each
transverse view. The lesion profiles were independently delineated
by one radiologist with 10 years of experience and one radiologist
with 20 years of experience to obtain the 3D volume of the ROI of
each lesion. Thereafter, the intraclass correlation coefficient (ICC)
for the measurer and the between-measurements ICC were
calculated. Later, 50 cases were selected randomly, and the
respective ROIs were delineated by the radiologist with 10 years
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of experience; 1 week later, the ROIs were delineated again to
evaluate the ICC of the samemeasurer. In addition, the ROIs were
delineated by the radiologist with 20 years of experience to
evaluate the intergroup ICC. An ICC > 0.75 was considered to
be indicative of a favorable degree of consistency.

Histological Feature Extraction
AK software (Artificial Intelligence Kit V3.0.0.R, GE Healthcare)
was employed for post-processing of the radiomic data. More
specifically, the ROIs were delineated using the open source ITK-
SNAP software and subsequently imported into the AK software.
The first-order features, morphological features, gray-level co-
occurrence matrix (GLCM), gray-level run length matrix
(GLRLM), gray-level size zone matrix (GLSZM), and wavelet
features were chosen to extract a total of 680 features.

Feature Selection
Two feature selection methods were used, including the
Maximum Relevance Minimum Redundancy (mRMR)
algorithm and the Least Absolute Shrinkage and Selection
Operator (LASSO). First, mRMR was executed to eliminate the
redundant and irrelevant features, and 20 features were retained.
Subsequently, LASSO analysis was conducted, and 10-fold cross-
validation was utilized to select the optimal features and the l
parameter to obtain the compression model coefficient. The
optimized feature subset was selected to construct the final
model. In total, 19 features were selected from the transverse
T2WI sequence and 19 from the transverse enhanced
T1WI sequence.

Radiomics Model Construction
The radiomics scores (Rad-scores) of the training cohort were
weighted according to the combination formula constructed from
the selected features and the LASSO coefficients in the respective
Frontiers in Oncology | www.frontiersin.org 4
feature training cohorts; in other words, the Rad-score was
weighted based on the selected radiomics features and the
respective coefficients. The accuracy of the Rad-score (24) in
predicting the sensitivity of NPC to NACT was evaluated using
the area under curve (AUC) of the receiver operator characteristic
(ROC) curve. The methods for the radiomics feature selection and
model construction are presented in Figure 1.

Clinical Nomogram Construction and
Validation
The clinical risk factors, including age, sex, pathological stage, T
(tumor) stage, N (node) stage, AJCC stage, the plasma EBV-
DNA, EBV antibody, LDH, and HGB levels, and the PLT count
were used in combination with the Rad-score to construct the
clinical nomogram. The DeLong test was utilized to compare the
differences in the ROC curves among the clinical radiomics
nomogram, the radiomics model, and the clinical model. The
model identification efficacy was analyzed using the AUCs,
whereas the nomogram performance was evaluated using
decision curve analysis (DCA) (25). DCA determines the value
of the predictive model based on the theoretical relationship
between the disease threshold probability and the relative value
of the number of false positives to the number of false negatives.
The net benefit is the proportion calculated by subtracting the
false positive count from the true positive count; then, the
relative risk (RR) ratio is weighted; and, finally, the relative
hazard ratio (HR) of the false positive and false negative results
is weighted. The formula is as follows (Equation 1):

Net Benefit  =
TruePositiveCount

n

−
FalsepositiveCout

n
pt

1 − pt

� �
(1)
A B C

FIGURE 1 | Flow chart of radiomics feature selection and model construction. (A–C) Image segmentation is performed on MRI images.
November 2021 | Volume 11 | Article 740776
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where “TruePositiveCount” and ‘“FalsePositiveCount” indicate
the numbers of patients with true and false positive results,
respectively, “n” represents the total number of patients, and “pt”
is the threshold probability, which indicates the predicted
therapeutic effect.
Statistical Analysis
Patients were divided into two groups, including the response
group and the non-response group, according to the degree of
lesion regression observed after NACT. The Shapiro–Wilk test
was adopted to assess whether the data were normally
distributed, and measurement data were compared between
groups using independent-samples t-tests or Mann–Whitney U
tests for parametric and non-parametric data, respectively.
Enumeration data were analyzed by chi-square tests or Fisher’s
exact tests to compare the relationships between two groups.
Statistical Package for the Social Sciences (SPSS) 23.0 (SPSS Inc.,
Chicago, IL,USA) and R software (version 3.5.3; https://www.
Rproject.org) were employed for statistical analyses. ICC
analyses were conducted to evaluate the internal data
reproducibility for the feature extraction of the measurer and
between the two measurers. Multivariate logistic regression
analysis, ICC, LASSO regression analysis, ROC analysis, the
Hosmer–Lemeshow tests, and the DeLong and bootstrap tests
were carried out using R software. p < 0.05 indicated that a
difference was statistically significant.
Frontiers in Oncology | www.frontiersin.org 5
3 RESULTS

