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Neutrophils mediate immune modulation
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Neutrophils are key players of the innate immune system that provide a first line of defense
against invading pathogens. However, it is unknown whether neutrophils can interact with
dendritic cells (DCs) to modulate adaptive immune responses. We demonstrate that
neutrophils strongly cluster with immature DCs and that activated, not resting, neutrophils
induce maturation of DCs that enables these DCs to trigger strong T cell proliferation and T
helper type 1 polarization of T cells. This neutrophil-DC interaction is driven by the binding
of the DC-specific, C-type lectin DC-SIGN to the 3,-integrin Mac-1. Strikingly, DC-SIGN
only interacts with Mac-1 from neutrophils, but not from other leukocytes, mainly because
of specific Lewis* carbohydrates that are present on the oy, chain of Mac-1 from
neutrophils. Furthermore, we show that besides the formation of cellular contact, the tumor
necrosis factor-o produced by activated neutrophils is essential for inducing DC maturation.
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Our data demonstrate that DC-SIGN and Mac-1 define a molecular pathway to establish
cellular adhesion between DCs and neutrophils, thereby providing a novel cellular link

between innate and adaptive immunity.

DCs are antigen-presenting cells that play an
essential role in bridging innate and adaptive
immunity. Immature DCs are situated under-
neath epithelia throughout peripheral tissues,
where they are ideally located to acquire anti-
gens of invading pathogens. Pathogenic struc-
tures such as lipopolysaccharide, lipoteichoic
acid, and peptidoglycans, but also endogenous
signals like CD40—CD40L ligation by T cells
(1) and TNF-a production by NK cells (2),
trigger DC maturation. DC maturation is an
intricate process that includes a switch in the
chemokine receptor profile, the translocation
of MHC molecules from the cytosol to the cell
membrane, and the up-regulation of costimu-
latory molecules and cytokines. This allows
mature DCs to leave the periphery and migrate
to the lymph nodes, and endows them with
the capacity to present antigen in the context
of MHC molecules in order to initiate T cell
responses within the lymph nodes (3).
DC-SIGN is a C-type lectin that is expressed
in vitro on monocyte-derived DCs and in situ
on DC subsets in the skin, mucosal tissues, ton-
sils, lymph nodes, and spleen (4, 5). DC-SIGN
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plays an important role in many aspects of DC
function. DC-SIGN has specificity for high-
mannose moieties (6), and it functions as an
adhesion receptor that establishes cellular inter-
actions with endothelial cells through ICAM-2
(7) and with T cells through ICAM-3 (4),
probably by recognizing high-mannose moi-
eties on these counterstructures. In addition,
DC-SIGN has been resolved as the receptor on
DCs for HIV-1 that facilitates in trans infec-
tion of CD4 T cells (5). DC-SIGN not only
binds HIV-1, but also serves as a pathogen rec-
ognition receptor with broad specificity that
recognizes and may contribute to the patho-
physiology of the hepatitis C virus (8), Myco-
bacterium tuberculosis (9), Helicobacter pylori, Schis-
tosoma mansoni (10, 11), and other pathogens
(12-14).

‘We have resolved the carbohydrate ligand
of DC-SIGN on H. pylori and S. mansoni (10,
11). Strikingly, nonsialylated Lewis® was iden-
tified as the high-atfinity carbohydrate ligand
of DC-SIGN rather than high-mannose struc-
tures (6, 10). Nonsialylated Lewis* is a carbo-
hydrate structure that is also found on human
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tissue, in particular on neutrophilic granulocytes (15). Neu-
trophils are key players of the innate immune system and
provide a first line of defense against invading pathogenic
bacteria (16). Recently, it has become clear that neutrophils
also have a regulatory role and are able to signal to other
players of the immune system. Activated neutrophils pro-
duce and release chemokines such as IL-8 and GRO-«,
which enable them to attract additional neutrophils (17, 18).
Through the release of the chemokines MIP-1a, MIP-3a,
and MIP-38, neutrophils also actively recruit other immune
cells like T cells, monocytes, macrophages, and DCs (19,
20). Antimicrobial peptides produced by neutrophils such as
a-defensins have chemotactic functions and attract T cells
and immature DCs (21). This endows neutrophils with the
potential to orchestrate ongoing immune responses at the
site of infection.

Neutrophils may also indirectly modulate adaptive im-
mune responses in distant lymph nodes through interactions
with immature DCs. This is supported by recent data show-
ing that TNF-a derived from PMN induces maturation and
cytokine production in murine DCs (22). Although to date
no cellular interactions between DCs and PMN have been
described, we hypothesized that, based on the Lewis® speci-
ficity of DC-SIGN, DCs would be able to engage PMN,
and that this would result in cross talk between DCs and
PMN. Indeed, we were able to demonstrate both in vitro
and in vivo that DCs and PMN associate, and that DC-
SIGN mediates this cellular interaction. We identified Mac-1
as the ligand of DC-SIGN on PMN, and show that the in-
teraction between DC-SIGN and Mac-1 depends on PMN-
specific glycosylation of Mac-1. Moreover, we found that
activated PMN induce maturation of DCs, which enables
these DCs to trigger strong Th type 1 cell responses. This in-
dicates that neutrophils contribute to adequate adaptive im-
mune responses through interactions with DCs.

