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ABSTRACT In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in
environments is difficult because the available information is generally sparse and usually has low correlations
between traits. In current genomic selection, although researchers have a large amount of information and
appropriate statistical models to process it, there is still limited computing efficiency to do so. Although some
statistical models are usually mathematically elegant, many of them are also computationally inefficient, and
they are impractical for many traits, lines, environments, and years because they need to sample from huge
normal multivariate distributions. For these reasons, this study explores two recommender systems: item-
based collaborative filtering (IBCF) and the matrix factorization algorithm (MF) in the context of multiple traits
and multiple environments. The IBCF and MF methods were compared with two conventional methods on
simulated and real data. Results of the simulated and real data sets show that the IBCF technique was slightly
better in terms of prediction accuracy than the two conventional methods and the MF method when the
correlation was moderately high. The IBCF technique is very attractive because it produces good predictions
when there is high correlation between items (environment-trait combinations) and its implementation is
computationally feasible, which can be useful for plant breeders who deal with very large data sets.
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Plant breeding programs aim to improve multiple traits and develop
new, higher yielding varieties that are disease and drought resistant and
regionally adapted to different environments and growing conditions.
However, to reach that challenging goal, plant breeders have been
looking for new tools to improve the selection of candidate genotypes
in early stages. Genomic selection (GS) proposed by Meuwissen et al.
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(2001) is one of the most powerful tools used by breeders and is now
revolutionizing plant breeding. One of the fundamental features of GS
is the use of high-density markers. Rather than seeking to identify
individual loci that are significantly associated with a trait, GS uses
all marker data simultaneously as performance predictors of a line,
and this consequently delivers predictions that are more accurate.
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Selection under this approach is based on GS predictions, potentially
leading to more rapid genetic gains at a lower cost. Also, GS allows
marker data to be combined with phenotypic and pedigree data (when
available) in an attempt to increase the accuracy of the prediction
of breeding and genotypic values (Goddard and Hayes 2007).

Although there is empirical evidence showing that GS is a powerful
tool for selecting candidate genotypes in early stages, there is still the need
for novel statistical models for selecting multiple correlated traits
evaluated in multiple environments. Recent examples of publications
on this type of models for multiple traits and multiple environments are
those of Montesinos-Lopez et al. (2016, 2017) for continuous and count
data. However, although these proposed models are mathematically
elegant, they are computational very limited; as the number of geno-
types, environments, and traits increases, these models cannot be
implemented because it is extremely difficult to sample from large
multivariate normal distributions. For the abovementioned reasons,
statisticians and plant scientists are open and looking for better pre-
diction alternatives in the context of data for multiple traits and mul-
tiple environments. However, the need to increase prediction accuracy
is not exclusive to GS; it is present in many other areas like marketing,
e-commerce, finance, and biology. Each area has made a significant
effort to increase predictions; however, in general, few cases have been
successful. This reminds us that making predictions is usually very
challenging since the target inference is to predict unobserved quanti-
ties at the time of the inferences.

In this article, we will explore two methods that are very popular in
recommender systems. A recommender system is a subclass of an
information filtering system that seeks to predict the “rating” or “pref-
erence” that a user would give to an item (Ricci et al. 2011). Recom-
mender systems have become increasingly popular in recent years, and
are utilized in a variety of areas including movies, music, news, books,
research articles, search queries, social tags, and products in general. In
this research, we will implement the following two recommender sys-
tems methods in the context of GS: item-based collaborative filtering
(IBCF) and the matrix factorization method. The first method (IBCF)
belongs to the collaborative filtering techniques, which are a set of
prediction methods that have been significantly successful in building
recommender systems in various settings (e.g., marketing, e-commerce,
etc.). The basis of this technique is to use the known preferences of a
group of users to make recommendations or predictions of the un-
known preferences of other users.

The second method (matrix factorization) belongs to the latent factor
models, and tries to explain the ratings by characterizing both items and
users on a reduced number of factors that approximate the rating matrix.
The matrix factorization method is considered one of the most successful
of the latent factor models. In its basic form, matrix factorization
characterizes both items and users by vectors of factors inferred from
itemrating patterns. High correspondence between item and user factors
leads to a recommendation. These methods have become popular in
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recent years by combining good scalability with predictive accuracy. In
addition, they offer much flexibility for modeling various real-life
situations.

