
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Generalizations of Markov model to characterize biological 
sequences
Junwen Wang and Sridhar Hannenhalli*

Address: Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania Philadelphia, PA 19104-6021, USA

Email: Junwen Wang - junwen@pcbi.upenn.edu; Sridhar Hannenhalli* - sridharh@pcbi.upenn.edu

* Corresponding author    

Abstract
Background: The currently used kth order Markov models estimate the probability of generating
a single nucleotide conditional upon the immediately preceding (gap = 0) k units. However, this
neither takes into account the joint dependency of multiple neighboring nucleotides, nor does it
consider the long range dependency with gap>0.

Result: We describe a configurable tool to explore generalizations of the standard Markov model.
We evaluated whether the sequence classification accuracy can be improved by using an alternative
set of model parameters. The evaluation was done on four classes of biological sequences – CpG-
poor promoters, all promoters, exons and nucleosome positioning sequences. Using di- and tri-
nucleotide as the model unit significantly improved the sequence classification accuracy relative to
the standard single nucleotide model. In the case of nucleosome positioning sequences, optimal
accuracy was achieved at a gap length of 4. Furthermore in the plot of classification accuracy versus
the gap, a periodicity of 10–11 bps was observed which might indicate structural preferences in the
nucleosome positioning sequence. The tool is implemented in Java and is available for download at
ftp://ftp.pcbi.upenn.edu/GMM/.

Conclusion: Markov modeling is an important component of many sequence analysis tools. We
have extended the standard Markov model to incorporate joint and long range dependencies
between the sequence elements. The proposed generalizations of the Markov model are likely to
improve the overall accuracy of sequence analysis tools.

Background
Biological complexity has evolved through a combination
and interactions between simpler units. By looking at
these units in a context dependent way, we can better
understand the biological complexity. For example, Wang
and Feng explored the amino acid propensity pattern in a
neighbor-dependent way and found that the patterns
were not always predictable from the single amino acid
patterns [1]. Application of these di-amino acid propen-
sity patterns into a traditional Needleman-Wunsch [2]

algorithm significantly improved protein sequence align-
ment [3]. Similarly one can better predict the transcrip-
tion factor binding sites by considering the
interdependence between nucleotides [4,5].

Markov model (MM) is a statistical technique to model
sequences such that the probability of a sequence element
is based on a limited context preceding the element [6,7].
In other words, MM is a way to factorize the probability of
observing the sequence in terms of context-dependent
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probabilities of the sequence elements. It has been effec-
tively used in many DNA sequence recognition problems
such as promoter and gene prediction [8]. The standard
kth order MM assumes that a sequence element probability
depends on k previous bases, immediately preceding the
current base. Alternatively, the standard Markov Model
generates a single base (model unit size = 1) according to a
probability distribution depending on the k bases imme-
diately preceding the generated base (gap = 0).

The biological rationale behind selecting these parameters
is not clear and alternatives should be explored. Longer
range dependencies and joint dependency of neighboring
bases have been observed in protein and DNA sequences.
For instance, CG di-nucleotide is what characterizes CpG
islands [1,9]. In bacterial promoters, a regular positioning
of TA and TG stacks is prevalent with the best fit period 5.6
bp [10]. Stacking between neighboring bases is an impor-
tant source of enthalpy change on helix formation [11]. In
the study by Ozoline et al. the period of 5.6 bps for TA and
TG can be interpreted as half of the helical repeat period
with a contribution from a sequence-dependent helical
writhe of the promoter DNA [10]. A repetition of certain
di-nucleotide at 10–11 bp has been discovered in numer-
ous genomes, supporting the DNA wrapping around the
nucleosomes [12]. A model with unit size of 2 might be
more appropriate to characterize the joint dependency of
CG di-nucleotide. Furthermore, longer range dependen-
cies (gap > 0) should be explored to model the periodicity
of helix pattern. These alternative hypotheses regarding
the positional and joint dependence within sequences can
be computationally evaluated by extending the Markov
Models.

