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Underwater inherent optical properties (IOPs) are the fundamental clues to many research fields such as marine optics, marine
biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring
methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel
measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial
neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-
based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or
localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple
optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA) deep neural network structure for IOPs
estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help

our model make better decision.

1. Introduction

Light always plays an important role in physics, chemistry,
and biology of oceans research. The process of the light trans-
mission in the seawater is the foundation of ocean optical
research. And the optical properties are the key to describe
the light transmission process. The wavelength of the visible
light is widely spread from 400 nm to 700 nm. The optical
properties of the medium are crucial for the further research
of underwater vision, marine organism, pollution detection,
and other ocean research areas. The optical properties of
ocean can be roughly classified as inherent optical properties
(IOPs) and apparent optical properties (AOPs). Important
IOPs contain spectral absorption coefficient, a(A), scattering
coefficients, b(A), and attenuation coefficient, c(A). For a
certain wavelength A, these three properties can be simply
described as

cM=al)+bQ). )

IOPs only correlate with medium itself and are irrelevant
to the ambient light field or its geometric distribution.

Measuring these coeflicients is fundamental and important
to ocean optical research. Beam transmissometers, such as ac-
spectra (AC-S) produced by Wetlabs, are the most commonly
used devices for IOPs measurement [1-3]. However, its
inconvenient to place such an equipment because of the high
price and the limited volume of underwater IOPs measured
by the device. Moreover, most of the researchers consider
the water as homogeneous medium when measuring IOPs
[4-7]. Actually, a slight turbulence caused by robots, marine
pollution, or organisms may lead to an inhomogeneous
medium. But the beam transmissometers can only detect the
IOPs in the surrounding area. In such a case, an underwater
camera with a real-time system will be more flexible to
capture efficient information. Besides, there are some other
ways to deduct IOPs based on AOPs [8, 9].

AOPs are those properties that depend both on the
medium (the IOPs) and on the geometric structure of the
radiation distribution. AOPs can be measured by remote
sensing. And many researchers prefer to measure IOPs with
transmissometers as the ground truth to verify their AOPs
based deduction. But such deduction is not accurate enough.
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On one hand, data based on remote sensing is obtained
from satellites or airplane. The detailed information may
be omitted. On the other hand, remote sensing cannot
investigate the IOPs of undersea. AOPs based on remote
sensing can only tell us the IOPs distribution of the surface
water. Research also shows that the depth of water may bring
difficulty when we want to calculate IOPs [10].

Underwater images are always with scattering and
absorption. Because of these reasons, underwater images are
always blurred because of different light field and IOPs, which
may bring difficulty for us to build an accurate physical
model [11]. However, there are many researchers showing
that they can recover an underwater image with IOPs [12-
14] and physical models [15]. That means an underwater
image contains plenty of IOPs information. That is why we
can restore images with correct IOPs and suitable physical
models. If we can estimate IOPs with a single image, it would
be much convenient to measure IOPs undersea. Unlike the
most of underwater image restoration tasks which aim to
reduce the noise caused by scattering and absorption effect
[16], the image noisy information will help us to deduct IOPs.

Since Hinton and his colleges proposed the deep learning
concept from 2006 [17], deep neural network becomes more
and more popular these years. Neural network models are
proven not only on computer vision, but also on symmetric
recognition, image quality assessment, image restoration,
and even optical flow processing [18-23]. Thus, we consider
it it is possible to use deep neural network for analyzing
underwater images to estimate IOPs in this study. Besides,
if we want to build an end-to-end system with an image as
inputs and IOPs as outputs, deep neural network is a suitable
candidate to connect them together. In this paper, we used
AC-S to provide 156 IOPs (78 attenuation coeflicients and 78
absorption coeflicients) as the ground truth for the neural
network training.

2. Depth Aided Deep Neural
Networks for IOPs Estimation

The framework of our system can be found in Figure 1.
We used a color calibration board as the target underwater
object and captured its RGB images with a video camera.
We also measured the distance between the board and the
camera as depth information. The depth information is used
as an aided input to the deep convolutional neural network.
Convolutional neural network (CNN), which is developed by
Lecun and Bengio [24] in 1995, is a powerful model especially
in computer vision research. CNN is improved by Krizhevsky
and his colleges in 2012 as AlexNet [25]. We follow their idea
to build our model for underwater image analysis. However,
our inputs and outputs are different from their work.

Deep neural network can not only recognize what kind
of the target object is, but also understand how much blur an
image is. But the water quality is not the only factor which
causes the image blur. In physical point of view, distance
between the camera and the target is also an important factor.
The underwater images would be blur if the water quality
is low, and the images would also be unclear if the target
object is far away from the camera. That is the reason why we
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FIGURE 1: The framework of our experiment.

considered depth information of the target object as another
useful feature.