The two recommender systems mentioned above (IBCF and matrix
factorization) work by building a matrix of preferences (called a rating
matrix) where each row represents a user, each column represents an
item, and the number at the intersection of a row and a column
represents the user’s rating value. The absence of a rating score at this
intersection indicates that that user has not yet rated the item. We will
use simulated and real data to compute the prediction accuracy of both
recommender systems (IBCF and matrix factorization) and we will
compare their predictions with those produced by two conventional
GS models that take into account the genotype X environment inter-
action term.

MATERIALS AND METHODS
IBCF

Asmentioned above, the IBCF technique is a model-based algorithm for
recommender items or products. In IBCF, similarities between items are
calculated from a rating matrix (Table 1); based upon those similarities,
a user’s preference for an item that has not been rated by a user is
calculated. In general, Table 1 can be constructed for n users and m
items. Here, we present a step-by-step example of IBCF with four users
and three items. For example, let us assume that we have the rating
matrix shown in Table 1. With this information, we create an item-
to-item similarity matrix (using the cosine similarity = cos(6) =

doi1%i¥i/ ) 2oj-1%]\/ 2oj1y; or Pearson correlation), which pro-

vides information on how similar an item is to another item. The
complete cosine similarity matrix between items for this example is
shown in Table 2.

We then predict each user’s ratings for items that have not previously
been rated. In this example, we will calculate the rating for user u1 in item
I2, along with user 12 in item I3 and for user #4 in item I1. Each of these
predictions can be calculated using a simple weighted average to predict
the rating, P; ;, for user i in item j; as follows (Sarwar et al. 2001):

b > jeNYiWij )
jeN | "'T]

where the summation is over all other rated items (jeN) for user i, w; j-is
the weight between items j and j; and y;; is the rating for user i on
item j. Therefore, the predicted rating for item I2 for user u1 will be
P172 = ()/1V1W112 +)/1y3W312)/(|W1,2| + |W3,2‘) = (2 x0.76 + 3 XOSG)/
(0.76 4 0.86) = 2.53, while the predicted rating for item I3 for user
u2willbe Py3 = (y21w13 +y2>2w2>3)/(|w1,3| + }w273’) = (5%0.78+
2 % 0.86)/ (0.78+ 0.86) = 3.43, and the predicted rating for item I1
for user u4 will be P4’1 = (}/41214/211 + y4'3W3Y1)/(|W2‘1| + |W34’1|) =
(2x0.76 + 2 x 0.78)/(0.76 + 0.78) = 2. We provide the R code
for the IBCF in Appendix Al.

It is important to point out that when calculating the similarities
between users instead of between items, based upon these similarities, a
user’s preference for an item that he/she has not previously rated is
calculated. This method is called user-based collaborative filtering
(UBCF) and is basically the same as IBCF but refers to users (lines in
plant breeding). While item-based algorithms generate predictions
based on similarities between items, user-based algorithms generate
predictions based on similarities between users. In this article, the main
focus is on the IBCF because it is more computationally efficient than
UBCF when the number of items is lower than the number of users.
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B Table 1 Rating matrix data set with four users (rows) and three
items (columns), with the rating of each user given in an ordinal
scale of three points

U1 yin=2 yi2=7? yi3=3
U2 y21 =25 Y22 =2 y23="7
us y31 =3 y32=3 y33 =1
v yaqn ="7? ya2 =2 ya3 =2

? denotes missing values that need to be predicted.

Additionally, there is empirical evidence showing that IBCF is more
accurate in predicting ratings than UBCF (Sarwar et al. 2001).