There have been attempts to generalize Markov models.
The Mixture Transition Distribution Model conditions the
current state on a combination of previous states at vary-
ing distances [13]. In the spatial model, the current nucle-
otide depends on both the left and the right nucleotides
[14]. For a detailed review of other generalizations and
their limitations see [15]. We have developed a configura-
ble tool to allow for generalizations of Markov model
(GMM), as described in the implementation section.

We have evaluated a few instances of our GMM for their
ability to classify four classes of sequences – CpG-poor
promoters, all promoters, exons and nucleosome posi-
tioning sequences against appropriate background
sequences. We compared two special cases of our model,
the third order di-nucleotide (model unit size = 2) and 2nd

order tri-nucleotide (model unit size = 3) GMM against
the traditional 6th order single nucleotide Markov model.
Our results based on 10-fold cross validation show that
the di-nucleotide and the tri-nucleotide based models are
significantly better than the single nucleotide based mod-

els. Furthermore, in the case of nucleosome positioning
sequences, a gap length of 4 achieves the optimal classifi-
cation accuracy. By allowing us to explore the dependence
structure, the GMM tool will not only improve the classi-
fication accuracy of a sequence class, but will also provide
insights into the structural properties of the sequences.

Implementation
We define the bases whose probability we wish to com-
pute as the posterior bases or simply the posterior and the
bases on which this probability is conditioned upon, as
the prior. We use six parameters to specify a Markov model
(as shown in Figure 1). To capture the joint dependency
of neighboring nucleotides, our model allows multiple
nucleotides as the model unit. However we allow different
model unit sizes for the prior and the posterior, denoted
as L1 and L2 respectively. The gap between the posterior
and prior is denoted by G. The prior is composed of a few
individual model units. The number of such units is called
order. The maximum order is denoted by O. We also allow
these individual prior units to be at an arbitrary spacing
from each other. This spacing between the prior units is
denoted by g1. Lastly, within the bases comprising the pos-
terior we allow arbitrary spacing between the bases
denoted as g2. For instance a spacing of length 2 within a
posterior model unit of size 2 in an amino acid sequence
captures the joint dependency for the first and the fourth
amino acid residue, which is likely to form a hydrogen
bond – vital for the protein helix structure [16]. To evalu-
ate a model where each tri-nucleotide depends on the pre-
vious 4 bases, one can set L1 = 4, 0 = 1, L2 = 3, g1 = g2 = G =
0. To use the four bases after ignoring the immediately
preceding 3 bases, one can set G = 3.

The prior order O only specifies the maximum order. Our
program uses the idea of variable length Markov model [17]
such that the highest order for which sufficient data is
available, is utilized [18,19]. Apart from the 6 parameters
mentioned above, the other generic configurable parame-
ters include: type of biological sequence, either protein
('P') or DNA ('N'); threshold for minimal count of prior
for k-mer elimination; pseudo count for a k-mer absent in
the training set and the phase the user wants to score. For
further information on the parameters, please refer to the
software package readme file. Given a particular configu-
ration, our implementation of the GMM is very similar to
that of GLIMMER package, with a few exceptions.

Training
In order to achieve statistical robustness, we only consider
the k-mers above a (configurable) frequency threshold in
the positive sequences. This frequency must ensure that
the estimated conditional probabilities are acceptably
close to true probabilities. A frequency threshold of 400
was estimated in [19] that provided a 95% confidence
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that the estimated probabilities were within 0.05 from the
true ones. We tried varying this threshold from 50 to 500
and it did not make a significant difference in perform-
ance (also observed in [19]) and attains the maximum at
300. Hence we chose this as the default threshold. For
nucleosome sequences we chose 50 as the frequency
threshold due to smaller data set.

We slide the window one base at a time along the training
sequence. The window size is determined by the user
defined parameters; window size = L1 × O + g1 × (O-1) + G
+ L2 + g2 × (L2-1). For each window, we extract the words
corresponding to the prior and the posterior. For example,
for L1 = 1, O = 6, L2 = 2, g1 = 0, G = 1, g2 = 1, we have a win-
dow with length 10, say ACTGATGCAG. The di-nucle-
otide CG represents the posterior. We increment the
counts of k-mers ACTGATCG (6th order), CTGATCG (5th

order), ..., and CG (0th order) by one. We thus have 7 sub-
models, one for each order.