Unlike some common neural network application tasks
such as image classification, IOPs including multiple coeffi-
cients are not binary values. Thus, softmax activation func-
tion which is usually used for image classification tasks [26-
28] in the last layer cannot be used for our goal. Instead, we
applied min-max normalization and Euclidean loss function
for IOPs regression:
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where y; 0.0 is the iy, desired IOP coefficient measured by

AC-S, y; is the IOP coefficient after min-max normalization,
y; is the iy, estimated IOPs by deep neural network, and N
is the number of IOPs. The AC-S employed can provide 78
absorption and 78 attenuation coefficients. Hence, we have
N =78 x2 = 156. Equation (3) shows the detail of min-max
normalization which is used for depth normalization. We also
use this method to normalize the depth information.

We design the Depth Aided (DA) neural network model
for IOPs estimation as shown in Figure 2. The AC-S can pro-
vide 78 attenuation coefficients and 78 absorption coefficients
from 400 nm to 730 nm as network output labels when we
capture RGB images. These IOPs are used as the targets of
the AlexNet. Because our target object is a flat board, depth
information is considered as a single number. Thus there is
no need to put the depth information into convolution layer.
So we set the depth information as an aided input in the
feedforward layer 7. The weights between depth information
and feedforward layer 7 are fully connected. Error backpropa-
gation algorithm, stochastic gradient descendent (SGD), and
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FIGURE 2: The Depth Aided (DA) deep neural network structure.

dropout algorithms [29] are used for evolving this network.
The feedforward connections of each neurons in feedforward
layer 7 can be described as

)/i:f(uj)Zf(fof+wdxd+b), (4)

where y; and u; are the jy, neuron postsynaptic and presy-
naptic value of the feedforward layer 7, respectively; x is the
neural inputs from the feedforward layer 6; w/ is the weights
between layer 6 and layer 7, x, is the depth information; w, is
the weight in depth information; b is the bias; and f() is the
activation function. The network weights updating can follow
the error backpropagation rule as
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ow; B aujyi’
- €)
Aw (t + 1) = pAw, — nm - &w,,

where w;; represents the weight from the iy, neuron to the jy,
neuron, E is the error function defined in (2), Aw(t + 1) is
the weight updating value in the (t + 1)y, iteration, y is the
momentum, # is the learning rate, and & is the weight decay
rate which can prevent overfitting.

Our datasets are collected in a large water tank as shown
in Figures 3 and 4. We put a lifting platform inside the tank
to hold the color calibration board. The digital camera is
just above the water. The lifting platform can guarantee the
board to always be inside the water and vertical to the camera.
And it can also change the distance between the color board
and the camera accurately. After we get enough data with
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FIGURE 3: The framework of our experiment.

FIGURE 4: Experiment environment.

TABLE 1: Datasets description.

Datasets Distance (mm) Images Image pack
Dataset A 500, 600, 700 2100 4-10
Dataset B 500, 600, 700 2100 4-10
Dataset C 460, 560, 660, 760 1200 1-3

different distances, we added the aluminium hydroxide into
the water to change the water qualities and collect the data
again. Meanwhile, we also use AC-S in the water to measure
the real-time IOPs as ground truth. We did not use any
additional light field in this experiment except indoor diffuse
refection.

The data we collected are listed in Tables 1 and 2. Due
to the size of the employed water tank (3.6 m (length) x
2.0 m (width) x 1.2 m (depth)), the precise concentration of
aluminium hydroxide cannot be directly measured. However,
we could estimate the concentration of aluminium hydroxide
by using the volume of water filled in the tank and the weight
of aluminium hydroxide added for each image collection.
The results were given in Table 2. To ensure uniformity
of aluminium hydroxide distribution, we used a circulating
pump to stir the water before image collection started. Yet, it
can be noticed that the average attenuation and absorption of
image pack (4) look lower than the value obtained for image
pack (3). The reason for that is the first 3 image packs and
the remaining 6 image packs were taken on two consecutive
days; some aluminium hydroxide settled at the bottom still
standing after 10 hours.
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FIGURE 5: Images captured under different situations. (a)-(c) are captured without any aluminium hydroxide (image pack (1)) under 460 mm,
560 mm, and 660 mm. (d)—(1) are captured under 460 mm corresponding to image packs (2)-(10).
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TABLE 2: IOPs description.

Image pack Image number Avg. attenuation (m™) Avg. absorption (m™) Aluminijum hydroxide (g/m3 )
1) 400 2.9380 0.6392 0

(2) 400 3.2664 0.6596 4.24
(3) 400 3.2725 0.6905 6.37
(4) 600 3.0048 0.6505 6.37
(5) 600 4.1257 0.8627 8.53
(6) 600 5.0092 1.0213 10.76
(7) 600 5.8371 1.1759 12.58
(8) 600 6.2485 1.2357 17.24
9) 600 9.0333 1.7242 25.61
(10) 600 11.7797 2.0721 34.89
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FIGURE 6: The ROI position.