Matrix factorization (MF)

Matrix factorization is another algorithm for recommending items or
products. Matrix factorization consists of factorizing a matrix, i.e., to
find two matrices, which, when multiplied, will produce the original
matrix. Formally, the matrix factorization model looks for two matri-
ces, P and Q, of order n x K and m x K, respectively, such that

R ~ PQT=R, (2)

where R is the matrix that contains all the ratings that the users have
assigned to the items and it is of order nxm, K is the prespecified
number of latent features (variables) that is lower than or equal to the
min(n, m). R is the estimated matrix of ratings. Each row of P represents
the strength of the associations between a user and the features, while
each row of Q represents the strength of the associations between an item
and the features. To obtain the prediction of a rating of item I; by user u;,
we calculate the dot product of the two vectors corresponding to #; and I;:

K
P = P qj =ZPika;- (3)
=1

However, to obtain the predictions for users of the missing items, we
need to estimate matrices P and Q, with the no missing entries of the
rating matrix. There are several methods for estimating matrices P
and Q. One method consists of minimizing the squared error func-
tion with the observed entries of R:

&= (-0 pway) + 5 (1P +IQI), @

where A is the regularization parameter that controls overfitting.
To minimize the squared error function, we have to know in which di-
rection we have to modify the values of py and g;;. In other words, we
need to know the gradient at the current values, and therefore we differ-
entiated the above equation with respect to these two variables separately:

9 R
i e = = 2(ry = 75) i + Apix = — (Zeij%' - /\Pik)

0 2 ~
ijeij = —2(ry — ) pix +Aqj = — (zeijpik - )\ij)A

Since we have the gradient, next we provide the updating rules for both
pik and q:
— 9 — A
pik = pik + @ o €j; = pik + (2&7%‘ - Pik)7 (5)

1,
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M Table 2 Item-to-item similarity matrix constructed with
information in Table 1

11 Wi = 1 Wi2 = 0.76 W13 = 0.78
12 Wo1 = 0.76 Woo = 1 Wp3 = 0.86
13 W31 = 0.78 W32 = 0.86 W33 = 1

Value wj; represents the similarity between item j and item j, obtained using
cosine similarity.

0
qkj = qij + @63 =qij + a<zeijpik - )\ij)’ (6)
j

where e;; = r;; — pirqy; and « is the learning rate; we usually choose a
small value, for example, 0.0002. The learning rate affects the learning
time, and too large a value may lead to divergence. In general, a
smaller learning rate gives better performance, but the learning time
is also longer. Using the updated rules, we can iteratively perform the
operation until the error converges to its minimum. Before imple-
menting this gradient descendent algorithm, we need to select a learn-
ing rate a, a regularization coefficient A, and the required number of
latent features K. Also, we need to set the starting values of matrices P
and Q. The R code for implementing this algorithm is provided in
Appendix A2.

Multiple-environment (ME) mixed model
For each trait, the following univariate linear mixed model is proposed:

yij:Ei+gj+gEij+eij, 7)

where y;; represents the normal response from the jth line in the ith
environment (i =1,2,...,I, j=1,2,...,]). For illustration pur-
poses, we will use I = 3. E; represents the fixed effect of the ith
environment and it is assumed as a fixed effect, g represents the
random effect of the genomic effect of the jth line, with
g=1(g, - ,g)" ~ N(0, Gy), and Gy is of order J X J and represents
the genomic relationship matrix. It was calculated using the
VanRaden (2008) method as G, = WW' /p, with W as the matrix
of markers of order J X p. gEj; is the random interaction term between
the genomic effect of the jth line and the ith environment, where
gE = (¢E11,...,gEy)" ~ N(0, ;®G) and ej is a random error
term associated with the jth line in the ith environment distributed
as N(0, o?). As previously mentioned, this model was used for each
ofthel =1,..., L traits, where L denotes the number of traits under
study.

Multiple-trait and multiple-environment unstructured
mixed model

Toaccount for the correlation between traits, we stacked the information
of all the L traits given in Equation (7). In matrix notation, the whole
mixed model is equal to

Y=XB+Zb, +Z,b, + e, (8)

where Y is of order Ln X 1, X is of order Ln X IL, 3 is of order IL X 1
and contains the B coefficients of the environment-trait combi-
nations, Z; is of order LnXL], b, is of order L] X1, Z, is of
order LnXIJL, b, is of order IJLx 1, and e is of order Ln X 1.
Then b; ~ N(0, Gy), b, ~N(0, G,), and e~ N(0, R), where
G = Gg®X,, ¥, is the genetic covariance matrix between traits
and is assumed unstructured, and ® denotes a Kronecker product,
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B Table 3 Phenotypic information for building the rating matrix for multiple-trait and multiple-environment data for J genotypes, I

environments, and L traits

G1 yin YL Y211
G2 Y121 e YL Y221
GJ Y1 .. Y1 yan

Y21 yn yno
Y22 cee Yi1 cee YiaL
YaiL e Yin e YL

G denotes genotypes, E denotes environment, T represents trait, and yj; is the phenotype from the jth line in the ith environment for the Ith trait.