Clinical Features
There were 284 patients with NPC before the initiation of NACT.
After NACT, there were 172 cases in the response group and 112
in the non-response group. The T2WI sequences were randomly
divided into a training set (n = 200) and a test set (n = 84). The
clinical features of both sets are shown in Table 1. There were no
significant differences in terms of sex, T stage, AJCC stage, plasma
EBV-DNA levels, Rta protein immunoglobulin G antibody (Rta-
IgG), viral capsid antigen immunoglobulin A antibody (VCA-
IgA), early antigen immunoglobulin A antibody (EA-IgA), and
HGB levels or PLT counts between the response group and non-
response group in the training set or test set. However, significant
differences in age, N stage, and LDH levels between the two
groups were observed in the training set.

The clinical features of the training set and test set for the
enhanced T1WI sequence are displayed in Table 2. There were
no significant differences between the response group and the
non-response group in terms of sex, age, T stage, N stage, AJCC
stage, plasma EBV-DNA, Rta-IgG, VCA-IgA, EA-IgA, LDH, and
HGB levels, or PLT counts in the training set or test set.

Texture Feature Analysis
This study extracted 680 imaging features from the T2WI and
enhanced T1WI sequences. Subsequently, the redundant and
irrelevant features were eliminated using the mRMR algorithm,
TABLE 1 | Clinical features of patients randomly assigned to the T2-weighted imaging (T2WI) sequence group.

Variable Level Training set Test set

0 (n = 121) 1 (n = 79) p 0 (n = 51) 1 (n = 33) p

Sex Female 30 (24.8%) 15 (19.0%) 14 (27.5%) 5 (15.2%)
Male 91 (75.2%) 64 (81.0%) 0.43067 37 (72.5%) 28 (84.8%) 0.2942

Age (years) Mean (SD) 48.4 (11.6) 45.2 (10.7) 0.04978* 45.8 (11) 48.8 (10.9) 0.2146
T stage 1 0 (0.0) 0 (0.0) 1 (2.0%) 0 (0.0)

2 1 (0.8%) 1 (1.3%) 0 (0.0) 0 (0.0)
3 67 (55.4%) 31 (39.2%) 22 (43.1%) 7 (21.2%)
4 53 (43.8%) 47 (59.5%) - 28 (54.9%) 26 (78.8%) -

N stage 0 15 (12.4%) 0 (0.0) 4 (7.8%) 4 (12.1%)
1 28 (23.1%) 25 (31.6%) 13 (25.5%) 6 (18.2%)
2 66 (54.5%) 45 (57.0%) 28 (54.9%) 16 (48.5%)
3 12 (9.9%) 9 (11.4%) 0.01046* 6 (11.8%) 7 (21.2%) 0.5377

AJCC stage T3 62(51.2%) 29(36.7%) 21 (41.2%) 7 (21.2%)
T4a 59(48.8%) 50 (63.3%) 0.084 30 (58.8%) 26 (78.8%) -