Once the training sequences are processed, we convert the
raw counts into transition probabilities. For the 0th order,
the probability is the composition of the L2-mers. For
higher order, say, 4th order TGATCG, we compute the sum
of frequencies of all the hexamers of the form TGAT**. If
the sum is bigger than the user specified threshold, we cal-
culate the probability by dividing the count of TGATCG
by the sum. Otherwise, the program automatically uses
the (k-1)-mer, and so on to order 0, where the base com-
position is used. The same process is repeated for the
background training sequences and we thus obtain a neg-

ative model. We then convert the probability for each k-
mer into log-odds score.

Testing
The program first reads in the model – the k-mer log-odds
– along with the configuration file. Scoring proceeds in a
sliding window fashion where each window is the mini-
mal sequence containing a posterior and the prior as
described above. To score a window, we first consider the
highest order. Using the example above, to score ACT-
GATGCAG (the underscored bases correspond to gaps in
the model), we first look for 6th order dependence, ie.,
ACTGATCG in the 8-mer table. If the string exists, we use
the score. Otherwise, we look for the string corresponding
to the 5th order (CTGATCG), and so on, until the 0th order,
ie., the di-nucleotide composition. The sequence score is
obtained by adding all window scores. We score the
sequence using two models corresponding to the positive
and the negative sequences.

For posterior length L2, the overall sequence score can be
interpreted as the sum of the scores of L2 independent
parses of the sequence in different phases. In each parse or
phase, any given base is generated exactly once. We will
illustrate this with an example. Let L2 = 3, and g2 = 1. Con-
sider a test sequence S = s1s2...sn. The posterior Pi starting at
ith position is sisi+2si+4. Each Pi is in a specific phase φk, 1 ≤
κ ≤ L2. Under φ1 we consider P1,P2,P7,P8,P13,P14, .... We
jump from P2 to P7, since all bases from s1 to s6 are covered
by P1 and P2. Similarly under φ2 we consider
P3,P4,P9,P10,P15,P16, .... Hence the phases for Pi, i = 1,2,3.....

The figure illustrates the six configurable parametersFigure 1
The figure illustrates the six configurable parameters. There are three parameter associated with the prior – model unit size L1, 
order (number of units) 0, and spacing between units g1. There are two parameter associated with the posterior – model unit 
size L2, and spacing between bases g2. And there is a gap parameter G. Although not as general as arbitrary graphical models, 
this implementation is highly configurable with respect to model unit sizes and the dependence structures in terms of gap 
lengths.
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are 1,1,2,2,3,3,1,1,2,2,3,3.... Note that each base position
is covered exactly once in any of the three phases. If one
has a prior knowledge of sequence phase (eg. in-phase
exons) and does not wish to use the sum of all phases as
a sequence score, one can specify a particular phase to be
used. The model will use only the posteriors in that spe-
cific phase for training and scoring.

Results
The human promoter sequences
We extracted the ± 5 kb region around the 12,333 Tran-
scriptional Start Site (TSS) in the DBTSS database [20].
These start sites are identified using oligo-capping
approach. We have implemented a sliding-window based
program to identify CpG-islands using the original defini-
tion of CpG-islands [21]. We have also implemented a
Hidden Markov Model (HMM) approach for CpG island
identification [7]. We call a 10 kb promoter region CpG-
poor if it does not contain a 200 bp length CpG-island by
either of the two methods. This resulted in 1,466 CpG-
poor promoters from a total of 12,333 promoter
sequences. We then randomly selected 5,000 10 kb
sequences from the whole human genome after masking
the DBTSS promoter regions. The 5,000 background
sequences and the 1,466 CpG-poor promoters were used
to evaluate the various models. The same background
dataset was also used for the classification of the entire set
of 12,333 promoter sequences.

The human exon dataset
The human exon locations were downloaded from UCSC
genome browser, human genome version hg16. We
extracted the exon sequences based on start and end loca-
tions. We thus obtained 219,624 exons. To compile a
background sequence set, we randomly selected the same
length sequences from the background for each exon.