G, = Xp ® Gy, where X is assumed as a general matrix of order I X I. It
is important to point out that the trait X environment (T X E) interaction
term is included in the fixed effect B, while the trait X genotype (T X G)
interaction term is included in the random effect b, and the three-way
(T X G X E) interaction term is included in b,. The errors are assumed to
be correlated with the covariance defined as R = I,, ® R, where R, is the
residual general covariance matrix between traits.

Proposed methods
In this section, we present the proposed methods for analyzing MTME
data with continuous phenotypes.

Method IBCF: In this method, the prediction analysis is performed with
IBCF using Equation (1) directly. However, the training of the multiple-
trait and multiple-envirionmnet (MTME) data first need to be scaled for
each trait-environment combination given in Table 3. When the geno-
types under study are the same in all environments, we create a rectan-
gular rating matrix where the number of rows is equal to the number of
genotypes and the number of columns is equal to the resulting combi-
nations of environments and traits; that is, if the number of traits is 4 and
the number of environments is 5, then the resulting number of columns
in this rating matrix should be 20 (Table 3). However, when the data are
only multiple trait (MT) or ME, the rows should be genotypes, while the
number of columns should be the phenotypes measured in each envi-
ronment or trait. Table 3 gives an example of how the phenotypic in-
formation resulting from a MTME data set should be arranged to
implement IBCF.

Method MF: This method implements the matrix factorization method
described in Equations (2)-(6). To be correctly implemented, the data
need to be placed as shown in Table 3; implementation was performed
using the R code given in Appendix A2.

Method ME mixed model: Method ME consists of using Equation (7)
for each trait; it is thus a typical genomic-based model with the main
effects of environments, genotypes, and the genotype X environment
interaction term.

Method MTME mixed model: Method MTME consists of using the
following multitrait and multienvironment model:

Yin = Ei+ g + Ti + gEij + TEy + gTy + gETy + e, (9)

where yj; represents the normal response of the jth line in the ith
environment for trait/ (i = 1,2,...,Lj=1,2,...,], I=1,...,L).
T; represents the fixed effect of the Ith trait, TE; is the fixed in-
teraction term between the Ith trait and the ith environment, &7l
represents the random effect of the interaction of genotype j and
the Ith trait, with gT = (¢T11,...,gTn)" ~ N(0,G ®I;), gETy is
the three-way interaction of genotype j, the ith environment and the
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Ith trait, with gET = (gET1, . ..,gETy)" ~ N(0,;® G ®I;),and
ejjl is a random error term associated with the jth line, the ith envi-
ronment and the Ith trait is distributed as N(0, o?).

Simulated data sets

For testing the proposed models and methods, we simulated MTME data
using Equation (8) with three environments, three traits, and 1000 genotypes,
along with one replication for environment-trait-genotype combinations.
We assumed that BT = [15,8,7,12,6,7,14,9,8], where the first three beta
coefficients belong to traits 1, 2, and 3 in environment 1, the next three
values to the three traits in environment 2, and the last three to environment
3. Also, this first set of variance-covariance matrices were assumed to be

0.900 0.721 0.765 0.500 0.4846 0.5205
%, =10721 0800 0.721|, Xp= |0.4846 0.6500 0.5935 |,
0.765 0.721 0.900 0.5205 0.5934 0.7500
0.450 0.3695 0.3275
and R, = | 0.3695 0.4200 0.3164 | . These three variance-covariance