RESULTS

Cellular interactions between DCs and PMN

Neutrophils are key effector cells of innate immune re-
sponses. However, it has recently become clear that neutro-
phils may also play a role in the polarization of adaptive T cell
responses (23—25). Because DCs, in contrast to neutrophils,
are able to migrate to the lymph nodes and can efficiently
present antigens to T cells, we considered the possibility that
immune modulation by neutrophils is indirect and requires
prior interactions with DCs. To examine whether cellular in-
teractions occur between DCs and PMN, we labeled DCs
with a red fluorescent dye, hydroethidin, and determined
clustering with CFSE-labeled PMN (green). Monocyte-
derived immature DCs strongly interacted with PMN after 30
min of coincubation (Fig. 1 A). Cell—cell clustering was fol-
lowed by a FACS analysis, and was rapid and sustained (Fig. 1
B). We investigated whether DC-SIGN was involved in
DC-PMN interactions. Indeed, blocking anti-DC-SIGN
antibodies strongly diminished adhesion, demonstrating that
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DC-SIGN mediates cellular interactions between DCs and
PMN (Fig. 1, A and E). Mature DCs that expressed reduced
levels of DC-SIGN also interacted with PMN, but to a lesser
extent (Fig. 1, A—C). K562 transfectants expressing high lev-
els of DC-SIGN, but not mock-transfected K562 cells,
strongly bound to PMN and the kinetics of cluster formation
were similar to those of immature DCs and PMN (Fig. 1, A
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Figure 1. DC-SIGN mediates clustering of DCs and PMN. (A) CFSE-
labeled PMN (green) were incubated with hydroethidine-labeled K562,
K562-DC-SIGN, immature DCs, or mature DCs (red) for 30 min at 37°C.
Anti-DC-SIGN antibodies (AZN-D1 and AZN-D2; 20 wg/ml) were used to
block DC-SIGN dependent adhesion. Cell-cell clustering was visualized
using fluorescent microscopy and representative pictures were taken. Bar,
50 wm. Three independent experiments with similar results were performed.
(B) Using FACS analysis cell-cell clustering was followed in time by scoring
the percentage of immature or mature DCs that have bound PMN. (C) The
expression of DC-SIGN was analyzed on immature and mature DCs by flow
cytometry. (D) The percentage of K562 or K562-DC-SIGN that have bound
PMN was measured in time by FACS analysis. (E) DC-SIGN-dependent ad-
hesion of PMN to immature DCs and K562-DC-SIGN was determined with
blocking anti-DC-SIGN antibodies at 10 min of cell-cell clustering. One out
of three independent experiments with similar results is shown.
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and D). The addition of blocking anti-DC-SIGN antibodies
diminished cluster formations between PMN and K562-DC-
SIGN (Fig. 1, A and E), supporting a role for DC-SIGN in
cellular adhesion to PMN. To our knowledge, this is the first
evidence showing that DCs interact with PMN; moreover,
we show that DC-SIGN is the main DC receptor establish-
ing this cell—cell interaction.

Mac-1 is the ligand for DC-SIGN on PMN

ICAM-2 and -3 are cellular ligands of DC-SIGN (4, 7). Be-
cause neutrophils express high levels of ICAM-3, but not of
ICAM-2, we examined whether ICAM-3 is the ligand of
DC-SIGN on neutrophils. Therefore, we immunoprecipi-
tated ICAM-3 from PMN and determined DC-SIGN bind-
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Figure 2. Identification of PMN Mac-1 as a novel ligand of DC-SIGN.
(A) Whole PMN and 293T lysate were analyzed on immunoblot (IB) with
control-Fc and DC-SIGN-Fc. The arrow indicates the main DC-SIGN ligand
of ~160 kD. (B) Surface-biotinylated PMN were lysed and immunoprecip-
itated (IP) with control-Fc, DC-SIGN-Fc, mouse IgG1 isotype control anti-
bodies, and anti-Mac-1 (o, chain) antibodies. Immunoprecipitates were
analyzed on immunoblot with streptavidin. Arrows indicate the o and 3,
chains of Mac-1. (C) 293T-ICAM-3 and PMN were immunoprecipitated
with anti-Mac-1 and anti-ICAM-3 antibodies and immunoblotted with
DC-SIGN-Fc. Arrows indicate ICAM-3 and the a, and 3, chains of Mac-1.
(D) DC-SIGN-Fc immunoprecipitates of PMN lysate were immunoblotted
with isotype control and anti-Mac-1 (a chain) antibodies. Arrow indi-
cates the oy, chain of Mac-1. Results are representative of three indepen-
dent experiments.
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ing by blotting it with a chimeric protein consisting of DC-
SIGN and the human IgG1-Fc domain (DC-SIGN-Fc; ref-
erence 26). Strikingly, in contrast to ICAM-3 that was ob-
tained from 293T-ICAM-3 transfectants, [CAM-3 that was
derived from PMN was poorly bound by DC-SIGN (Fig. 2
C). This indicates that ICAM-3 on PMN does not contain
the proper carbohydrate moieties for binding to DC-SIGN,
and that DC-SIGN recognizes a novel ligand on PMN. To
identify this novel DC-SIGN ligand on PMN, we per-
formed an immunoblot analysis on the entire PMN lysate
with DC-SIGN-Fc. A 160-kD major ligand specifically in-
teracted with DC-SIGN-Fc, but not with control-Fc (Fig. 2
A). DC-SIGN-Fc did not interact with the lysate from an ir-
relevant cell line (Fig. 2 A). To investigate whether the DC-
SIGN ligand is expressed on the cell surface, we performed
immunoprecipitations with DC-SIGN-Fc on a lysate of sur-
face-biotinylated PMN. Immunoblotting for the biotin-
labeled membrane proteins showed that, indeed, DC-SIGN
recognized a 160-kD membrane protein (Fig. 2 B). Notably,
a second 100-kD membrane protein that did not appear on
the DC-SIGN immunoblot (Fig. 2 A) was immunoprecipi-
tated using DC-SIGN-Fc (Fig. 2 B). The immunoprecipi-
tated proteins are identical to those of the B,-integrin Mac-1
that consists of a 160-kD oy, chain (CD11b) and a 100-kD
(3, chain (CD18) (Fig. 2 B). To determine whether Mac-1 is
the ligand of DC-SIGN on PMN, we analyzed the binding
of DC-SIGN-Fc to Mac-1, immunoprecipitated from PMN
using anti-Mac-1 antibodies. We found that the o, chain of
Mac-1 binds much stronger to DC-SIGN than the (3, chain
(Fig. 2 C). Thus, the 100-kD membrane protein is not a
strong DC-SIGN ligand, but represents the coimmunopre-
cipitated 3, chain of Mac-1 that noncovalently associates
with the oy chain of Mac-1. Immunoprecipitation of DC-
SIGN ligands using a recombinant DC-SIGN and immuno-
blot analysis with antibodies directed against the o, chain of
Mac-1 confirmed that the a,; chain of Mac-1 is the main
DC-SIGN ligand on PMN (Fig. 2 D).

Cell-specific glycosylation regulates

DC-SIGN-Mac-1 interactions

Mac-1 is broadly expressed on cells of the myeloid lineage
and is present on neutrophils, eosinophils, monocytes, mac-
rophages, and DCs. As glycosylation is cell type specific, the
cellular origin of Mac-1 may be of importance in binding to
DC-SIGN. We investigated the interaction of DC-SIGN
with PMN, monocytes, and immature DCs using DC-
SIGN-Fc. Although monocytes, immature DCs, and PMN
all express Mac-1, DC-SIGN only binds PMN (Fig. 3 A).
The interaction was DC-SIGN specific, because blocking
antibodies against DC-SIGN inhibited binding (Fig. 3 A). As
in human blood, 95% of PMN are neutrophils and 5% are
eosinophils; we thus investigated the interaction of DC-
SIGN in both PMN populations. Costaining for CD16,
which is expressed on neutrophils but not on eosinophils,
demonstrated the binding of DC-SIGN to both populations
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Figure 3. DC-SIGN specifically binds Lewis*-expressing PMN.

