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Abstract: Hyperphenylalaninemia (HPA), the most common amino acid metabolism disorder, is
caused by defects in enzymes involved in phenylalanine metabolism, with the consequent accumula-
tion of phenylalanine and its secondary metabolites in body fluids and tissues. Clinical manifestations
of HPA include mental retardation, and its early diagnosis with timely treatment can improve the prog-
nosis of affected patients. Due to the genetic complexity and heterogeneity of HPA, high-throughput
molecular technologies, such as next-generation sequencing (NGS), are becoming indispensable tools
to fully characterize the etiology, helping clinicians to promptly identify the exact patients’ genotype
and determine the appropriate treatment. In this review, after a brief overview of the key enzymes
involved in phenylalanine metabolism, we represent the wide spectrum of genes and their variants
associated with HPA and discuss the utility of genomic testing for improved diagnosis and clinical
management of HPA.

Keywords: hyperphenylalaninemia; genomics; inherited metabolic disorders

1. Introduction

A burden of phenylalanine (Phe) in the blood and other tissues is the hallmark of
hyperphenylalaninemia (HPA), the most common inborn error of amino acid metabolism,
with an incidence that varies widely among ethnic and geographical regions around the
world [1,2]. HPA is often the result of genetic alterations in the phenylalanine hydroxylase
(PAH) gene, encoding an enzyme catalyzing the conversion of L-Phe to L-Tyrosine (Tyr),
but it may also derive from defects in genes encoding enzymes involved in the biosynthesis
or regeneration of the cofactor tetrahydrobiopterin (BH4) [3]. Although HPA is primarily
characterized by progressive mental retardation, distinctive genotypes associated with
HPA have different effects on the severity and prognosis of the disease and the response
of patients to therapy [4,5]. To avoid irreversible damage to the nervous system, it is
essential to perform an early and accurate diagnosis and begin the appropriate treatment
in a timely manner.

To date, many countries in the world have implemented newborn screening (NBS)
programs that allow the diagnosis of HPA and elicit a prompt therapy, which is often based
on a diet throughout life [6,7]. However, traditional differential diagnosis methods are time
consuming and are nowadays inadequate to capture the extensive genetic heterogeneity of
HPA. In this context, high-throughput technologies, such as multiplex ligation-dependent
probe amplification, DNA microarray and next-generation sequencing (NGS), allow the
simultaneous analysis of multiple genetic variants associated with this heterogeneous
disorder and, thus, optimize patient care and management [8–13].

In this review, after a brief overview of the key enzymes involved in Phe metabolism,
we represent the wide spectrum of genes and their variants associated with HPA and
discuss the utility of genomic testing for improved diagnosis and clinical management of
HPA. To introduce the readers to genomic testing, we exemplify the workflow and illustrate
time and cost of targeted NGS applied to HPA.
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2. Enzymes Involved in Phe Metabolism

To better highlight the effects of enzymatic deficiencies on Phe metabolism, all the
enzymes directly or indirectly involved in Phe catabolism are illustrated in Figure 1 [14].
Phe is an essential amino acid exclusively obtained by the diet or by endogenous proteoly-
sis. Following cellular exogenous uptake through specific transporters, Phe is converted in
L-Tyr by PAH, an enzyme mainly expressed in the liver and kidney, which represents the
rate-limiting step in Phe catabolism [15–17]. This conversion is dependent on tetrahydro-
biopterin (BH4), as a cofactor, molecular oxygen and iron [18]. When PAH is nonfunctional,
Phe accumulates in the body and is converted by different enzymes into phenylpyruvic
acid, a substance that is normally produced only in small quantities. Individuals with
mutations of PAH excrete in the urine large quantities of phenylpyruvic acid along with
Phe, a condition known as phenylketonuria (PKU) [19].
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Figure 1. Metabolic pathway of Phe and BH4. Phe metabolism is crucial for protein synthesis,
as well as for the synthesis of Tyr and its derivatives. The major catabolic pathway involves Phe
hydroxylation to Tyr by PAH. In one of the minor pathways, Phe may undergo conversion to
Phenylpyruvic acid. An essential cofactor and regulator of PAH is BH4, whose biosynthesis and
regeneration depend by different enzymes. Abbreviations: AATC, Aspartate aminotransferase, cyto-
plasmic; AATM, Aspartate aminotransferase, mitochondrial; DCoH, Pterin-4-alpha-carbinolamine
dehydratase; DHPR, Dihydropteridine reductase; DNAJC12, DNAJ homolog subfamily C member
12; GCH1, Guanosine triphosphate (GTP) cyclohydrolase 1; KAT1, Kynurenine-oxoglutarate transam-
inase 1; PAH, Phenylalanine-4-hydroxylase; PTS, 6-pyruvoyl tetrahydrobiopterin synthase; SPR, Sepi-
apterin reductase; TPH1, Tryptophan 5-hydroxylase 1; TPH2, Tryptophan 5-hydroxylase 2; PCBD1,
Pterin-4a-carbinolamine dehydratase; EC number 1.5.1.34: Dihydrobiopterin + NADH = NAD+