The nucleosome positioning sequences
The nucleosome positioning sequences were downloaded
from the Nucleosome Positioning Region Database
(NPRD) [22, 31]. The generation of background
sequences was done similarly to the exon dataset.

Model evaluation
We used 10-fold cross-validations to train and test the
models. The positive and the background sequences were
randomly partitioned into 10 equal parts. Each part was
tested after training on the other 9 parts. Once the models
were trained, we scored the training set using the models
and obtained a cutoff based on the specificity-sensitivity
curve. We chose a score cutoff that resulted in the best cor-
relation coefficient (CC) value for the training set. We
then scored the (independent) test set and applied this
cutoff to obtain the CC value. The mean and standard
deviation over the 10 CC values was calculated. The Sen-

sitivity (Se), Specificity (Sp) and Correlation coefficient
(CC) values were defined as following:

TP: True positive, FP: False positive, TN: True negative,
FN: False negative.

We have provided scripts to evaluate a specified configu-
ration based on 10-fold cross validation. This involves
scripts for splitting the input sequence into 10 equal parts
and code for calculating the sensitivity, specificity and cor-
relation coefficient.

To assess the significance of the performance improve-
ment using a model M compared to base model M*
(standard MM), we used Wilcoxon paired rank sum test.
All sequences (positive and background) were scored
using M to obtain score list S and using M* to obtain score
list S*. Both S and S* were normalized separately to mean
0 and standard deviation 1. These paired normalized
scores for positive sequences (each sequence has 2 scores
corresponding to the 2 models) were used to test whether
the scores in S* are greater than the corresponding scores
in S using Wilcoxon test.

We have applied specific configurations of the tool to a
few biological sequence classification problems as an
illustration. Specifically to evaluate the impact of varying
model unit size we used the following three settings:

(1) 6th order single nucleotide model: L1 = L2 = 1, O = 6,
g1 = 0, G = 0, g2 = 0,

(2) 3rd order di-nucleotide model: L1 = L2 = 2, O = 3, g1 =
0, G = 0, g2 = 0,

(3) 2th order tri-nucleotide model: L1 = L2 = 3, O = 2, g1 =
0, G = 0, g2 = 0.

The 6th order single-nucleotide Markov Model is common
in many sequence analysis tools currently used. Notice
that the total number of prior bases is six for each of these
three models. We tested the classification accuracy for
three sequence classes using the above three configura-
tions. The results for CpG-poor promotes, all promoters
and all exon classifications are showed in Table 1, and dis-
cussed below.

Classification of CpG-poor promoters
The di- and tri- nucleotide models improve upon single
nucleotide model (p-value < 0.001). The traditional (sin-
gle-nucleotide) 6th order Markov model yielded a correla-
tion coefficient value (CC) of 0.24. When we use the tri-
nucleotide model, the CC value was improved by 39% to

Sensitivity S
TP

TP FN
Specificity S

TP

TP FP
CC

TP TN F
e p( ) , ( ) ,=

+
=

+
= × − PP FN

TP FP TP FN TN FP TN FN
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0.34. The specificity-sensitivity graph (Figure 2) further
shows the sensitivity-specificity tradeoff. For instance, at a
reference sensitivity value of 0.5, the specificity achieved
by the tri-nucleotide based model is 0.52, as compared to
0.36 for the single-nucleotide model.

Classification of all promoters
We next applied the models to classify the entire set of
12,333 promoter sequences. The tri-nucleotide model
shows an improvement in the classification accuracy
(0.58 versus 0.54, p-value < 0.001) relative to the single
nucleotide model. The entire set of promoters is domi-
nated by CpG associated promoters which by virtue of
being GC-rich and containing CpG islands have a strongly
distinguishable characteristics against the background

sequences. Consequently the relative gains of using larger
model units are marginal.

Classification of exons
We extracted 219,624 annotated exons from the hg16. We
randomly selected the 219,624 sequences with the same
length as the exons from background sequences. The aver-
age correlation coefficient for classification accuracy for
single-, di-, and tri-nucleotide models are 0.63, 0.645 and
0.66 respectively. This modest improvement is however
statistically significant.