(A) The binding of control-Fc and DC-SIGN-Fc to PMN, monocytes, and
immature DCs was analyzed by flow cytometry. Binding of DC-SIGN-Fc to
PMN is sensitive to blocking anti-DC-SIGN antibodies (AZN-D1; 50 wg/ml).
(B) DC-SIGN-Fc preferably binds CD16* neutrophils and not CD16~ eosin-
ophils (top). Blocking anti-DC-SIGN antibodies (AZN-D1; 50 pwg/ml)
inhibit binding of DC-SIGN-Fc (bottom). Insets represent the percentage
of cells within a quadrant. (C) Isotype (thin line) and Lewis* (thick line)
expressions were measured on PMN, monocytes, and immature DCs.

(D) Isotype (top) and Lewis* expression (bottom) were examined on CD167*
neutrophils and CD16~ eosinophils. Insets represent the percentage of
cells within a quadrant. One out of three independent experiments with
similar results is shown.

that were sensitive to blocking anti-DC-SIGN antibodies.
However, the CD16* neutrophils bound much stronger to
DC-SIGN than the CD16™ eosinophils (Fig. 3 B).

Recently, we have identified nonsialylated Lewis* (CD15)
as an alternative high-affinity carbohydrate ligand of DC-
SIGN (10) in lieu of high mannose (6). Whereas nonsialyl-
ated Lewis* is absent from immature DCs and monocytes, it
is present at high levels on PMN (Fig. 3 C). The labeling of
PMN for CD16 and Lewis*® shows that CD16™ neutrophils
express higher levels of Lewis* than CD16~ eosinophils (Fig. 3
D). Thus, although Mac-1 is also expressed on other cells,
DC-SIGN specifically recognized PMN. The binding of
DC-SIGN corresponded to the expression of Lewis®, indi-
cating that cell-specific glycosylation regulates interactions
with DC-SIGN.

DC-SIGN recognizes Lewis* moieties on PMN-derived Mac-1
Next to Mac-1, PMN express other integrins that share the
3, chain, but have a distinct o chain, such as LFA-1 (o [3,)
and p150,95 (axf3,). We developed an ELISA-based binding
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assay to analyze the binding of DC-SIGN to these [(3,-inte-
grins. Using specific antibodies for Mac-1, LFA-1, p150,95,
or all B,-integrins combined, we captured these proteins
from PMN under nondenaturing conditions (Fig. 4 A) and
determined their binding to recombinant DC-SIGN. DC-
SIGN specifically interacted with Mac-1, but not with the
other B,-integrins (Fig. 4 C). We analyzed the expression of
Lewis* on these B,-integrins and found that neither LFA-1
nor p150,95, in contrast to Mac-1, expressed Lewis* (Fig. 4
D), as has been previously reported (27, 28). This indicates
that the expression of Lewis® determines the binding of DC-
SIGN. In this assay, ICAM-3 that was derived from PMN, in
contrast to ICAM-3 that was derived from 293T-ICAM-3
transfectants, did not bind to DC-SIGN, confirming that
ICAM-3 from PMN is not a DC-SIGN ligand (Fig. 4, A—C).

To molecularly define the cellular specificity of DC-
SIGN for PMN-derived Mac-1, we captured Mac-1 from
PMN, monocytes, and immature DCs (Fig. 4 E), and exam-
ined DC-SIGN binding and Lewis*® expression. DC-SIGN
bound much stronger to Mac-1 from PMN than to similar
levels of Mac-1 from either monocytes or immature DCs
(Fig. 4 F). The presence of Lewis® on Mac-1 from PMN, in
contrast to Mac-1 that was derived from either monocytes or
immature DCs, indicates that the glycosylation of Mac-1 is
cell specifically regulated and determines the high affinity of
DC-SIGN for Mac-1 present on PMN (Fig. 4 G). Thus,
cell-specific glycosylation of Mac-1 in PMN results in the
addition of Lewis® moieties, and we have identified this
Lewis*-expressing glycoform of Mac-1 as a novel cellular
ligand of DC-SIGN.

Because Mac-1 on PMN contains Lewis® (27, 28), a
high-affinity carbohydrate ligand of DC-SIGN (10), we ex-
amined whether the Lewis® moieties mediated binding of
DC-SIGN to PMN-expressed Mac-1. Therefore, we im-
munoprecipitated Mac-1 from surface-biotinylated PMN
using anti-Mac-1 antibodies, and incubated this with al-
3,4-tucosidase, which is an enzyme that specifically targets
Lewis* and removes the fucose moiety essential for binding
to DC-SIGN (29). This enzyme did not disrupt Mac-1 in-
tegrity, but completely removed the Lewis® epitope from
Mac-1, because Mac-1 treated with a1-3,4-fucosidase did
not react with anti-Lewis® antibodies (Fig. 4 H). The al-
3,4-fucosidase treatment substantially decreased the binding
of DC-SIGN to Mac-1, showing that Lewis® on Mac-1 is
important for interactions with DC-SIGN (Fig. 4 H). Inter-
actions of DC-SIGN with alternative carbohydrate ligands
on Mac-1 may explain the residual DC-SIGN binding after
the enzymatic removal of Lewis¥, because treatment of Mac-1
with PNGase F, which removes all N-linked glycosyla-
tion, completely abrogated DC-SIGN binding (unpublished
data). Strikingly, although both the oy, as well as the (3,
chain of Mac-1 express Lewis*, DC-SIGN only bound the
oy chain of Mac-1. This indicates that the structural confor-
mation of the Lewis* glycosylation site is important for bind-
ing to DC-SIGN.
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Figure 4. DC-SIGN binds Mac-1 expressed on PMN through Lewis*
carbohydrates. (A) Sandwich ELISA on ICAM-3, LFA-1, Mac-1, p150,95,
and B,-integrins from PMN. (B) The binding of DC-SIGN-Fc to ICAM-3
that was captured from mock and ICAM-3-transfected 293T cells was
measured in an ELISA-based binding assay. (C) DC-SIGN-Fc binding to
ICAM-3, LFA-1, Mac-1, p150,95, and B,-integrins that were captured from
PMN (white bars) and the reverse reaction—the capture of DC-SIGN
ligands using DC-SIGN-Fc and the detection of these ligands using anti-
bodies (black bars)—were measured in an ELISA-based binding assay.