+ Tetrahydrobiopterin; EC number 1.14.16.1: O2 + Tetrahydrobiopterin + S-Methylcysteine = S-
Methylcysteine-sulfoxide + H2O + Dihydrobiopterin; EC number: 1.14.16.4 L-Tryptophan + O2 +
Tetrahydrobiopterin = 5-Hydroxyl-L-Tryptophan+4alpha-Hydroxytetrahydrobiopterin; EC number
2.6.1.5-2.6.1.64: L-Phenylalanine + 2-Oxoglutaric acid = L-Glutamic acid + Phenylpyruvic acid.

PAH activity depends on BH4, a cofactor also involved in the hydroxylation of in-
tracellular tryptophan (a precursor of serotonin and melatonin) and Tyr (a precursor of
dopamine and melanin), as well as the synthesis of nitric oxide synthase and the cleav-
age of lipid ethers into glycerol and the corresponding aldehyde [20,21]. As illustrated
in Figure 1, under normal conditions, the de novo biosynthesis of BH4 from guanosine
triphospate (GTP) is catalyzed by three enzymes: GTP cyclohydrolase I (GCH1), 6-pyruvoyl-
tetrahydropterin synthase (PTS) and sepiapterin reductase (SPR) [18,22,23]. An alternative
or salvage pathway involves the regeneration of BH4 from dihydrobiopterin by pterin-
4-alpha-carbinolamine dehydratase (PCBD1) and quinoid dihydropteridine reductase
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(QDPR) [24]. Although the major controlling point in BH4 biosynthesis is GCH1, defects in
all enzymes, with the exception of SPR, can be a cause of HPA.

The proper folding and degradation of PAH is regulated by DNAJC12, a member of
the subclass of the DNAJ/Hsp40 family of cochaperones, which modulate the activity of
molecular chaperone Hsp70 [25]. In particular, DNAJC12 directly interacts with PAH and
may play a role in the Hsp70-assisted folding of PAH and in the processing of misfolded
ubiquitinated PAH [26]. The deficiency of DNAJC12 leads to decreased PAH protein levels
and activity [27].

3. Genetics of Hyperphenylalaninemia

In Table 1, we list all the genes associated with HPA. About 98% of cases are caused by
loss-of-function mutations in PAH that, as described before, encodes the enzyme performing
the rate-limiting step in Phe catabolism. In a few cases, HPA is associated with mutations of
DNAJC12, whose encoded protein controls proper folding and degradation of PAH [26,27].
In the remaining cases, HPA originates from defects in genes encoding enzymes involved
in the biosynthesis (GCH1, PTS) or regeneration (PCBD1, QDPR) of BH4, the active cofactor
of PAH [28]. Below is a description of each of these genes and their allelic variants.

HPA derived from mutations of PAH (chromosome 12q23.2, 13 exons) shows an
autosomal recessive (AR) inheritance (Table 1). To date, more than 1000 mutations have
been described and reported in the locus-specific PAH database (http://www.biopku.
org, accessed on 23 December 2021), including single-nucleotide variants (SNVs), short
insertions and deletions (InDels) and large structural variants (SVs) [29–31].

DNAJC12 (chromosome 10q21.3, 6 exons), also known as JDP1 or HPANBH4, en-
codes for a heat shock co-chaperone family member protein involved in proper folding of
PAH [32]. The destabilization of this enzyme caused by AR mutations with subsequent
loss of Phe, Tyr and neuronal tryptophan hydroxylases activity, leads to HPA and neuro-
transmitter deficiency [33,34] (Table 1). To date, different pathogenic or likely pathogenic
variants have been associated with mild and non-BH4-deficient HPA, causing nonsense,
frameshift, missense and splice-site mutations [35,36]. Recently, new heterozygous mu-
tations in DNAJC12 were found by whole exome sequencing (WES), further supporting
the importance of high-throughput screening methods for discovering and improving the
neurodevelopmental outcome of HPA patients [32].