0.3276  0.3164 0.330
matrices gave rise to a correlation of 0.85 between each pair of traits (genetic
and residual) and between each pair of environments. We also assumed that
the genomic relationship matrix is known, Gg = 0.7I10090+ 0.3J 1000, Where
oo is an identity matrix of order 1000 and J;4q is @ matrix of order
1000 % 1000 of ones. Therefore, the total number of observations was
3x1000%3x 1 = 9000, that is, 3000 for each trait. With these parame-
ters, we simulated three data sets which were used for testing the prediction
accuracy of the proposed models under each of the three studied scenarios.
These scenarios included (S1), which generated the data as normal data using
Equation (8); (S2), where the data were also generated with Equation (8) but
with the error term replaced by exp[— 1.25 X abs(e)], where e is exactly the
same as what was generated under the first scenario, however, it now pro-
duced negative skewed data; and (S3), the last scenario, which also generated
the data with Equation (8) but with the error term replaced by exp(1.25 x

abs(e)) to induce positive skewed data.
Additionally, under the same conditions as mentioned above, we
studied two other sets of variance-covariance matrices: set 2, with

0.900 0.424 0.45 0.500 0.285 0.3061
X, = 10424 0.800 0.424 |, Xg= {0.285 0.6500 0.349 |,
0.45 0.424 0.900 0.306 0.349 0.7500
0.450 0.217 0.193
and R, = |0.217 0.4200 0.186|; and set 3, with
0.193 0.186  0.330
0.900 0.212 0.225 0.500 0.1425 0.1531
Y= 10212 0.800 0.212 |, Xp = | 0.1425 0.6500 0.1745 |,
0.225 0.212 0.900 0.1531 0.1745 0.7500
0.450 0.1086 0.0963
and R, = | 0.1086 0.4200 0.0931 |. The first set of variance-
0.0963 0.0931 0.330

covariance matrices produced a pair of correlations between traits
and between environments of 0.85. The second set produced a pair
of correlations between traits and between environments of 0.5, while
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the third set of variance-covariance matrices produced a pair of correla-
tions between traits and between environments of 0.25. These three sets
of variance-covariance matrices were proposed for studying the perfor-
mance of the methods proposed in the context of high correlation (first
set of variance-covariances), medium correlation (second set of variance-
covariances), and low correlation (third set of variance-covariances) be-
tween traits (genetic and residual) and between environments.

Experimental data sets

Here we present information on the data sets used for implementing the
proposed methods. In total, three data sets were used (one of maize and
two of wheat).

Data set 1: A total of 250 wheat lines were extracted from a large set of
39 yield trials grown during the 2013-2014 crop season in Ciudad Obre-
gon, Sonora, Mexico (Rutkoski et al. 2016). The trials were sown in mid-
November and grown on beds with five and two irrigations, in addition
to drip irrigation. Days to heading (HD) was recorded as the number of
days from germination until 50% of spikes had emerged in each plot in
the first replicate of each trial. Grain yield (GY) was the total plot grain
yield measured after maturity, and plant height (PH) was recorded in
centimeters.

Image data of the yield trials were collected using a hyperspectral
camera (A-series, Mirco-Hyperspec VNIR; Headwall Photonics, Fitch-
burg, MA) mounted on a manned aircraft, which allowed us to calculate
vegetative indices for each plot. The green normalized difference
vegetation index (GNDVI) was one of the traits used in this study,
since it is considered a good predictor when used with pedigree and/or
genomic prediction of GY in wheat due to its high heritability and genetic
correlation. Trait GNDVI can also be measured remotely on large
numbers of candidates for selection.

Genotyping-by-sequencing (GBS) was used for genome-wide gen-
otyping. Single nucleotide polymorphisms (SNPs) were called across all
lines using the TASSEL GBS pipeline anchored to the genome assembly
of Chinese Spring. SNP calls were extracted, and markers were filtered so
that the percent of missing data did not exceed 80%. Individuals
with >80% missing marker data were removed, and markers were
recorded as —1, 0, and 1, indicating homozygous for the minor allele,
heterozygous, and homozygous for the major allele, respectively. Next,
markers with <0.01 minor allele frequency were removed, and missing
data were imputed with the marker mean. A total of 12,083 markers
remained after marker editing.