EB-DNA(copy/ml) Mean (SD) 5449.7 (23055) 3835.6 (10429.2) 0.55915 2122 (5789.9) 8645.3 (36491.9) 0.2090
VCA-IgA(S/CO) Mean (SD) 3.2 (3.1) 3.2 (2.5) 0.91536 3.1 (2.5) 3.6 (3.2) 0.4078
EA-IgA(S/CO) Mean (SD) 2.9 (2.9) 2.9 (2.8) 0.93980 2.5 (2.4) 3.1 (3.4) 0.3150
Rta-IgG(S/CO) Mean (SD) 5.2 (3.5) 5.1 (4.4) 0.82711 5.1 (3.7) 4.4 (3.8) 0.3791
LDH(U/L) Mean (SD) 155.7 (41.3) 169.2 (52.8) 0.04374* 148.1 (28.7) 158.5 (30.3) 0.1141
HGB(g/L) Mean (SD) 140.9 (19.3) 144.1 (18.2) 0.23327 145.8 (13.8) 144.1 (15.5) 0.6066
PLT(10E9/L) Mean (SD) 260.1 (63.8) 257.4 (65.7) 0.76850 245.8 (68) 263.4 (68.5) 0.2482
Rad-score Median (IQR) −0.6 (−1.6, 0.1) 0.2 (−0.4, 0.9) 0.0001* −0.8 (−1.7, 0.1) 0.4 (−0.2, 1.3) 0.0001*
November 20
21 | Volume 11 | Article
The response group is labeled as 0, whereas the non-response group is labeled as 1. Mean, mean; SD, standard deviation; T, tumor; N, lymph node; AJCC, the American Joint Committee
on Cancer; EBV-DNA, plasma Epstein–Barr virus DNA; Rta-IgG, Rta protein immunoglobulin G antibody; VCA-IgA, viral capsid antigen immunoglobulin A antibody; EA-IgA, early antigen
immunoglobulin A antibody; HGB, hemoglobin; PLT, platelet; LDH, lactic dehydrogenase; median, median; IQR, interquartile range; Rad-score, radiomics score; -, not available.
*p < 0.05.
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and the respective top 20 features were retained. Subsequently,
LASSO analysis was performed to select the optimal feature
subsets used to construct the final model. First, the optimal l was
selected at the lowest point of the curve, and the corresponding l
coefficient was adopted to determine the number of features.
After the LASSO regression analysis, the corresponding T2WI l
value of 0.0069 was used to select 18 feature subsets (Figure 2).
The corresponding coefficients were then evaluated (Figure 3) to
obtain the Rad-score formula (1).

Similarly, the optimal l was selected at the lowest point of the
curve in the enhanced T1WI sequence. The corresponding l of
0.01088 was used to determine the 19 most characteristic
therapeutic effect-related subsets after NACT (Figure 4). The
corresponding subset weights were subsequently evaluated
(Figure 5), and the Rad-score formula (Equation 3)
was obtained.

Radiomics Model Construction
This study compared the Rad-score values between class 0
(the response group) and class 1 (the non-response group) for
the training set and test set based on the T2WI sequence. For the
T2WI sequence, there were significant differences in the Rad-
score values between the response group and the non-response
group in the training set [−0.6 (−1.6, 0.1), 0.2 (−0.4, 0.9), p <
0.0001] and test set [−0.8 (−1.7, 0.1), 0.4 (−0.2, 1.3), p < 0.0001].
From the T2WI sequence, 18 texture features were selected to
differentiate the response group and the non-response group
after NACT. In the training set, the AUC value of the radiomics
nomogram was 0.76 (95%CI, 0.69–0.83), whereas in the test set,
the AUC value was 0.77 (95%CI, 0.67–0.87).
Frontiers in Oncology | www.frontiersin.org 6
For the enhanced T1WI sequence, this study compared the
Rad-score values between the response group and the non-
response group for the training set and test set. For the
enhanced T1WI sequence, there were significant differences in
Rad-scores between the response group and the non-response
group in the training set [−0.7 (−1.4, −0.2), 0.2 (−0.3, 0.9), p <
0.0001] and test set [−1 (−1.6, −0.4), 0.1 (−0.6, 0.8), p < 0.0001].
From the enhanced T1WI sequence, 19 texture features were
selected to differentiate the response group from the non-
response group after NACT. In the training set, the AUC value
of the radiomics nomogram was 0.77 (95%CI, 0.70–0.84),
whereas in the test set, the AUC value was 0.75 (95%CI,
0.64–0.86).

Construction of the Clinical Radiomics
Nomograms
This study incorporated clinical data (sex, T stage, AJCC stage,
EBV-DNA, Rta-IgG, VCA-IgA, EA-IgA, and HGB levels, and
PLT counts) in the construction of the nomogram. Based on the
radiomics model constructed from the T2WI sequence, patients
in the training set and test set were randomly assigned to the
constructed clinical nomograms, with age, T stage, and LDH
level as the independent risk factors to evaluate the therapeutic
effect of NACT. For the clinical nomogram, the AUC value of the
training set was 0.66 (95%CI, 0.58–0.74), whereas the AUC of the
test set was 0.61 (95%CI, 0.48–0.73). For the T2WI sequence-
based radiomics model, the AUC of the training set was 0.76
(95%CI, 0.69–0.83), whereas that of the test set was 0.77 (95%CI,
0.67–0.87). In addition, clinical radiomics nomograms were
constructed based on the clinical risk factors and Rad-scores
TABLE 2 | Clinical features of patients randomly assigned to the enhanced T1-weighted imaging (T1WI) sequence group.