GCH1 (chromosome 14q22.2, 7 exons) encodes the first and rate-limiting enzyme of
BH4 biosynthesis [18]. Its deficiency causes DOPA-responsive dystonia with or without
HPA [37]. The most common dominant form, known as Segawa disease, responds well to
dopamine replacement therapy, whereas the recessive form is more severe and is associated
with malignant HPA [38–40]. In some patients with autosomal recessive GCH1 deficiency,
the diagnosis can be late due to normal blood phenylalanine levels at NBS [41]. Different
pathogenic GCH1 variants are known for producing a variety of molecular consequences
(Table 1).

PTS (chromosome 11q23.1, 6 exons) encodes 6-pyruvoyl-tetrahydropterin synthase,
an enzyme involved in the catalytic conversion of dihydroneopterin triphosphate to
6-pyruvoyl-tetrahydropterin and elimination of inorganic triphosphate from dihydro-
neopterin triphosphate, which is the second and irreversible step in the biosynthesis of
BH4 [42,43]. Autosomal recessive genetic variations in PTS, which account for approxi-
mately 60% of all BH4 deficiencies, are associated with severe or mild forms of HPA [11,44].
Deletions, duplications, insertion and single nucleotide PTS variants (Table 1) can result
in decreased or null enzyme activity, thus leading to little or no BH4 production and
consequently to toxic levels of Phe in blood and other tissues [42].

PCBD1 (chromosome 10q22.1, 6 exons) encodes for Pterin-4 Alpha-Carbinolamine
Dehydratase 1, an enzyme involved in the regeneration of BH4 whose defects are associated
with a benign transient form of HPA [45]. Different PCBD1 variants (missense, frameshift,
nonsense, and small deletions in exon 2 and 4) may reduce enzyme activity and result in
pathogenic effects [39,46] (Table 1).

http://www.biopku.org
http://www.biopku.org
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Table 1. Genetic causes of HPA.

Gene Symbol Gene Name Enzyme Function Disease Name OMIMnumber
Disease

Mode of
Inheritance Variation Type Variant Length Molecular

Consequence Clinical Significance

PAH
Phenylalanine
hydroxylase Phe catabolism

Phenylketonuria,
non-phenylketonuria,

hyperphenylalaninemia
261600 AR

Deletion (131) Less than 51 bp (1103) Frameshift (97) Conflicting
interpretations (6)

Duplication (32) Between 51 and
1000 bp (8) Missense (550) Benign (65)

Indel (6) Between 1 and
50 kb (6) Nonsense (64) Likely benign (141)

Insertion (37) Between 50
and 500 kb (0) Splice site (74) Uncertain

significance (220)

Single Nucleotide
(950)

Between 500 kb and
1 Mb (0) ncRNA (0) Likely pathogenic

(265)

Between 1 and
5 Mb (0) Near gene (0) Pathogenic (366)

Greater than 5 Mb (3) UTR (31)

DNAJC12

DnaJ heat
shock protein

family
(Hsp40)

member C12

PAH folding and
degradation

Hyperphenylalaninemia,
mild, non-BH4-deficient 617384 AR

Deletion (8) Less than 51 bp (45) Frameshift (3) Conflicting
interpretations (0)

Duplication (11) Between 51 and
1000 bp (0) Missense (11) Benign (21)

Indel (0) Between 1 and
50 kb (1) Nonsense (3) Likely benign (4)

Insertion (0) Between 50 and
500 kb (0) Splice site (6) Uncertain

significance (8)

Single nucleotide
(42)

Between 500 kb and
1 Mb (0) ncRNA (0) Likely pathogenic (4)

Between 1 and
5 Mb (0) Near gene (0) Pathogenic (24)

Greater than 5 Mb (6) UTR (4)
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Table 1. Cont.