(D) Using ELISA, the presence of Lewis* on LFA-1, Mac-1, p150,95, and B3,-
integrins derived from PMN was determined. (E) The quantity of Mac-1 of
PMN, monocytes, and immature DCs was determined using a sandwich
ELISA for Mac-1 (capture, a chain; detection, 3, chain). (F) DC-SIGN-Fc
binding to Mac-1 captured from lysate of PMN, monocytes, and immature
DCs was analyzed in an ELISA-based binding assay. Ca2* specificity of
DC-SIGN binding was determined using the Ca?* chelator EGTA (10 mM).
(G) The presence of Lewis* on Mac-1 that was derived from PMN, monocytes,
and immature DCs was measured by ELISA (capture, Mac-1; detection, Lewis).
(H) Lysates of surface-biotinylated PMN were immunoprecipitated with
anti-Mac-1 antibodies. The immunoprecipitates were incubated overnight
with or without a1-3,4-fucosidase (Xanthomonas; Calbiochem) in sodium
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Cellular DC-SIGN binds to PMN-derived Mac-1

Next, we investigated the interaction of cellular DC-SIGN
with Mac-1. We measured the adhesion of fluorescent beads
coated with PMN-derived Mac-1 to DC-SIGN-expressing
cells. K562 transfectants expressing high levels of DC-SIGN
strongly bound to PMN-derived Mac-1, in contrast to mock-
transfected K562 cells (Fig. 5 A). The C-type lectin domain
of DC-SIGN mediated adhesion, because anti-DC-SIGN
antibodies that targeted this domain inhibited the binding of
PMN-derived Mac-1 to K562-DC-SIGN (Fig. 5 A). In con-
trast, beads coated with PMN-derived LFA-1 or p150,95 did
not interact with K562-DC-SIGN (Fig. 5 A), and beads
coated with monocyte- or DC-derived Mac-1 interacted
poorly with K562-DC-SIGN (Fig. 5 B), indicating that cellu-
lar DC-SIGN shows specificity similar to recombinant DC-
SIGN. Multivalent binding of Mac-1—coated beads to K562-
DC-SIGN that may support low-affinity interactions more
easily could explain the low level of binding of monocyte-
and DC-derived Mac-1 to DC-SIGN. To investigate the in-
volvement of the C-type lectin domain in Mac-1 binding in
more detail, we used DC-SIGN mutants in which amino ac-
ids essential to ligand binding and the positioning of the Ca>*
ions have been mutated. Changing the amino acids Glu*¥’
into Gln, or Asn** and Asn®* into Asp, prevented the forma-
tion of hydrogen bonds between DC-SIGN and its ligands
(26) and completely disrupted adhesion to PMN-derived
Mac-1 (Fig. 5 C). The C-type lectin domain of DC-SIGN
contains two pockets for calcium ions that are crucial for
ligand binding (6, 26). Substitution of the amino acid Asp>*°
with Ala resulted in the loss of Ca?* at site 2, the primary
ligand-binding site, and completely abrogated adhesion to
Mac-1 derived from PMN (Fig. 5 C). Changing the amino
acids Asp®®, Glu**, or Asp® that form Ca?* site 1 into Ala
resulted in a complete loss of adhesion to PMN Mac-1 (Fig. 5
C). This shows that the binding site of DC-SIGN for PMN-
derived Mac-1 is located within the C-type lectin domain.

Interactions between DCs and PMN at inflammatory sites

Little is known about the occurrence of cellular contacts be-
tween DCs and PMN in situ. However, DCs and PMN are
present at the sites of infection during early inflammation.
To examine whether DCs and PMN associate, we investi-
gated colonic mucosa from patients with Crohn’s disease, a
chronic inflammatory bowel disease, and stained for DC-
SIGN and the PMN markers CEACAM1 (CD66a) and
Lewis®. In colonic mucosa, DC-SIGN was present on a dis-
tinct population of CD83~ DCs that increased in number
upon chronic inflammation during Crohn’s disease (30).
CEACAM1 and Lewis® were expressed on an identical
PMN population within the colonic mucosa of patients with

phosphate buffer (50 mM, pH 5) at 37°C. Immunoprecipitates were then
immunoblotted with streptavidin, anti-Lewis* antibodies, and DC-SIGN-Fc.
Arrows indicate the iy and B, chains of Mac-1. Results are representative
of three independent experiments.
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Figure 5. The C-type lectin domain of DC-SIGN binds PMN Mac-1.
(A) The binding of fluorescent beads coated with PMN-derived LFA-1,
p150,95, and Mac-1 was measured to K562-DC-SIGN. Adhesion of PMN-
derived Mac-1 beads was sensitive to blocking anti-DC-SIGN antibodies
(AZN-D1; 20 pg/ml). (B) The adhesion of Mac-1 derived from PMN, mono-
cytes, and immature DCs to K562-DC-SIGN was analyzed in a fluorescent
bead adhesion assay. Anti-DC-SIGN antibodies were used to determine
the specificity of DC-SIGN binding. (C) The adhesion of fluorescent beads
coated with PMN Mac-1 to K562 cells and K562 transfectants expressing
wildtype or mutant DC-SIGN, in which amino acids within the C-type lec-
tin domain essential for ligand binding or the positioning of Ca%* ions are
mutated, is shown. One out of three independent experiments is shown.

Crohn’s disease (Fig. 6 A) that was not present in noninflam-
matory colonic mucosa (unpublished data). PMN within in-
flammatory colonic mucosa that were identified by Lewis®
staining also expressed the DC-SIGN ligand Mac-1 (Fig. 6
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B). We found that DC-SIGN™ DCs and PMN expressing
CEACAMT1 or Lewis® were both scattered throughout the
mucosa. We also observed frequent contacts between DCs
and PMN, suggesting that they interact at inflammatory sites
in colonic mucosa of patients with Crohn’s disease (Fig. 6, C
and D). This supports the hypothesis that interactions be-
tween DCs and PMN occur in vivo during inflammation.

Activated PMN induce DC maturation through DC-SIGN

Between DCs and interacting cells, such as T cells or NK
cells, bidirectional cross talk occurs, resulting in DC matura-
tion and activation of the interacting cells (1, 2). To examine
whether the interaction between DCs and PMN would re-
sult in DC maturation, we coincubated immature monocyte-
derived DCs overnight with resting or activated PMN and
determined the expression level of the DC maturation
marker CD83. PMN were activated with FMLP, TNF-«, or
LPS for 1 h. Because TNF-a and LPS can directly trigger
DC maturation, activated PMN were rigorously washed be-
fore incubating with DCs. Strikingly, we found that the rest-
ing PMN were not able to induce DC maturation, despite
the fact that they formed robust cellular clusters (Figs. 1 and 7
A). However, induction of DC maturation was observed
with FMLP-, TNF-a—, and LPS-activated PMN, as these
PMN induced expression of CD83 on DCs, 18 h after initial
cell—cell contact (Fig. 7 A). Expression of the costimulatory
molecule CD86, but not of CD80, was also increased (un-