Classification of nucleosome positioning sequences
A periodical distribution pattern of transcription factor
sites was observed in promoter region that suggested a
correlation between the positioning of nucleosomes and
transcription factor binding sites [23]. To investigate the
nucleosome sequence periodicity, we compared classifica-
tion accuracy at different gap length (parameter G)
between prior and posterior. We were able to obtain 112
nucleosome sequences and performed their classification
based on the first order tri-nucleotide model (L1 = 3, O =
1, g1 = 0, L2 = 3, g2 = 0) at varying values of G. We achieve
the best classification accuracies at G = 4, 15 and 25, and
worst classification accuracies at G = 7 and 18 (Figure 3).
The distances between consecutive peaks and valleys are
around 10–11 bps, which is close to DNA helix turn of
10.5 bps (for most common B-DNA, 11 bps for A-DNA,
12 bps for Z-DNA).

Run time
We compared the run time for the three models on train-
ing and testing of the CpG-poor promoter classification
against the background. The benchmark was based on 64
Mb sequences with parameters described in the method
section. The java program was tested on a 2.6 GHz Pen-
tium III dual processors with 16GB of RAM running linux.
The training time for single-nucleotide based model was
55.8 minutes. This reduced to 23.8 and 18.9 minutes for
the di- and tri-nucleotide based models respectively. The
time needed for testing reduces less significantly by 30%-
40%, from 22.9 minutes for single to 15.4 and 14.0

Table 1: Average and standard deviation of Correlation coefficient (CC) values using different models. The data were obtained from 
10 cross-validation. The CC values were obtained from testing dataset when cutoff selected from the training set. * Wilcox rank sum 
paired test shows significant (p-value < 0.001) better than the corresponding single nucleotide model.

Samples (size) Single nucleotide Di-nucleotide Tri-nucleotide

CpG-poor Promoters (1,466) 0.24 ± 0.05 0.28 ± 0.03* 0.34 ± 0.04*
All Promoters (12,333) 0.54 ± 0.02 0.54 ± 0.03 0.56 ± 0.02*
All Exons (219,624) 0.63 ± 0.00 0.64 ± 0.00* 0.67 ± 0.00*

The specificity-sensitivity graph of the discrimination of CpG-poor promoters against background sequences using three different models – 6th order single nucleotide model (Red), 3rd order di-nucleotide model (Blue), and 2nd order tri-nucle-otide model (Black)Figure 2
The specificity-sensitivity graph of the discrimination of CpG-
poor promoters against background sequences using three 
different models – 6th order single nucleotide model (Red), 
3rd order di-nucleotide model (Blue), and 2nd order tri-nucle-
otide model (Black).
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minutes for di- and tri nucleotide models respectively. The
run time reductions are mainly due to fewer orders the
model needs to go though for di- and tri- nucleotide
models.

Discussion
Markov chains are commonly used to model biological
sequences. However the specific model unit size and the
dependence structure among the sequence elements have
not been explored. Specifically the model unit is fixed as
a single nucleotide or amino acid and its dependence on
k elements immediately preceding the current element is
incorporated in the model. We have argued that it might
be better to consider different model unit size and
dependence structures. Furthermore, it has been reported
that the optimal choice of model type and the model
order is species specific [18]. Hence, it is important to
implement the modeling tool in a configurable fashion.

Promoter prediction
Despite numerous efforts in promoter prediction, the sub-
class of promoters not associated with CpG islands or
CpG-poor promoters are notoriously difficult to charac-

terize and predict. This remains the main bottleneck in
overall promoter prediction accuracy and an accurate
analysis of transcriptional regulation [24-26]. One com-
ponent of promoter prediction is a better characterization
of overall DNA structural feature in the vicinity of the pro-
moters. Consistent with other studies that by considering
the neighboring dependency of amino acids can improve
the protein sequence alignment [3], here we show that by
using the longer Markov unit to capture the joint depend-
ency of neighboring nucleotides, we can substantially
improve the CpG-poor promoter classification. Although
we are not proposing an improved promoter prediction
tool here, our result does suggests an alternative modeling
of the long range DNA characteristics which is likely to
improve the overall promoter prediction.