Gene Symbol Gene Name Enzyme Function Disease Name OMIMnumber
Disease

Mode of
Inheritance Variation Type Variant Length Molecular

Consequence Clinical Significance

GCH1
GTP

cyclohydrolase I
BH4 de novo
biosynthesis

Hyperphenylalaninemia,
BH4-deficient, B 233910 AR

Deletion (29) Less than 51 bp (221) Frameshift (12) Conflicting
interpretations (21)

Duplication (25) Between 51 and
1000 bp (3) Missense (73) Benign (36)

Indel (2) Between 1 and
50 kb (1) Nonsense (8) Likely benign (35)

Insertion (16) Between 50 and
500 kb (0) Splice site (11) Uncertain

significance (89)

Single nucleotide
(197)

Between 500 kb and
1 Mb (0) ncRNA (0) Likely pathogenic

(15)

Between 1 and
5 Mb (1) Near gene (0) Pathogenic (70)

Dystonia,
DOPA-responsive, with

or without
hyperphenylalaninemia

128230 AD/AR Greater than 5 Mb (4) UTR (59)

PTS
6-pyruvoyl-

tetrahydropterin
synthase

BH4 de novo
biosynthesis

Hyperphenylalaninemia,
BH4-deficient, A 261640 AR

Deletion (20) Less than 51 bp (140) Frameshift (7) Conflicting
interpretations (9)

Duplication (10) Between 51 and
1000 bp (1) Missense (50) Benign (14)

Indel (0) Between 1 and
50 kb (0) Nonsense (5) Likely benign (42)

Insertion (3) Between 50 and
500 kb (0) Splice site (9) Uncertain

significance (36)

Single nucleotide
(127)

Between 500 kb and
1 Mb (1) ncRNA (0) Likely pathogenic

(29)

Between 1 and
5 Mb (0) Near gene (0) Pathogenic (41)

Greater than 5 Mb (1) UTR (5)
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Table 1. Cont.

Gene Symbol Gene Name Enzyme Function Disease Name OMIMnumber
Disease

Mode of
Inheritance Variation Type Variant Length Molecular

Consequence Clinical Significance

PCBD1

Pterin-4-
alpha-

carbinolamine
dehydratase

BH4 regeneration Hyperphenylalaninemia,
BH4-deficient, D 264070 AD/AR

Deletion (6) Less than 51 bp (46) Frameshift (2) Conflicting
interpretations (0)

Duplication (11) Between 51 and
1000 bp (0) Missense (9) Benign (13)

Indel (0) Between 1 and
50 kb (0) Nonsense (4) Likely benign (11)

Insertion (1) Between 50 and
500 kb (0) Splice site (0) Uncertain

significance (14)

Single nucleotide
(41)

Between 500 kb and
1 Mb (1) ncRNA (0) Likely pathogenic (1)

Between 1 and
5 Mb (0) Near gene (0) Pathogenic (18)

Greater than 5 Mb (6) UTR (14)

QDPR
Quinoid dihy-
dropteridine

reductase
BH4 regeneration Hyperphenylalaninemia,

BH4-deficient, C 261630 AR

Deletion (21) Less than 51 bp (123) Frameshift (2) Conflicting
interpretations (2)

Duplication (34) Between 51 and
1000 bp (0) Missense (27) Benign (50)

Indel (0) Between 1 and
50 kb (0) Nonsense (3) Likely benign (17)

Insertion (3) Between 50 and
500 kb (0) Splice site (4) Uncertain

significance (46)

Single nucleotide
(112)

Between 500 kb and
1 Mb (0) ncRNA (65) Likely pathogenic (9)

Between 1 and
5 Mb (1) Near gene (0) Pathogenic (51)

Greater than
5 Mb (13) UTR (25)

Abbreviations: AD, Autosomal dominant; AR, Autosomal recessive; OMIM, Online Mendelian Inheritance in Man; InDel, short insertions and deletions; UTR, Untranslated Regions.
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QDPR (chromosome 4p15.32, 7 exons) encodes the enzyme quinoid dihydropteridine
reductase, catalyzing the regeneration of BH4 from quinonoid dihydropteridine (qBH2) [47].
Deficiency of QDPR causes an atypical PKU form due to the insufficient production of BH4
associated with severe neurological deterioration, microcephalia, psychomotor retardation,
delayed development, tonal abnormalities, myoclonic epilepsy and dystonia [48]. Several
pathogenic or likely pathogenic QDPR variants have been described [49] (Table 1).