Variable Level Training set Test set

0 (n = 121) 1 (n = 79) p 0 (n = 51) 1 (n = 33) p

Sex Female 31 (25.6%) 17 (21.5%) 13 (25.5%) 3 (9.1%)
Male 90 (74.4%) 62 (78.5%) 0.62097 38 (74.5%) 30 (90.9%) 0.1129914

Age (years) Mean (SD) 47.3 (11.3) 45.6 (11.3) 0.29913 48.3 (12) 47.8 (9.6) 0.8348326
T stage 1 1 (0.8%) 0 (0.0) 0 (0.0) 0 (0.0)

2 0 (0.0) 1 (1.3%) 1 (2.0%) 0 (0.0)
3 64 (52.9%) 29 (36.7%) 25 (49.0%) 9 (27.3%)
4 56 (46.3%) 49 (62.0%) 0.06777 25 (49.0%) 24 (72.7%) -

N stage 0 13 (10.7%) 2 (2.5%) 6 (11.8%) 2 (6.1%)
1 28 (23.1%) 19 (24.1%) 13 (25.5%) 12 (36.4%)
2 70 (57.9%) 49 (62.0%) 24 (47.1%) 12 (36.4%)
3 10 (8.3%) 9 (11.4%) 0.17574 8 (15.7%) 7 (21.2%) 0.5015404

AJCC stage T3 59 (48.8%) 28 (35.4%) 24 (47.1%) 8 (24.2%)
T4a 62 (51.2.1%) 51 (64.6%) 0.11597 27 (52.9%) 25 (75.8%) -

EB-DNA(copy/ml) Mean (SD) 4,816.8 (22,454.6) 6,127.5 (25,310.8) 0.70125 3,623.6 (10,297.1) 3,158.4 (6,755.8) 0.8186611
VCA-IgA(S/CO) Mean (SD) 3.4 (3.2) 3.3 (2.6) 0.80758 2.5 (2.4) 3.4 (3) 0.1425691
EA-IgA(S/CO) Mean (SD) 2.6 (2.8) 2.9 (3) 0.53971 3 (2.7) 3.1 (2.8) 0.8766902
Rta-IgG(S/CO) Mean (SD) 5.3 (3.8) 5.2 (4.4) 0.92548 5 (2.9) 4.1 (3.7) 0.2202225
LDH(U/L) Mean (SD) 153.3 (37.7) 164.9 (47) 0.05398 153.9 (39.3) 168.7 (48.9) 0.1245336
HGB(g/L) Mean (SD) 142.3 (15) 144 (17.9) 0.47725 142.4 (23.6) 144.5 (16.1) 0.6556982
PLT(10E9/L) Mean (SD) 256.2 (69.1) 262.3 (63.7) 0.52663 255.2 (55.4) 251.6 (72.7) 0.7978981
Rad-score Median (IQR) −0.7 (−1.4, −0.2) 0.2 (−0.3, 0.9) <0.0001* −1 (−1.6, −0.4) 0.1 (−0.6, 0.8) 0.0001*
November 2
021 | Volume 11 | Art
The response group is labeled as 0, whereas the non-response group is labeled as 1. mean, mean; SD, standard deviation; T, tumor; N, lymph node; AJCC, the American Joint Committee
on Cancer; EBV-DNA, plasma Epstein–Barr virus DNA; Rta-IgG, Rta protein immunoglobulin G antibody; VCA-IgA, viral capsid antigen immunoglobulin A antibody; EA-IgA, early antigen
immunoglobulin A antibody; HGB, hemoglobin; PLT, platelet; LDH, lactic dehydrogenase; median, median; IQR, interquartile range; Rad-score, radiomics score; -, not available.
*p < 0.05.
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(Figure 6), for which the AUC of the training set was 0.79 (95%
CI, 0.73–0.85) and the AUC of the test set was 0.79 (95%CI,
0.69–0.88). The Hosmer–Lemeshow test of the clinical radiomics
nomograms revealed no significant statistical differences (p =
0.8696 for the training set, p = 0.6665 for the test set; p > 0.05
indicated favorable model fitting). In addition, the DeLong test
was used to compare the ROC curves of the clinical radiomics
nomogram, the radiomics model, and the clinical nomogram
(Figure 7). In the training set, the AUC value of the clinical
radiomics nomogram was superior to that of the clinical
nomogram (p = 0.001279); similarly, the AUC value of the
radiomics model was greater than that of the clinical model
(p = 0.03026), although there was no significant difference
between the AUCs of the clinical radiomics nomogram model
and the radiomics model (p = 0.1167). These findings were
subsequently verified in the test set. To be specific, the clinical
radiomics nomogram had a larger AUC than that of the clinical
model (p = 0.007617), the radiomics model had a larger AUC
value than that of the clinical model (p = 0.02188), and there was
no significant difference between the AUCs of the clinical
radiomics nomogram model and the radiomics model (p =
0.6238). The DCA (Figure 8) revealed that the radiomics
model and clinical radiomics nomogram achieved a higher
clinical net benefit in predicting the therapeutic effect of NACT.