Figure 6. In vivo localization of PMN and DCs in colonic mucosa of
patients with Crohn's disease. Inflammatory intestinal tissue sections of
patients with Crohn's disease were stained for the PMN markers (A) Lewis*
(green) and CEACAM1 (blue), (B) Lewis* (green) and Mac-1 (blue), (C)
CEACAM1 (green) and the DC marker DC-SIGN (red), or (D) Lewis* (green)
and DC-SIGN (red). Interactions between CEACAM1- or Lewis*-expressing
PMN and DC-SIGN* DCs are encircled. Insets in the top right corner are
magnifications of interacting cells. The anti—-CEACAM1 antibody stains
colonic crypts because colonic epithelial cells also express CEACAM-1.
Bars, 50 wm. Results are representative of three independent experiments.
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Figure 7. Cross talk between DCs and PMN. (A) The maturation of
DCs was induced by activated, but not resting, PMN. Nonstimulated or
FMLP-, TNF-o-, or LPS-stimulated PMN and K562 cells (1:3) were incu-
bated with immature DCs for 18 h, and the expression of the DC matu-
ration marker CD83 was determined. The LPS addition to immature DCs
was used as a positive control. (B) The DC maturation induced by LPS-
activated PMN depends on the cellular contact mediated by DC-SIGN
and the secretion of TNF-a. Immature DCs and PMN were cultured
together both with and without anti-DC-SIGN antibodies or anti-TNF-a
antibodies, as well as cultured separately using a 0.4-pm Transwell sys-
tem (Corning), and the expression of CD83 on DCs was measured. The
LPS addition to immature DCs was used as a positive control. (C) LPS-
activated PMN induced the release of the cytokine IL-12p40 by DCs.
Both LPS-activated PMN and resting PMN were co-cultured with imma-
ture DCs, and the supernatant was examined for IL-12p40 using sand-
wich ELISA. A 0.4-pm Transwell system separation of PMN and DCs,
anti-DC-SIGN antibodies, and anti-TNF-a« antibodies was used to block
the release of IL-12p40 by DCs after triggering them with LPS-activated
PMN. (D) The activated PMN boost DC-induced T cell proliferation. PMN
were activated using LPS, rigorously washed, and incubated for 5 d with
syngenic T cells and allogenic immature DCs. Overnight [*H]thymidine
incorporation was analyzed at day 5 as a measure for T cell proliferation.
(E) Activated PMN trigger DCs to induce Th1 cell polarization. DCs were
stimulated with LPS in the absence or presence of PMN, and the per-
centage of IL-4- and IFNy-producing T cells was analyzed upon restim-
ulation. Poly IC was used as a positive control for Th1 cell polarization,
whereas PGE, was used for Th2 cell polarization. One out of three inde-
pendent experiments is shown.
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published data). The PMN-induced DC maturation was de-
pendent on cellular interactions, because separation of DC
and LPS-activated PMN, using a 0.4-pwm Transwell system
that only allows transmission of soluble factors, completely
abrogated PMN-induced DC maturation (Fig. 7 B). Block-
ing anti-DC-SIGN antibodies inhibited PMN-induced DC
maturation, further supporting the finding that cellular inter-
actions are essential in PMN-induced DC maturation and
further demonstrating that these interactions occur through
DC-SIGN (Fig. 7 B). The finding that resting PMN can
form cellular clusters with immature DCs without inducing
DC maturation indicates that the DC-SIGN binding to Mac-1
on PMN is not alone sufficient to trigger DC maturation. It
has been previously reported that TNF-a derived from acti-
vated PMN may trigger DC maturation (22). Indeed, block-
ing anti-TNF-a antibodies inhibited DC maturation by
LPS-activated PMN (Fig. 7 B). Thus, we conclude that cel-
lular interactions established by Mac-1 and DC-SIGN are es-
sential for efficient delivery of the low amounts of TNF-a se-
creted by activated PMN to induce DC maturation.

Next to DC maturation, we investigated whether PMN
trigger cytokine production upon interactions with DCs.
We observed that LPS-activated, but not resting, PMN in-
duced the production of IL-12p40 by DCs (Fig. 7 C). Simi-
lar to the induction of DC maturation, production of IL-
12p40 by DCs was abrogated by the separation of PMN and
DCs using a 0.4-pwm Transwell system, by anti-DC-SIGN
antibodies, and by anti-TNF-a antibodies (Fig. 7 C). Al-
though DCs produced low levels of IL-12p70 upon LPS
stimulation, the bioactive heterodimer of IL-12 was not de-
tected after incubation of DCs with activated PMN (unpub-
lished data). Thus, in contrast to resting PMN, activated
PMN have an instructive role in DC maturation and cyto-
kine production by DCs through interactions of Mac-1 with
DC-SIGN and TNF-a signaling.

Because activated PMN trigger DC maturation, and ma-
ture DCs stimulate more potent T cell responses than imma-
ture DCs, we investigated whether activated PMN boost T
cell proliferation in an MLR. Therefore, we incubated syn-
genic LPS-activated PMN and T cells together with allo-
genic immature DCs and determined T cell proliferation at
day 5. Indeed, DC-induced T cell proliferation was en-
hanced in the presence of activated PMN (Fig. 7 D). IL-12 is
a Th1 cell-inducing cytokine that is produced upon stimula-
tion of immature DCs by activated PMN, and we therefore
investigated whether PMIN were able to induce DC1 that
trigger Th1 cell polarization. In the presence of LPS, DCs
induced a mixed T cell response, consisting of equal num-
bers of IL-4— and IFNvy-producing T cells (Fig. 7 E). The
addition of PMN skewed this T cell response into a Th1 cell
response that is comparable with that of the Th1 cell-induc-
ing factor poly IC, but contrasts with the Th2 cell response
induced by the Th2 cell-inducing factor PGE, (Fig. 7 E).
Thus, PMN stimulation of DCs enables these DCs to induce
Th1 cell polarization. We therefore conclude that PMN
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may indirectly influence the outcome of T cell responses
through interactions with DCs, particularly when the innate
response leads to strong activation of PMN.

DISCUSSION

Neutrophils are the dominant effector cells of the innate im-
mune system that phagocytize extracellular bacteria and re-
lease antimicrobial compounds during early infection. This
enables them to contain the microbial infection and allows
time for the establishment of adaptive immune responses that
achieve sterile clearance. Recently, it has become clear that
neutrophils may pass information on to other players of the
innate and adaptive immune response, as they are able to re-
lease proinflammatory cytokines and chemokines that attract
other neutrophils, activated T cells, monocytes, macro-
phages, and immature DCs (31). We demonstrate that regu-
lated cellular interactions between neutrophils and immature
DCs contribute to neutrophil-induced adaptive responses.