4. Differential Diagnosis

Deficiencies in PAH or its cofactor BH4 can affect Phe homeostasis and lead to HPA.
Most of the clinical manifestations associated with HPA are attributable to the increased
levels of Phe and the depletion of monoamine neurotransmitters in the central nervous
system [50]. The precise and early diagnosis of HPA represents the most important goal to
avoid its harmful effects [51]. Indeed, the progressive neurologic manifestations, which
include movement disorders, seizures, mental retardation, dyskinesias, microcephaly and
hyperthermia, can be prevented or reduced with the choice of an early diagnosis and the
right therapy [2,52]. The first step in the diagnostic strategy is the definition of the HPA
subtypes. HPA with diverse severity degrees can be distinguished by different circulating
blood Phe levels (a value up to 120 µmol/L is considered normal), response to diet and
type of impaired enzymatic activity [53]. Specifically, patients with HPA can be classified
as classic PKU (>1200 µM), moderate PKU (900–1200 µM), mild PKU (600–900 µM), mild
HPA (<600 µM) or BH4 deficiency [54–56].

Tests used to diagnose and monitor patients with various degrees of severity of HPA
include the quantification of Phe and Tyr concentrations by tandem mass spectrometry,
the evaluation of pterin concentrations (neopterin, biopterin, primapterin, anapterin, and
6-oxo-primapterin) in urine or blood, the evaluation of PAH enzymatic activity in liver and
kidney tissues, and the use of molecular genetic assays to screen for pathogenic variants
in genes involved in HPA [57,58]. The latter is performed in infants with high levels of
Phe and mainly involves genetic tests for PAH and/or other genes involved in the Phe
metabolic pathway [59]. PAH mutations vary in their consequences for the residual level of
PAH activity, from having little or no effect to abolishing PAH activity completely [60,61].
Once HPA is diagnosed at an early stage, the use of a specific diet can help to reduce the
clinical outcomes of this disease. The use of BH4, alone or in addition to diet, can be used
to further lower elevated blood Phe levels [3]. To this regard, sapropterin dihydrochloride
(Kuvan, BioMarin Pharmaceutical Inc.) represents an orally active synthetic form of BH4
effective therapy that can be used in selected patients with HPA and mild-to-moderate
PKU following a BH4 loading test [62,63].

Although biochemical NBS tests represent reliable diagnostic tools, they do not al-
low to identify the causes responsible for high Phe levels, which may be also transient
and related to different factors, such as medical therapies, prematurity, liver metabolic
immaturity, and parenteral nutrition [64]. Moreover, NBS tests are restricted to a limited
number of metabolites associated with PHA, while the Phe metabolic pathway (Figure 1)
is complex and involves additional key mediators with enzymatic, transporter or regula-
tory functions [14]. Since different metabolic phenotypes of HPA exist and depend upon
variations in six different genes (Table 1), reaching a precise differential diagnosis and
classification is not easy. To this end, genetic testing represents a suitable approach for
a better genotype/phenotype correlation and, hopefully, improving the development of
future innovative therapeutic interventions, such as gene therapy [65].

5. Current and Future Therapy for HPA

Without effective treatments, most people with HPA would develop neurological
manifestations, among which intellectual disability is the most severe form [66]. To prevent
neurological injuries, the mainstay of treatment for PAH deficiency consists of a carefully
controlled Phe-restricted diet beginning the first days or weeks of life [67]. When diet ther-
apy starts in early childhood, it helps to prevent the main manifestations of this metabolic
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disorder, although this treatment may not be as effective as the patient has to follow a
complicated and unpleasant diet throughout the life. Adherence to dietary therapy in
adolescents and adults is poor with up to 85–90% of patients exhibiting blood Phe concen-
trations above target levels [68,69]. Consequently, it is easy to assist to the development of a
range of unsatisfactory outcomes, including neuropsychiatric symptoms [70]. The need to
evaluate innovative therapies against HPA led researchers to investigate new ways to deal
with this metabolic disorder, searching for new treatments that are not strictly dependent
on dietary protein restriction. One of these is the gene correction strategy, which replaces
defective genes with healthy ones and represents an attractive approach to the treatment of
genetic diseases [71]. Thanks to the advent of new gene therapy technologies, such as the
clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, which
has revolutionized the field of molecular biology and medicine, the chance to cure genetic
disorders such as HPA may not be far away [72–82]. In the perspective of gene therapy
for HPA, its comprehensive genomic assessment will be necessary to group patients into
diagnostic, prognostic or therapeutical clusters.