For the enhanced T1WI sequence, the T stage and LDH level
were the independent risk factors for evaluating the therapeutic
effect of NACT. For the clinical model, the AUC value of the
training set was 0.62 (95%CI, 0.54–0.70), and for the test set, the
AUC was 0.66 (95%CI, 0.54–0.78). For the enhanced T1WI
sequence, the AUC values of the training set and test sets of the
radiomics model were 0.77 (95%CI, 0.70–0.84) and 0.75 (95%CI,
0.64–0.86), respectively. The clinical risk factors and Rad-score
were used to construct the clinical radiomics nomogram
FIGURE 3 | Features selected from the T2-weighted imaging (T2WI) sequence and the corresponding weights. The left part shows the 18 features selected from
the T2WI sequence, whereas the right displays the weighting coefficients of the corresponding selected features.
FIGURE 2 | The optimal feature subsets selected by Least Absolute
Shrinkage and Selection Operator (LASSO) analysis from the T2-weighted
imaging (T2WI) sequence to construct the final model. The upper part shows
the optimal l selected at the lowest point of the curve by LASSO analysis.
The lower part displays the penalty graph of the variation coefficients of the
680 imaging features, with the vertical dotted line indicating that a total of 18
of the most significant features are obtained at the optimal l value when
LogLambda is 0.006919.
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(Figure 9). In the clinical radiomics nomogram, the AUC of the
training set was 0.79 (95%CI, 0.72–0.85), and the AUC of the test
set was also 0.79 (95%CI, 0.69–0.89). The Hosmer–Lemeshow
test revealed no obvious statistical difference in the clinical
radiomics nomogram model (p = 0.319 for the training set and
p = 0.9414 for the test set). Upon testing of the goodness of fit of
the logistic regression model by the Hosmer–Lemeshow test, the
p-value was >0.05, indicating good model fitting. The DeLong
test or bootstrap testing was used to compare the ROC curves
among the three models (Figure 10). In the training set, the AUC
value of the clinical radiomics nomogram was superior to that of
the clinical model (Z = 3.9345, p = 0.0000834); similarly, the
AUC value of the radiomics nomogram was greater than that of
the clinical model (Z = 3.4646, p = 0.0005311), and there was no
significant difference in the AUC values of the training sets
between the clinical radiomics and radiomics models (Z =
1.4504, p = 0.1469). In the test set, the clinical radiomics
nomogram was superior to the clinical model (Z = 2.1828, p =
0.02905), and there was no significant difference between the
radiomics and clinical models (Z = 1.3166, p = 0.188) or between
the clinical radiomics and radiomics models (Z = 1.2304, p =
0.2185). The DCA (Figure 11) suggested that the clinical
radiomics nomogram had a higher clinical net benefit than the
clinical model.
DISCUSSION

Predicting the therapeutic effect of NACT in patients with locally
advanced NPC (stages III and IVa) using MR-based radiomics
features before treatment has rarely been reported in the
literature (26), and predictions based on pre-NACT MR
radiomics combined with clinical feature nomograms are even
rarer. In the present study, 18 and 19 features related to the
FIGURE 5 | Features selected from the enhanced T1-weighted imaging (T1WI) sequence and the weights of the corresponding features.
FIGURE 4 | Optimal feature subsets selected from the enhanced T1-
weighted imaging (T1WI) sequence using Least Absolute Shrinkage and
Selection Operator (LASSO) analysis to construct the final model. The upper
part shows the optimal penalty coefficient (l) selected at the lowest point of
the curve by LASSO. The lower part displays the penalty graph of the
variation coefficients of the 680 imaging features, with the vertical dotted line
indicating that a total of 19 of the most significant features are obtained at the
optimal l value when LogLambda equals 0.01088.
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chemotherapeutic efficacy were selected from the T2WI and
enhanced T1WI sequences, respectively. The results suggested
that the clinical radiomics nomogram could function as a means
of risk stratification and may be useful for guiding NACT
regimens. Moreover, the clinical radiomics nomogram and the
T2WI sequence-based radiomics were more likely to predict the
prognostic outcomes than the clinical model, suggesting that
they may become novel and effective tools to help treat locally
advanced NPC in the future.