Cell-specific glycosylation regulates DC-PMN interactions
Previously, ICAM-2 and -3 have been described as cellular
ligands of DC-SIGN on endothelial cells and T cells, respec-
tively (4, 7). Here, we have identified Mac-1 as a novel
high-affinity cellular DC-SIGN ligand that mediates interac-
tions between DCs and PMN with its PMN-specific glyco-
sylation pattern. Both recombinant and cellular DC-SIGN
specifically bind native Mac-1 that is expressed on PMN.
The finding that DC-SIGN binds Mac-1 on PMN is strik-
ing, because neutrophils also express the DC-SIGN ligand
ICAM-3. However, ICAM-3 derived from PMN does not
bind DC-SIGN, in contrast to ICAM-3 expressed by other
cells (4). This is likely because of the fact that ICAM-3 from
PMN does not contain high-mannose structures or Lewis
antigens, as DC-SIGN displays an affinity for those carbohy-
drate structures (6, 10). Because glycosylation is a cell-spe-
cific process that depends on the expression levels of many
glycosyltransferases and the protein backbone of the glyco-
protein, neutrophils may express an alternatively glycosy-
lated glycoform of ICAM-3 that is not recognized by DC-
SIGN. This illustrates the importance of the cellular source
of ICAM-3 1n establishing binding to DC-SIGN.

Similar to ICAM-3, cell-specific glycosylation of Mac-1
determines binding to DC-SIGN. Mac-1 is expressed on
cells of myeloid origin (32). Although we observed strong
binding of DC-SIGN to PMN and to Mac-1 isolated from
PMN, DC-SIGN bound poorly to Mac-1 derived from
monocytes and immature DCs. This low binding activity of
DC-SIGN to isolated monocyte- or DC-derived Mac-1 was
insufficient to support binding of DC-SIGN to monocytes
or DCs. This indicates that PMN contain a distinct glyco-
form of Mac-1 with specificity for DC-SIGN. Indeed, in
contrast to Mac-1 of monocytes and immature DCs, Mac-1
of PMN contains Lewis* (27, 28), a high-affinity carbohy-
drate structure that functions as a ligand of DC-SIGN (10).
Other carbohydrates that are present on Mac-1 from mono-
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cytes and DCs may have initiated the low level of DC-SIGN
binding to isolated monocyte- and DC-derived Mac-1. In
addition to Mac-1, PMN express the (,-integrins LFA-1
and p150,95. These (3,-integrins neither express Lewis® nor
bind DC-SIGN, indicating that the expression of Lewis* de-
termines binding to DC-SIGN. Indeed, we were able to
identify Lewis® as a determinant on PMIN Mac-1 for binding
to DC-SIGN by the enzymatic treatment of Mac-1 that spe-
cifically removes the Lewis*® epitope. Whether Lewis® is the
only glycan involved in the binding to DC-SIGN is cur-
rently unclear. We observed residual binding of DC-SIGN
to PMN Mac-1 after removal of Lewis¥, indicating that
other carbohydrates on PMN Mac-1 participate in the inter-
action with DC-SIGN. These carbohydrates do not include
the DC-SIGN sugar ligands Lewis® and Lewis®, because neu-
trophils do not express these Lewis®-related carbohydrates
(unpublished data). In contrast, the Lewis®-related structure
LewisY, which has also been described as a DC-SIGN ligand,
has been reported to be expressed at low levels on neutro-
phils (33). Yet, we could neither detect Lewis’ on neutro-
phils nor on Mac-1 derived from neutrophils using our anti-
body (unpublished data). A detailed carbohydrate analysis of
Mac-1 from neutrophils by mass spectrometry is essential to
determine the exact carbohydrate structures that are recog-
nized by DC-SIGN.

Novel cellular interactions within the innate immune system
We have shown that immature monocyte-derived DCs and
PMN cluster in vitro and that the interaction is mediated by
DC-SIGN. Although we have established Mac-1 as a ligand
of DC-SIGN by immunoprecipitation, ELISA, and bead ad-
hesion assays, we were unable to study the involvement of
Mac-1 in the DC—neutrophil cluster experiments, because of
a general lack of anti-Mac-1 antibodies that block the DC-
SIGN-Mac-1 interaction (unpublished data). A future anal-
ysis of the interaction of DCs with neutrophils from LAD
patients that do not have CD18 and, therefore, lack Mac-1
may be an elegant way to address this issue. However, con-
clusions from cell-cell adhesion experiments with LAD neu-
trophils should be drawn with caution, because LAD pa-
tients also lack LFA-1, which is an important adhesion
receptor involved in many cellular interactions.

Under physiological conditions, neutrophils and imma-
ture DCs localize in different compartments; neutrophils are
mainly present within the blood, whereas immature DCs ap-
pear as sentinel cells within the peripheral tissues. In contrast,
neutrophils and DCs both accumulate at the site of infection
during inflammation. Moreover, neutrophils are able to ac-
tively attract immature DCs by the release of chemokines
like MIP-1a and MIP-1f3 (19) and by chemoattractants such
as a-defensins (21). In turn, DCs have been demonstrated to
transiently produce the neutrophil chemoattractant IL-8
shortly after receiving a maturation stimulus (34). Thus, DCs
and neutrophils are likely to encounter each other at periph-
eral sites during inflammation. Indeed, we were able to

CROSS TALK BETWEEN DENDRITIC CELLS AND NEUTROPHILS | van Gisbergen et al.



demonstrate that DCs and PMN associate in vivo in colonic
mucosa during chronic inflammation in patients with Crohn’s
disease. The colonic mucosa harbors two DC populations
that can be distinguished by the expression of CD83 and
DC-SIGN (30). CD83" DCs associate with T cells in lym-
phoid structures, whereas DC-SIGN* DCs do not; rather,
they are scattered throughout the colonic mucosa. DC-
SIGN* DCs may play a major role in the pathogenesis of
Crohn’s disease, as they express the Th1 cell-polarizing cy-
tokines IL-12 and -18 that would enable them to induce
Th1 cell lymphocytes, which are a main cause of pathology
in Crohn’s disease (30). As we have demonstrated that the
DC-SIGN* DCs primarily interact with PMN within the
colonic mucosa, cross talk between these cells may occur.