6. Genomic Testing to Improve the Management of HPA

In recent years, we have witnessed a new revolution in genetic testing, made possible
by the fields of genomics and high-throughput technologies [83]. The field of genomics
has evolved into a powerful approach to gain new biological insights, study the molecular
pathways underlying health and disease, and the interaction between genes to find new
approaches for the diagnosis, care delivery and development of therapies [84,85]. Based
on these advances, we believe that genomic testing is not only useful in HPA, where the
underlying causes are a number of genes and associated variants [86], but is nowadays
feasible for clinical use [87,88]. Table 2 shows the advantages and challenges of various
high-throughput methods. Among these, NGS represents the most powerful tool that
may rapidly and effectively analyze HPA-associated genes, providing accurate results
with a faster turnaround and a lower cost than traditional methods [89,90]. NGS-based
targeted gene panels (TGPs) are particularly ideal for analyzing specific mutations or genes
associated with HPA [11]. They offer greater coverage of selected regions of interest, faster
turnaround time, and more clinically relevant data compared to broader genomic profiling,
such as WES or whole genome sequencing (WGS) approaches [91] or CGH Microarray
analysis [8–11]. The advantages of using TGPs are many: (i) they can be customized for
different sample types and specific genomic regions of interest; (ii) the use of lower input
amounts (1 ng compared to 100 ng required for WES); (iii) the possibility to identify rare
variants; (iv) a workflow simpler and shorter than WES; (v) the possibility to process
thousands of samples in a single sequencing run; and (vi) a minor cost than WGS, WES or
CGH microarray analysis [92,93] (Table 2).

In HPAs, the use of NGS-based TGP technology to search for new or rare variants may
bring out a hitherto unexplored complexity and help to explain atypical phenotypes [94].
Back in 2014, Trujillano et al. showed that shifting from Sanger methods to high-throughput
targeted resequencing improves differential diagnosis of HPA and produces a quicker
establishment of specifically tailored treatments. The benefits also include a 60–80% cost
savings per sample and a faster diagnostic process compared to traditional techniques [11].
In the same year, Y. Cao et al. used a customized NGS-based panel to detect mutations
in HPA-related genes (PAH, PTS, QDPR, GCH1, and PCBD1), which provided a broader
coverage, higher throughput, and a faster and more efficient solution compared with
traditional molecular methods [95]. A 2017 study demonstrated the successful use of NGS
to detect known and novel (one in PAH and two in PTS) causative mutations in PKU and
BH4-deficiency cases, enabling accurate diagnosis and the appropriate effective treatment
of patients [96,97].
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Table 2. Advantages and challenges of various high-throughput methods.

Targeted Gene Panel Sequencing Whole-Genome/Exome Sequencing CGH Microarray

Advantages

Higher coverage and sequencing depth Massive parallel sequencing capability
Identification of co-occurrence of
mutations in different genes (all genes
analyzed in parallel)
Potential to identify new modifier
genes/mutations
Possibility to sequence non-coding
variants and detect large
insertion/deletion
Quantitative and sensitive detection of
genomic aberrations
Constantly improving technology in
gene capture and analysis

Identification of co-occurrence of
CNVs in different genes
Potential to identify new modifier
genes/CNVs
Quantitative and sensitive
detection of genomic aberrations
Relatively low costs
Easy sample preparation
Well-defined protocols and
analysis pipeline
Whole-genome analysis
High resolution (up to 40 kb)

Most suitable for clinical application
Higher number of samples in a single run
High degree of customizability
Reduced computational and storage resources
Low costs and turnaround time
Comprehensive sequencing of disease-associated
regions (disease-specific scopus)
Single input of DNA/RNA
Identification of co-occurrence of mutations in
different genes
Improved diagnostic rate (atypical phenotypes)
Decreased sequencing costs per gene
Constantly improving technology in gene capture
and analysis

Challenges Selection of genes relevant for the disease
Need for improved DNA variant database
Genomic analysis restricted to selected regions
(new genes cannot be identified)
Requires thorough validation of assay
performance as per guidelines
Potential inclusion of non-validated genes in
genetic testing (new variants of unknown
significance in clinic)
Selection of suitable target capture approach and
sequencing platforms

Large amount of data
Relatively complicated workflow
and analysis
Low number of samples
Requires thorough validation of assay
performance as per guidelines
Computational costs and resources;
consumable costs
Informatic challenges for analysis and
clinical reporting
Long-term storage and retrieval of data
Revalidation of upgrades (methodology
rapidly changing)
Coverage and data quality can vary
across genes
Limited applications in
routine diagnostics

Low sensitivity and
high background
Annotations of probes
CNVs of unknown significance
in clinic
Analysis of only
pre-defined sequences
Dynamic range limited by scanner
Hybridization
potentially non-specific

Although different NGS platforms have been implemented, all NGS methods include
steps performed on the laboratory bench (“wet bench”) and data analyses performed with
bioinformatics pipelines (“dry bench”) [98,99]. Figure 2 shows a schematic representation of the
NGS-based TGPs workflow performed with the Ion Torrent and the Illumina technologies.