This study indicated that for the clinical nomogram that was
constructed based on the T2WI sequence, the patient’s age, T
stage, and LDH level might be the independent risk factors for
evaluating the therapeutic effect of NACT. However, the clinical
Frontiers in Oncology | www.frontiersin.org 9
radiomics nomogram and the radiomics model were superior to
the clinical model alone. Wang et al. (26) previously investigated
T1WI, T2WI, and T2WI fat suppression sequences combined
with radiomics, demonstrating an AUC as high as 0.822 (0.809–
0.835), which was higher than the AUC obtained from the T2WI
sequence or the T2WI sequence-based clinical radiomics
nomogram alone in the present study. Some scholars have
applied functional magnetic resonance imaging (fMRI)
techniques, including DWI, dynamic contrast-enhanced MRI,
IVIM, and DKI in their investigations (10–12, 27). Despite the
fact that great efforts have been made to predict the therapeutic
effect of NACT, most studies are based on the need to frequently
measure the tumor at different time points over the course of
FIGURE 7 | Receiver operating characteristic (ROC) curves for the clinical model, radiomics model, and clinical radiomics nomogram of the training set and test set
based on the T2-weighted imaging (T2WI) sequences. The left side shows the training set, whereas the right side shows the test set. The figure indicates that the
radiomics and clinical radiomics models had greater area under the curve (AUC) values than the clinical model.
FIGURE 6 | Construction of the model nomogram based on age, tumor (T) stage, and lactate dehydrogenase (LDH) level combined with the T2-weighted imaging
(T2WI) radiomics score (Rad-score).
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NACT. In actual practice, it is difficult to frequently examine the
lesion, and the measurements cannot accurately reflect the lesion
as a whole.