Next, we considered whether the cellular interaction be-
tween DCs and PMN, especially activated PMN, might
modulate DC function. DC maturation is crucial for the es-
tablishment of adequate T cell responses, as it is essential for
DC migration to draining lymph nodes, and for antigen de-
livery and activation of T cells. Invariant pathogen structures
that bind Toll-like receptors, as well as endogenous signals
from T, B, and NK cells, trigger DC maturation (3). We
have demonstrated that activated, but not resting, PMN in-
duce DC maturation and that this results in the increased ca-
pacity of these DCs to induce T cell proliferation. Thus,
PMN require stimulation by other signals such as FMLP,
TNF-a, or LPS before they are able to trigger DC matura-
tion. Because we were unable to show that interactions be-
tween immature DCs and PMN directly activate PMN (un-
published data), this may ensure that PMN activate and
mature DCs only during infection. PMN-induced DC mat-
uration depends completely on cellular interactions with
DC-SIGN and Mac-1. Because resting PMN adhere to DCs
but do not establish DC maturation, DC-SIGN—-Mac-1 in-
teractions are likely essential to establishing a cellular contact
zone, or synapse, that is required for the transmission of
other maturation signals. It has recently been shown in mice
that TNF-a in PMN-conditioned medium triggers matura-
tion of DCs (22). We demonstrate that TNF-a is involved
in DC maturation by human PMN. We therefore conclude
that the PMN-induced DC maturation is mediated by a
two-step model in which DC-SIGN—Mac-1 interactions es-
tablish a synapse-like structure between PMN and immature
DC:s to facilitate TNF-a transmission to DCs that will lead
to DC maturation.

Neutrophils have been implicated in the Th1 cell polar-
ization of T cells. In murine infection models, antibody-
mediated depletion of PMN shifts the Th1 cell response against
Candida albicans, Legionella pneumophila, and H. pylori toward
a Th2 cell response (23-25). It has been suggested that neu-
trophils provide a Thl cell cytokine environment by the
production of IL-12 (35). However, neutrophils produce
low amounts of IL-12, and only a few neutrophils reach the
lymph nodes, where T cell polarization occurs. Our data
support the hypothesis that neutrophils induce Th1 cell po-
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larization indirectly through interactions with DCs. Indeed,
we showed that activated PMN induce the release of high
levels of the Th1 cell-polarizing cytokine IL-12 by DCs, and
enable these DCs to induce Th1 cell responses. Strikingly,
DC-SIGN* DCs within the colonic mucosa in Crohn’s dis-
ease that associate with PMN express IL-12 (30). Thus, pe-
ripheral interactions of neutrophils with immature DCs may
result in the development of mature DCs of the DC1 type
that migrate to the lymph nodes and induce Th1 cell re-
sponses through the production of IL-12. However, we
were only able to detect IL-12p40, not bioactive IL-12p70
(unpublished data). Because DCs produce IL-12p40 in 100—
1,000-fold excess over IL-12p70, the production of IL-
12p70 may have been below the detection limit.

Neutrophils have a higher phagocytic potential than DCs
(36). Moreover, antigens taken up by neutrophils are effi-
ciently degraded, whereas antigens acquired by DCs can re-
main intact for prolonged times (37, 38). In contrast to DCs,
neutrophils do not express MHC class 11 and costimulatory
molecules, and, therefore, possess a poor capacity to present
antigen-derived peptides to naive T cells. However, in vitro
experiments have shown that neutrophils may assist DCs in
the acquisition of peptide antigens, because neutrophils re-
gurgitate peptides derived from phagocytized antigens, and
these expelled peptides can be taken up by neighboring DCs
to allow efficient presentation to T cells (39). Future studies
will address whether cellular interactions between neutrophils
and DCs are required for antigen transfer and whether these
cellular interactions occur through Mac-1 and DC-SIGN.

In conclusion, we establish Mac-1 as a novel ligand of
DC-SIGN that mediates adhesion of DCs to PMN, and
show that this interaction provides a novel cellular link be-
tween innate and adaptive immunity under inflammatory
conditions. We therefore hypothesize that neutrophils be-
come activated after an encounter with pathogens, and they
not only attract but also instruct immature DCs to elicit the
appropriate immune responses.

MATERIALS AND METHODS

Antibodies and reagents. The following antibodies were used: EDS8
(mouse IgG1 isotype control; reference 40), SPV-L7 (LFA-1, CD11a; refer-
ence 41), bear-1 (41), and KIM225 (Mac-1, CD11b; gift of M. Robinson,
Celltech Ltd., Slough, UK); HC1/1 (p150,95, CD11c; reference 42), 6.7
(43), NKI-L19, and 60.3 (B,-integrins, CD18; reference 44); and MEMO04
(ICAM-3, CD50; gift of V. Horesij, Institute of Molecular Genetics, Pra-
gue, Czech Republic), 6H3 (Lewis*, CD15; gift of B.J. Appelmelk, Vrije
Universiteit Medical Center), F3 (Lewis¥, CD174; Calbiochem), T174
(Lewis; Calbiochem), T218 (Lewis®; Calbiochem), AZN-D1, AZN-D2,
and CSRD (DC-SIGN, CD209; references 4, 45). CD16-biotin and
CD83-PE were purchased from BD Biosciences, and CLB-gran/10
(CEACAMI1, CD66a) was purchased from Sanquin.

Recombinant DC-SIGN consists of the extracellular portion of DC-
SIGN (amino acid residues 64—404) fused at the COOH terminus to the
human IgG1-Fc¢ domain (26). DC-SIGN-Fc was produced in Chinese
hamster ovary K1 cells after transfection with the DC-SIGN-Sig-plgG1-Fc
vector (20 pg). ICAM-3-Fc (gift of D.L. Simmons, SmithKline Beecham
Pharmaceuticals, Harlow, UK) containing an Fc domain of the same isotype
was used as a negative control (control-Fc).
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Cells. Stable transfectants of K562 cells expressing DC-SIGN were ob-
tained by electroporation of pRC-CMV-DC-SIGN (400 V, 960 wF) as
previously described (46).

PMN were isolated from the fresh blood of healthy volunteers. After
performing Ficoll gradient centrifugation, PMN were cleared from contam-
inating erythrocytes using an erylysis buffer (155 mM NH,CI, 10 mM
KHCOs, and 0.1 mM EDTA). Isolated PMN were >95% pure as assessed
by CD11a, CD11b, CD11c, CD18, CD66acd, CD66b, and Lewis* expres-
sion. Activated PMN expressed higher levels of CD11b and CD18 com-
pared with resting PMIN.

Immature and mature DCs were derived from monocytes as previously
described (47, 48). Isolated monocytes were cultured in RPMI 1640 with
10% FCS in the presence of 600 U/ml IL-4 and 800 U/ml GM-CSF
(Schering-Plough) for 7 d to obtain immature DCs; and in the presence of 2
pg/ml LPS (derived from Escherichia coli; Sigma-Aldrich) in the final 2 d to
obtain mature DCs. Immature DCs expressed no or low levels of CD80,
CD83, CD86, and HLA-DR, and high levels of DC-SIGN; mature DCs
expressed high levels of CD80, CD83, CD86, and HLA-DR, and low lev-
els of DC-SIGN.