In the next sections, we represent the main steps of a TGP-based NGS analysis.
Panel design: a custom panel can be designed using the Ion AmpliSeq Designer

Tool for Ion Torrent platform (Thermo Fisher Scientific) and the DesignStudio Sequencing
Assay Designer for Illumina, and information contained in the NCBI (National Center for
Biotechnology Information) ClinVar reference databases can be used to identify the clinical
relevance of the identified variants. The two Designer tools allow the easy selection of
genes ID or chromosomal coordinates across scientifically curated gene sets. The number
of primers depends on the complexity and size of the genomic region to be analyzed. To
estimate the number of samples that can be sequenced in multiplex assays, users need to
consider different parameters, such as expected sequencing coverage and used chip type.
In general, a 30× minimum coverage is recommended for germline detection mutations.
Table 3 shows the key features of a custom panel created with both the AmpliSeq Designer
Tool for the Ion Torrent platform and the DesignStudio Sequencing Assay Designer for
the Illumina platform to analyze the genes associated with HPA. As indicated, less than
60 amplicons are needed to screen a total of 6 HPA related genes, with a 100% coverage per
single amplicon.
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Figure 2. Analytical workflow of targeted sequencing for the Ion Torrent and Illumina methods.
(A) Panel design: the Designer software helps to create custom assays based on PCR target selection.
(B) Library preparation: library construction is the preparation of the nucleic acid target into a form
compatible with the sequencing system to be used. (C) Template preparation and chip loading: target
enrichment is used in NGS workflows to capture only genomic DNA regions of interest. (D) Sequencing
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and data generation: IonTorrent platform: microwells of the chip is flooded by nucleotides that
when binding to the complementary nucleotide on a template, release an ion. At each flow, the
electrical signal at each well is measured, indicating that a reaction has occurred; Illumina platform:
the fragments are clonally amplified on the slide utilizing fluorescently labeled reversible-terminator
nucleotides; (E) Read assembly and annotation: starting from Binary Alignment Map (BAM) and
Variant Call Format (VCF) files, variants are prioritized based on localization, functional effect, mode
of inheritance, coverage and Minor Allelic Frequency (MAF) to obtain disease-correlated variants.

Table 3. NGS-targeted custom panels designed with AmpliSeqTM Designer Tool for Ion Torrent
platform, and DesignStudio Sequencing Assay Designer for Illumina platform to analyze HPA
related genes.

Gene Name QDPR PTS PCBD1 PAH GCH1 DNAJC12

Location 4p15.32 11q23.1 10q22.1 12q23.2 14q22.1–q22.2 10q21.3
Number of exons 7 6 6 13 7 6

Number of amplicons (Illumina) 10 8 5 17 11 8
Number of amplicons (Ion Torrent) 7 7 3 14 10 8

Ion Torrent Illumina

Panel size 10.280 Kb 12.767 Kb
Amplicon Range 101–234 bp 157–241 bp
In silico coverage 100%
Total Amplicons 49 59

Run cost per sample (EUR ) 119 110

Instruments, GeneStudio-IonS5 (ThermoFisher Scientific, Waltham, MA, USA) and MiSeq System (Illumina Inc,
San Diego, CA, USA); minimum coverage, 30×; sample source, germline.

Library preparation: the first step of NGS-based TGPs workflow (Figure 2) involves
library preparation. Genomic DNA is PCR amplified with the designed panel primers
(see above) and then specific barcode adapters are incorporated to allow the later clonal
amplification of libraries and the identification of each sample read after the pooling
of libraries.

Template preparation and chip loading: following library quantification and nor-
malization, the libraries can be pooled and used for template preparation. In this step,
using the Ion Torrent platform, an emulsion-based PCR-amplification of each amplicon
is performed around Ion Sphere Particles (ISPs) containing a primer complementary to
one of the adapters added during the library preparation. When the concentration of the
libraries is optimized, one sample amplicon is amplified around each ISP (clonal amplifi-
cation). As a final step, the DNA strands are separated, and the single strands anchored
to the ISP are ready to be loaded on the microwells of the semiconductor Ion Chip. In the
Illumina platform, once the DNA is amplified and the adapters are added, the modified
DNA is loaded onto a flow cell where the amplification and sequencing take place. The
flow cell contains nanowells that space out fragments and help with overcrowding. Each
nanowell contains oligonucleotides that provide an anchoring point for the adapters to
attach. Once the fragments are attached, a phase called cluster generation begins. This step
makes about a thousand copies of each fragment of DNA and it is performed by bridge
amplification PCR.