Data set 2: A total of 309 doubled haploid maize lines were phenotyped
and genotyped; they are part of the data set used by Crossa et al. (2013)
and Montesinos-Lopez et al. (2016), which is comprised of a total of
504 doubled haploid lines derived by crossing and backcrossing eight
inbred lines to form several full-sib families. Traits available in this data
set include grain yield (GY), anthesis-silking interval (ASI), and plant
height (PH); each of these traits was evaluated in three optimum rain-
fed environments (Envl, Env2, and Env3). The experimental field de-
sign in each of the three environments was an o-lattice incomplete
block design with two replicates. Data were preadjusted using block
estimates, while environmental effects were derived from a linear model
that accounted for the incomplete block design within environment
and for environmental effects.

The genomic data were obtained with GBS for each maize chromosome.
The number of markers after initial filtering and the number of markers
after imputation were summarized in Crossa et al. (2013). Filtering was first
done by removing markers that had >80% of the maize lines with missing
values; then markers with a minor allele frequency =0.05 were deleted. The
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total number of GBS data were 681,257 SNPs and, after filtering for missing
values and minor allele frequency, 158,281 SNPs were used for the analyses.
About 20% of cells were missing in the filtered GBS information used for
prediction; these missing values were replaced by their expected values
before doing the prediction.

Data set 3: This third data set was composed of 26,264 wheat lines that
were planted over 3 yr (year_13_14;year_14_15,andyear_15_16).Inthe
first year (year_13_14), 7672 lines were planted, in the second year
(year_14_15) 9091 lines were planted, and in the third year (year_15_16)
the remaining 9501 lines were planted. The following five traits were
measured on each line: days to heading (HD), days to maturity (DMT),
plant height (PH), lodging, and grain yield (GY).

Assessing prediction accuracy

To assess prediction accuracy, 20 training-testing random partitions
were implemented, as well as two types of cross-validations. The first
one (CV1) mimicked a situation where lines were evaluated in some
environments for the traits of interest; however, some lines were miss-
ing in all the other environments. In this cross-validation, we assigned
80% of the lines to the training set and the remaining 20% to the testing
set. The second cross-validation (CV2) mimicked a situation where we
wanted to predict all the information of one trait for a complete year;
however, the available information was for a previous year for all the
traits under study and, for the target year, we had information for
several traits except the one of interest. We used the Pearson correlation
to compare the predictive phenotipic values to the observed phenotype.
Models with higher correlation values had better predictions.

In the above-mentioned case, cross-validation CV1 was imple-
mented for the simulated data sets and the first two real data sets (Data
set 1 and Data set 2), while cross-validation CV2 was implemented for
the real Data set 3. It is important to point out that in Data set 3, there
were no common lines across years. Also, to illustrate how to predict one
trait for the whole year, we assumed that one trait was missing. For
example, we assumed that trait GY was missing in the year_14_15
(9091 lines missing for GY) and the information on the training set was
the information from year_13_14 and year_14_15, but with GY missing
inyear_14_15. To predict GY for year_15_16, we used the information
from year_13_14, year_14_15 and year_15_16 as the training set, but
with GY missing in year_15_16 (9501 records missing for GY in
year_15_16). The same was done when another trait was assumed to
be missing.

Data availability

The maize and wheat phenotypic and genotypic data sets used in this
study can be downloaded from the link: http://hdl.handle.net/11529/
11099. The maize phenotypic and genotypic data sets are Maize_data.
RData and GgRData, respectively. The wheat phenotypic and geno-
typic data sets are Data.Trigo.RData and G.Trigo.RData, respectively.
The wheat large data set is Large_wheat_data.RData.

RESULTS

The results are organized into two main sections. The first section
presents the results in terms of prediction accuracy for the simulated
data, while the second section gives the prediction accuracy of the four
proposed methods but for the real data sets.