Immunoprecipitation and Western blotting. PMN were surface bi-
otinylated with 0.5 mg/ml sulfo-NHS-biotin (Pierce Chemical Co.) in PBS
for 30 min at 4°C, and subsequently lysed in lysis buffer (1% Triton X-100,
10 mM TEA pH 8.2, 150 mM NaCl, 1 mM MgCl,, and 1 mM CaCl,)
containing a cocktail of EDTA-free protease inhibitors (Roche Diagnostics)
for 1 h at 4°C. DC-SIGN ligands were immunoprecipitated with recombi-
nant DC-SIGN coated onto protein A—Sepharose beads (CL-4B; GE
Healthcare). Immunoprecipitates were analyzed by SDS-PAGE (7% poly-
acrylamide gel under reducing conditions), transferred onto a nitrocellulose
blot, and immunoblotted with streptavidin-peroxidase (Vector Laborato-
ries) or with anti-Mac-1 antibodies and secondary peroxidase-conjugated
goat anti-mouse antibodies (Jackson ImmunoR esearch Laboratories).

Similarly, Mac-1 was immunoprecipitated from biotinylated PMN ly-
sates with anti-Mac-1 antibodies coated onto protein A beads. Next, im-
munoprecipitated Mac-1 was analyzed by SDS-PAGE, transferred onto a
nitrocellulose blot, and stained with streptavidin-peroxidase, anti-Lewis*®
antibodies, and secondary peroxidase-conjugated anti-mouse IgM antibod-
ies (Nordic Immunological Lab.) or stained with recombinant DC-SIGN
and secondary peroxidase-conjugated goat anti-human antibodies (Jackson
ImmunoResearch Laboratories).

Fluorescent bead adhesion assay. Native Mac-1 that was derived from
PMN was coated onto carboxylate-modified TransFluoSpheres (488/645
nm, 1.0 wm; Molecular Probes; reference 49). In brief, streptavidin was co-
valently coupled onto TransFluoSpheres as described by the manufacturer.
Subsequently, streptavidin-coated beads were incubated with biotinylated
goat anti-mouse Fc Fab, fragments (5 pg/ml; Jackson ImmunoResearch
Laboratories) in PBS 0.5% BSA for 2 h at 37°C. Thereafter, beads were
washed, incubated for 18 h at 4°C with mouse antibodies directed against
Mac-1, washed again, and incubated for 48 h at 4°C with PMN lysate (20 X
10° cells/ml) to capture PMIN Mac-1 onto the beads.

K562-DC-SIGN cells were incubated with PMN Mac-1—coated beads
for 45 min at 37°C in TSM (20 mM Tris-HCI, pH 8.0, 150 mM NaCl, 1 mM
CaCl,, and 1 mM MgCl,) 0.5% BSA. After washing, adhesion of the beads to
the cells was assessed by flow cytometry (FACS Calibur; Beckton Dickinson).

DC-SIGN-Fc binding. Cells were incubated with DC-SIGN-Fc for 30
min at 37°C in TSM 0.5% BSA, and subsequently with FITC-conjugated
goat anti-human secondary antibodies (Jackson ImmunoResearch Labora-
tories) for 30 min at 37°C in TSM 0.5% BSA. Binding of recombinant DC-
SIGN to the cells was monitored by flow cytometry.

ELISA-based binding assay. The DC-SIGN-Fc binding assay to native
Mac-1 derived from PMN was performed as follows: 4 pg/ml of goat anti—
mouse antibodies (Jackson ImmunoResearch Laboratories) were coated
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onto ELISA plates (NUNC maxisorp; Nunc) for 1 h at 37°C. Thereafter,
ELISA plates were blocked with TSM 1% BSA for 30 min at 37°C. After
incubating with 1 pg/ml nonblocking mouse antibodies directed against
Mac-1 for 1 h at 37°C, ELISA plates were washed and incubated with
PMN lysate (20 X 10° cells/ml) for 18 h at 4°C to allow the capture of
PMN Mac-1. Then, 1 pg/ml DC-SIGN-Fc was added and allowed to bind
for 2 h at room temperature. Unbound DC-SIGN-Fc was washed away,
and binding was determined using a peroxidase-conjugated goat anti—
human Fc antibody.

Cell—cell adhesion. To monitor cellular interactions between PMN and
either K562-DC-SIGN or DCs, cells were labeled with fluorescent dyes.
PMN were labeled with the green fluorescent dye CFSE (5 pM in PBS;
Molecular Probes) for 15 min at 37°C. K562-DC-SIGN and DCs were la-
beled with the red fluorescent dye hydroethidin (40 pg/ml in Iscoves 5%
FCS; Polysciences) for 15 min at 37°C. Labeled cells were coincubated for
the times indicated in Fig. 1, and adhesion was visualized by fluorescence
microscopy and quantified by FACS analysis. Specificity was determined
using 50 pg/ml of blocking anti-DC-SIGN antibodies (AZN-D1).

Coculture experiments. PMN were pulsed for 1 h with 100 ng/ml LPS,
rigorously washed, and then incubated with allogenic immature DCs at a
ratio of 3:1 for 18 h at 37°C in RPMI 1640 with 10% FCS. Maturation of
DCs was assessed by flow cytometry analysis of the expression of the DC
maturation marker CD83, and analysis of the production of IL-12p40 in the
supernatant was performed using sandwich ELISA according to the manu-
facturer’s protocol (Biosource International). Incubation of DCs with 100
ng/ml LPS was used as a positive control for DC maturation. For T cell
proliferation, PBLs were cocultured with syngenic LPS-activated PMN and
allogenic immature DCs for 5 d. At day 4, cell cultures were pulsed with
0.5 wCi [*H]thymidine (GE Healthcare) for 18 h, and [*H]thymidine incor-
poration was measured using a liquid scintillation counter (PerkinElmer).
For T cell polarization, DCs were cocultured with PMN (1:3) in the pres-
ence of 10 ng/ml LPS for 2 d, washed, and incubated with CD45RA™
CDA4" T cells (5,000 T cells/20,000 DCs). Quiescent T cells were restimu-
lated with 10 ng/ml PMA (Sigma-Aldrich) and 1 pg/ml ionomycin
(Sigma-Aldrich) for 6 h. During the last 5 h of that time, they were in the
presence of 10 pg/ml brefeldin A (Sigma-Aldrich). Single cell production
of IL-4 and IFN7y was determined by intracellular flow cytometry.
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