This study revealed that the clinical T stage and LDH level
were related to the short-term efficacy of NACT, although the
diagnostic predictive values of these measures were low; in fact,
both were inferior to the predictive abilities of the T2WI-based
Frontiers in Oncology | www.frontiersin.org 10
clinical radiomics nomogram and the radiomics model. This
study constructed the clinical radiomics nomogram prediction
model to further investigate the role of T2WI-based radiomics
and clinical factors in predicting short-term treatment efficacy.
These models may facilitate the more precise delineation of
target volumes, aid in conducting radiation dosimetric
research, help in informing concurrent radiochemotherapy
FIGURE 9 | Construction of the model nomogram based on the tumor (T) stage and lactate dehydrogenase (LDH) level in combination with the enhanced T1-
weighted imaging (T1WI) sequence.
FIGURE 8 | The decision-making curves of the radiomics, clinical radiomics, and clinical models based on the T2-weighted imaging (T2WI) sequence, where the X-
and Y-axes represent the threshold probability and net benefit, respectively. Red indicates the clinical radiomics model, blue stands for the radiomics model, and
green represents the clinical model. The Y-axis represents the 0-parallel line, indicating that all samples were negative (assuming that all patients were in the non-
response group after treatment). The black line is based on the assumption that all samples were in the response group after treatment, and the net benefit is
represented by the diagonal line with a negative slope. The net benefit is the proportion calculated by subtracting the false positive count from the true positive
count. The threshold probability (Pt) was within the range of 0.1–0.8. The radiomics and clinical radiomics nomograms had a higher Pt and corresponding net
benefits than the clinical model, revealing that a higher clinical net benefit was obtained in predicting the therapeutic effect of neoadjuvant chemotherapy.
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regimens, and provide prognostic indexes for clinicians to aid in
individualized treatments. In this study, 19 features were selected
based on the T2WI sequence that had the greatest weights in
predicting the efficacy of NACT. Among these features, the small
area low gray-level emphasis (SALGLE) of the GLSZM in the
original image had the greatest weight, followed by the
maximum 2D diameter slice, while flatness ranked fourth in
the weighting. After wavelet transformation, the features with the
greatest weights were the large area high gray-level emphasis
Frontiers in Oncology | www.frontiersin.org 11
(LAHGLE) in the GLSZM, the mean in the first-order features,
the cluster shadow in the GLCM, and the long-run high gray-
level emphasis (LRHGLE). The SALGLE feature of the GLSZM
measures the distributed proportion of the regional integration
with low gray-level values in the image, whereas the LAHGLE
feature measures that of the regional integration with high gray-
level values in the image. The GLSZM has better performance in
describing the texture consistency, for example, mottled or
aperiodic textures. However, in terms of image texture, the
FIGURE 11 | The decision-making curves of the radiomics, clinical radiomics, and clinical models based on the T1-weighted imaging (T1WI) sequence, where the X-
and Y-axes represent the threshold probability and net benefit, respectively. Red indicates the clinical radiomics model, blue stands for the radiomics model, and
green represents the clinical model. The Y-axis represents the 0-parallel line, indicating that all samples were negative (assuming that all patients were in the non-
response group after treatment). The black line is based on the assumption that all samples were positive (in the response group after treatment), and the net benefit
is represented by the diagonal line with a negative slope. The net benefit is the proportion calculated by subtracting the false positive count from the true positive
count. The threshold probability (Pt) was within the range of 0.2–0.8. The clinical radiomics nomogram had a higher Pt and corresponding net benefits than the
clinical model, indicating that it attained a higher clinical net benefit in predicting the therapeutic effect of neoadjuvant chemotherapy.
FIGURE 10 | Receiver operating characteristic (ROC) curves for the clinical model, radiomics model, and clinical radiomics nomogram based on the T1-weighted
imaging (T1WI) sequence for the training set (left) and test set (right).
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GLCM outperforms the GLRLM. In this study, the SALGLE and
LAHGLE values were both greater in the non-response group
than in the response group. When describing lesion brightness
and complexity, greater values are indicative of higher NPC
lesion heterogeneity and poorer NACT efficacy. The maximum
2D diameter slice feature defines the maximum pairwise
Euclidean distance between the tumor surface grid vertices on
the transverse plane. According to the results of the present
study, the maximum 2D diameter Slice (namely, the maximum
tumor diameter of the maximum sectional area) was greater in
the non-response group than in the response group. RECIST
represents the most important radial line that is generally used to
evaluate the efficacy of antitumor therapies (27), which was
greater in the non-response group than in the response group.
Flatness is a feature that indicates the relationship between the
maximum and minimum features within the boundaries of the
ROI, with values ranging from 1 (non-planar, spherical) to 0
(planar). In this study, the flatness value in the non-response
group was greater than that in the response group, suggesting
that the morphology in the non-response group was irregular or
more spherical, whereas the value in the response group was
closer to that representing a more planar surface. Most features
were transformed from wavelets, and the mean in the first-order
features describes the average gray-level intensity in the ROI,
with greater brightness corresponding to a greater mean. In this
study, the mean in the first-order features was greater in the non-
response group than in the response group. The cluster shadow
in the GLCM is a measure of the skewness and homogeneity of
the GLCM, with a higher cluster shadow value indicating a
greater asymmetry of the mean. In the present study, the cluster
shadow value was greater in the nonresponse group than in the
response group, as was the LRHGLE of the GLRLM. The
LRHGLE is a measure of the joint distribution of a long run of
high gray-level values, with a higher LRHGLE value indicating a
coarser texture. The present findings were similar to those of a
study conducted by Wang et al. (28), which showed that the
LRHGLE value was the most important feature for predicting the
recurrence of anal cancer.