Nucleosome positioning (NP) sequence prediction
The nucleosome is the basic unit of chromatin. Regulation
of eukaryotic gene transcription is closely linked with the
changes in nucleosome structure of the chromatin [22]. A
nucleosome at the promoter region is capable of inhibit-
ing the transcription initiation, whereas its displacement
is capable of surmounting the repressive effect [27]. The
preference of various sequences to allow for NP is not
clear. An interesting aspect of our application of GMM to
NP sequences is the observation that a gap length of 4 bet-
ter captures the local dependence in these sequences. This,
along with the periodicity of 10–11 bps in the plot of clas-
sification accuracy against the gap length might indicate a
structural requirement in protein-DNA interaction in the
NP.

Generalizations of MM
Two main challenges in generalizing Markov models are
(i) ensuring that the score of a sequence given the model
can be appropriately factorized in terms of individual
model unit scores (each base is included in exactly one
model unit, modulo the edge effects), and (ii) accurate
parameter estimation. We have shown that the sequence
score can be interpreted as sum of scores using L2 inde-
pendent parses of the sequence, where L2 is the number of
posterior bases. Score of the sequence for each phase can
indeed be factorized in terms of scores of disjoint posteri-
ors. However with respect to accurate parameter estima-
tion we have adopted a simple strategy analogous to that
for standard MM and the parameter estimation methods
developed in [15] may provide more accurate models.

We have used the sum of scores in different phases as the
overall sequence score. Using the maximum score among
all phases presents another alternative, which might be
appropriate for coding exons where the codon impose a
phase. When we do not have such a priori knowledge, then
using maximum among phase scores may be inappropri-
ate. Also it can be computationally prohibitive since one

Plot of classification accuracy for the Nucleosome position-ing sequences with respect to the gap between the prior and the posteriorFigure 3
Plot of classification accuracy for the Nucleosome position-
ing sequences with respect to the gap between the prior and 
the posterior. This is based on the first order tri-nucleotide 
model (L1 = 3, O = 1, g1 = 0, L2 = 3, g2 = 0) at varying values of 
G. We achieve the best classification accuracies (peaks) at G 
= 4, 15 and 25, and worst classification accuracies (valleys) at 
G = 7 and 18. The distances between consecutive peaks and 
valleys are around 10–11 bps, which is close to DNA helix 
turn of 10.5 bps (for most common B-DNA, 11 bps for A-
DNA, 12 bps for Z-DNA). This result illustrates the utility of 
the tool in exploring such long-range dependencies which 
might indicate specific structural constraints of the sequence 
class.
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will need to build separate model of each phase and when
scoring a sequence, try all models for all phase structure of
the sequence. Thus the computational time for scoring a
sequence is L2 *L2 – fold greater than the phase-less scor-
ing. In our current implementation, for the cases where
there is a prior knowledge of phase, users can specify a
phase parameter, such that the model is built for a specific
phase and also applied to the same phase.

Conclusion
We have developed a configurable tool to explore general-
izations of Markov models incorporating joint and long
range dependencies of the sequence elements. As an illus-
tration, we have shown that by using longer k-mer as
Markov model units and specific gap lengths, one can
improve the classification accuracy for a variety of biolog-
ically important sequence classes. Various tools to predict
biological sequences like promoters and genes exploit
multiple sequence based characteristics. The long range
DNA characteristics are commonly captured using
Markov models, eg Genscan [28] and HMMgene [29]. An
improvement in this aspect of the prediction has direct
implications on overall prediction accuracy of these tools.
A complete theoretical development of generalizations of
Markov models will require further research. The pro-
posed software provides a means to explore dependency
structures for a novel sequence class.

Availability and requirements
The software will be freely available for download ftp://
ftp.pcbi.upenn.edu/GMM/. The program requires java
version 1.4.2 or above to run, and it is platform independ-
ent. Please refer to software package for detailed instruc-
tion on how to run the programs.
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