Sequencing and data analysis: in this step, when using the Ion Torrent platform,
microwells are flooded with a single species of deoxyribonucleotide triphosphate (dNTP).
If the introduced dNTP is incorporated into the growing complementary strand, the release
of a hydrogen ion triggers an ISFET ion sensor, which indicates that a reaction has occurred.
The series of electrical pulses transmitted from each microwell of the chip to a computer is
translated real time into a DNA sequence, which is then aligned to a genome and analyzed
for the presence of variants. The Illumina platform, instead, adopts a sequencing-by-
synthesis approach, utilizing fluorescently labeled reversible-terminator nucleotides, on
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clonally amplified DNA templates (bridge amplification) immobilized to an acrylamide
coating on the surface of a glass flow cell.

Read assembly and annotation: the informatic pipeline includes different steps, such
as signal processing, base calling, alignment of reads to a reference genome and variant
calling. The entire process is performed using appropriate analysis software for variant
annotation. The performance of the sequencing run can be evaluated by analyzing different
metrics, such as uniformity of base coverage, base coverage and on-target reads.

An example of a sequencing run report of the Ion Torrent S5 sequencing output
is shown in Figure 3. In the secondary analysis, variants can be filtered by different
parameters, such as p-value (p < 0.001), phred quality score (p-read > 20), variant effect
(missense, unknown, synonymous, InDels, SNVs), location (exon, intronic, splice-site,
5–3 UTR), Minor Allelic Frequency (MAF: 0.01–0.5) and allele frequency (40–60% for
heterozygous; 90–100% for homozygous). To select disease-relevant pathogenic variants,
effect prediction is performed using SIFT (Sorting Intolerant From Tolerant), PolyPhen
(Polymorphism Phenotyping) or Fathmann score [100–102].
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Total Reads, can be used to determine the performance of a run.

Considering the entire analytical NGS workflow (e.g., DNA isolation, library prepara-
tion and sequencing), the estimated cost for the analysis of HPA related genes is about EUR
120/sample (Table 3). This cost does not include equipment, labor or data analysis. The
analysis of the HPA related genes using traditional methods would require higher costs
and much longer times (Table 4).
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Table 4. Comparison between next-generation sequencing and Sanger sequencing.

Ion Torrent
NGS-Based Method

Illumina
NGS-Based Method Sanger-Based Method

Data Generation Millions of read/sample Millions of read/sample 1 read/sample

Template preparation Emulsion PCR Cluster generation by bridge amplification Chain termination/PCR

Accuracy >99.0% >99.0% 99.0%

Automation High High Low

Nucleotide base per run
10–1.000 Mb 4 Mb–2 Gb

500 bp
(based on the chip used) (based on the chip/platform used)

Read Length
Shorter Shorter Longer

(<200 bases) (<200 bases) (300–800 bases)

Run costs Cost-effective for a large number of targets Cost-effective for a lower number
of targets

7. Conclusions

HPA is the most commonly occurring amino acid metabolism genetic disorder charac-
terized by serious clinical manifestations, including irreversible brain damage, intellectual
deficiency and epilepsy. The precise and early diagnosis is remarkably successful in prevent-
ing these severe neurological features and ensuring healthy growth. Despite considerable
progress having been made in the knowledge of this rare metabolic disorder, the diagnostic
challenges are largely attributable to the marked clinical and genetic heterogeneity and
the complexity of the Phe metabolic pathways involved, including additional unidentified
key mediators with enzymatic, transporter, and regulatory functions. In this context, the
advent of high-capacity and low-cost technologies and the use of ad hoc designed assays
are producing a turning point for gene testing and clinical diagnosis of HPAs, improving
our understanding of the basis of disease and the ability to better associate gene variants to
specific phenotypes. The translation of fast, reliable and inexpensive genomic technologies
into clinical practice will offer the opportunity for a better diagnosis of HPA in carrier
patients, optimize clinical management, reduce the psychological burden and improve the
development of early and effective therapeutic interventions.
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