In the clinical nomogram that was constructed based on the
enhanced T1WI sequence, the T stage and LDH level might serve
as the independent risk factors for predicting the efficacy of
NACT. The AUC values of the training set and test set of the
clinical radiomics nomogram were greater than those of the
clinical nomogram model. This study focused on evaluating
parameters like the flatness of the original images, the mean/
kurtosis/maximum/skewness in the first-order features after
wavelet transformation, the relevance of the GLCM, the size-
zone non-uniformity (SZN) and LAHGLE in the GLSZM, and
the LRHGLE and short run emphasis (SRE) in the GLRLM, all of
which had greater values in the non-response group than in the
response group. Flatness is related to the tumor mass
morphology, the value of which was greater in the non-
response group than in the response group. As for the mean/
kurtosis/maximum/skewness in the first-order features, the
higher peak and more concentrated brightness indicated a
greater mean. More obvious increases in these two features in
the enhanced T1WI sequence are indicative of more compact
Frontiers in Oncology | www.frontiersin.org 12
tumor cells. Skewness is a measure of the mean asymmetry based
on deviations in the distribution of bright areas in the ROI. If the
bright region is greater than the gray region in an ROI, the
skewness value is positive. In this study, the skewness value was
greater in the non-response group than in the response group.
The relevance of the GLCM is measured by values ranging from
0 (irrelevance) to 1 (complete relevance) and is a measure used to
indicate the degree of linear correlation between the gray value
and the individual voxels in the GLCM. The value for this
parameter in the non-response group was closer to 1,
indicating a more linear correlation, whereas the value in the
response group was closer to 0, indicating a higher degree of
irrelevance. The SZN in the GLSZM measures the volume
variability of the ROI in an image, with a lower value
indicating more volume homogeneity in terms of the size of
the region. In this study, the SZN value in the non-response
group was greater than that in the response group, suggesting a
greater degree of heterogeneity in the volume of the region. The
LAHGLE parameter is related to the signal intensity of the
tumor, with more obvious enhancement and a greater
LAHGLE value being indicative of a denser tumor mass. The
SRE in the GLRLM measures the short run distribution, with a
greater value indicating a shorter run and finer texture, whereas a
greater LRHGLE value suggests a coarser texture; both of these
values were greater in the non-response group than in the
response group.

There were more male than female patients in the present
cohort, and the DCA revealed that the clinical radiomics
nomogram of each sequence obtained a higher net benefit than
the clinical model. In diverse clinical models, the patient’s age, T
stage, and LDH level might serve as the independent predictors
of the therapeutic effect of NACT. This study found that a more
obvious regression could be obtained after NACT in cases of T3
tumors than in T4 tumors. Besides, T4 stage tumors have a larger
volume and are more susceptible to liquid necrosis, and
chemotherapeutic agents may reach the necrotic area in lower
concentrations. Some reports have suggested that the serum
LDH level is an independent prognostic factor in the treatment
of non-distant metastasis (29). In the present study, the LDH
level was also one of the effective clinical predictors of NACT
efficacy. Some research indicates that measuring pretreatment
plasma EBV-DNA levels can improve the ability to predict the
prognosis or response to treatment (30, 31); however, this factor
failed to distinguish the response group from the non-response
group in the present study. This inconsistency might be ascribed
to the inconsistent EBV-DNA detection procedures and the large
degree of variability in EBV-DNA levels. Evaluating the T stage,
assessing serum LDH levels, and employing MR-based
multiparameter radiomics before initiating NACT are factors
that might predict the short-term efficacy of NACT, possibly
improving clinical outcomes.

Some limitations of this study should be noted. First of all, the
data in this study were obtained from patients who were scanned
using the same machine at the same center; therefore, external
verification using datasets collected from multiple centers is
required. Second, this study was retrospective in nature, and
after applying the exclusion criteria, all the patients were those
November 2021 | Volume 11 | Article 740776
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with locally advanced NPC (stage III–IVa) who received NACT,
which may have resulted in selection bias. Thus, prospective
trials with patients with newly diagnosed NPC should be
conducted in the future. Third, all of the images used in the
study were manually segmented. Due to the extensive NPC
invasion range and the complicated skull base structure, it is
impossible to automatically or semiautomatically segment the
images, resulting in an inevitable degree of subjectivity and poor
repeatability of the image segmentation process. Fourth, this
study only verified the diagnosis of the primary NPC lesion, and
the regional lymph nodes were not evaluated. For this reason,
prospective studies should be carried out in the future to analyze
changes in the clinical index before and after treatment to
optimize the clinical radiomics indexes. Fifth, this study
complied with the RECIST standard in the formulation of the
therapeutic effect standard. In the future, a more accurate gold
standard will be required for further investigation. Finally, this
study only investigated changes from a pathophysiological and
clinical perspective. Future proteomic and genomic studies are
needed to further explore the interactions between the variables
evaluated in this study.
CONCLUSION

In conclusion, this study constructed and validated an MR
radiomics nomogram based on multiple pretreatment clinical
indexes. The nomogram may serve as a precise medical index
that clinicians can use to predict the efficacy of treatment before
initiating NACT in patients with NPC.
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