We collected 3 groups of datasets. Please note that we do
not add any aluminium hydroxide into the water when we
take photos in image pack (1). Datasets A and B were taken
under similar environments but at different time periods.
Dataset C was taken with different distances and different
IOPs. Each image pack was captured with a digital video
camera during a short period. Lots of researchers used IOPs
under 520 nm wavelength as reference properties [30, 31].
The average value of attenuation and absorption coefficients
at 520nm wavelength in each image pack can be found
in Table 1. The frame rate of this camera is 25 frames per
second. After we take enough images under a certain depth
we can modify the distance between the camera and the
board by adjusting the lifting platform. When we got enough
photos in one pack, we modified the water IOPs by adding
aluminium hydroxide and then started capturing the next
image pack. The IOPs in one image pack are similar. But we
still use the real-time results provided by AC-S as the training
label of deep convolutional neural networks. Our camera
type is Hikvision 2ZCN3007. It used a 1/2.8"” Progressive
Scan CMOS sensor. The camera can provide videos with
resolution of 1080 p. We used the raw RGB camera pictures
(1920 = 1080 pixels) and chose the center part as the region
of interest (800 * 800 pixels) as shown in Figure 6. And
then we resized them into 200 * 200 for network training.
The input of the neural network used 3 channels for RGB
format. We collected images in the daytime. The camera used

displayed in Figure 5. Figures 5(a)-5(c) are captured in
pack (1) under 460 mm, 560 mm, and 660 mm, respectively,
and Figures 5(d)-5(1) are captured from pack (2) to pack
(10) under the same distance (460 mm). The overview of
IOPs estimation results can be found in Table 3. We use a
single GTX1070 graphic card and Intel i7-6700 to train these
networks. We set the learning rate as 0.0001. We use 3 kinds
of deep neural network for IOPs estimation evaluation. We
waited enough epochs until these networks converged. Cifar-
Net, which is improved based on LeNet-5 [22], is used as
benchmark for this experiment. Although we waited 100,000
epochs (about 1 hour), the results based on Cifar-Net are still
poor even in training set. AlexNet, which costs us about 3
hours on training until we reach 30,000 epochs, performs
better. And we get the minimum Euclidean loss if we consider
the depth information. Lower loss means estimated IOPs are
closer to the ground truth. That means depth information is
helpful especially in clean medium. The DA Net costs about
3 and a half hours for 30,000 epochs. The training speed of
our model is a little slower than AlexNet, but with better
performance.

The detail of IOPs estimation results can be found in
Figure 7. We choose 3 typical RGB images representing
images captured in high, medium, and low turbidity, respec-
tively. The performance of Cifar-Net is shown using blue
lines; the regression curve of AlexNet is displayed with red
dashed lines; the DA Net is shown with green asterisks and
the ground truth provided by AC-S is represented using
purple dot lines. In high turbidity case, both AlexNet and
our method perform well on attenuation regression. A small
amount error existed in blue-purple band (400-450 nm). Our
method performs better than AlexNet in both absorption and
attenuation coeflicients regression task. In medium and low
turbidity case, the curves of the DA Net get closer to the
ground truth comparing with AlexNet. Although Cifar-Nets
show a generally right regression result on three cases, its
performance is much lower than the other two methods.
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FIGURE 7: IOPs estimation results. (a)-(f) show the IOPs estimation results based on 3 typical images corresponding to high, medium, and low
turbidity. (a) and (b) show the attenuation and absorption coefficients regression results based on Figure 5(i). (c) and (d) show the coefficients
regression results based on Figure 5(f). (e) and (f) show the coeflicients regression results based on Figure 5(d).
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TABLE 3: IOPs estimation results.

Training set Test set Euclidean loss Network
A A 1.23 Cifar-Net
A A 2.67 Cifar-Net
A A 2.70 Cifar-Net
A B 0.047 AlexNet
A B 0.232 AlexNet
A B 0.1532 AlexNet
A C 0.032 DA Net

A C 0.1996 DA Net

A C 0.056 DA Net

3. Discussion and Conclusion

In summary, we propose a DA deep neural network for
IOPs estimation method based on a single RGBD image with
a DA deep neural network. We argue that an underwater
image contains enough IOPs information that is even noisy.
So we are able to deduct IOPs on a single RGBD image
with a suitable system. Comparing with traditional methods
based on transmissometers, our method can archive enough
accuracy but cost-effectively and more flexibly than tradi-
tional devices. Our method is able to predict both attenuation
and absorption coeflicients of the medium simultaneously.
The experimental results in Table 3 show that even a single
RGB image seems enough for IOPs estimation with deep
learning technologies. We can get better estimation results if
we consider depth information as an aided input.

In our experiment, we did not consider any complex
light field conditions and target objects with complex shape
case. These factors may bring difficulty to measure IOPs
when we want to put this system in an opening environment.
Fortunately, research on deep neural network shows that it is
possible to estimate a depth map on a complex target object
and even under different light fields with a single RGB image
[32, 33]. That may be a possible solution for us to improve our
model. On the other hand, back-scattering coefficients, which
cannot be measured by AC-S, are very important to build an
underwater image recovering model. How to estimate back-
scattering coeflicients is another challenge. We wish to leave
these two parts in our future work.
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