Prediction accuracies using simulated data

What follows are the prediction accuracies for each of the three studied
scenarios obtained using the four proposed methods. Figure 1 shows the
results of using a correlation between traits (genetic and residual) and

Prediction by Collaborative Filtering | 135


http://hdl.handle.net/11529/11099
http://hdl.handle.net/11529/11099

IBCF MF
0.8 -
0.6 4
0.4 -
] Scenario
" -+ 31
< ME MTME 4.82
‘_“‘,‘LA ...... oheree A -+ 83
0.8
05 M
0.4 -
/"\ "l‘\ ’.
0.2 e e ‘l

T T T T T T T T T T
E1_T1 E2_T1 E3_T1 E1_T2 E2_T2 E3_T2 E1_T3 E2_T3 E3_T3

Env_Trait

T T T T T T T T

E1_T1 E2_T1 E3_T1 E1_T2 E2_T2 E3_T2 E1_T3 E2_T3 E3_T3

Figure 1 Simulated data. Average Pearson correlation (APC) for each environment-trait combination using the four methods under study [IBCF,
matrix factorization (MF), ME, and MTME] for data simulated with a correlation of traits (genetic and residual) and correlation of environments of
0.85. S1 is the scenario under normality, S2 is the scenario under the error negative skew multiplied by 1.25, and S3 represents the scenario under
the error positive skew multiplied by 1.25. The notation E1_T1 means environment 1, trait 1.

between environments of 0.85 (high correlation), while Figure 2 depicts
the results when the correlation assumed between traits (genetic and
residual) and between environments was 0.5 (intermediate correlation).
Finally, Figure 3 displays the results when the correlation assumed
between traits (genetic and residual) and between environments was
0.25 (low correlation).

Figure 1 shows that under the first scenario (when the data were
normal), method IBCF was the best in terms of prediction accuracy for
all the trait-environment combinations. The second-best method was
matrix factorization and the worst was method MTME. It is important
to point out that, on average, method IBCF was 10.8% better than
matrix factorization, 13.8% better than method ME, and 31.3% better
than MTME. Under scenario S2 (considering the residual negative
skew multiplied by 1.25), we observed that method MTME was the
best, followed by method ME, then by IBCF, and finally matrix factor-
ization, which was the worst. However, the gains in terms of average
predictions of method MTME with regard to methods IBCF, matrix
factorization, and ME were only 12.5, 15.8, and 6.2%, respectively
(Figure 1). Under scenario S3 (with the residual positive skew multi-
plied by 1.25), method IBCF was the best, followed by matrix factor-
ization; MTME was the worst and, on average, IBCF was better than
methods matrix factorization, ME, and MTME by 3.3, 39.3, and 67.1%,
respectively (Figure 1). Appendix A7 gives the SE of the average Pear-
son correlations for each scenario and environment-trait combination
of the predictions given in Figure 1, Figure 2, and Figure 3.

Figure 2 shows that in the first scenario (when the data were nor-
mal), method IBCF (collaborative filtering) was the best in terms of
prediction accuracy, as shown in seven out of nine trait-environment
combinations, as opposed to matrix factorization, which was the worst.
Also, it must be noted that, on average, method IBCF was 14.5% better
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than matrix factorization, 11.3% better than ME, and 7.7% better than
MTME. Under scenario S2 (with the residual negative skew multiplied
by 1.25), method MTME was the best, while matrix factorization was
the worst; MTME was, on average, 43.8% better than IBCF, ~45.7%
better than matrix factorization, and 29.9% better than ME (Figure 2).
Under scenario S3 (with the residual positive skew multiplied by 1.25),
method IBCF was the best, MTME was the worst and, on average, IBCF
was better than methods matrix factorization, ME, and MTME by 3.62,
51.3, and 53.3%, respectively (Figure 2).

Figure 3 shows that under the first scenario (when the data were
normal), method MTME was the best in terms of prediction accuracy,
as shown by the results of all the environment-trait combinations; the
second best was ME, and the worst was matrix factorization. On aver-
age, MTME was 34% better than IBCF, 44.9% better than matrix fac-
torization, and 29.1% better than ME. Under scenario S2 (with the
residual negative skew multiplied by 1.25), method MTME was the
best, matrix factorization was the worst, and MTME was, on average,
better than IBCF, matrix factorization, and ME by 70.9, 71.4, and
47.7%, respectively (Figure 3). Under scenario S3 (with the residual
positive skew multiplied by 1.25), method IBCF was the best, followed
by matrix factorization; ME was the worst and, on average, IBCF was
better than methods matrix factorization, ME, and MTME by 3.0, 53.4,
and 27.1%, respectively (Figure 3). In general, method IBCF was poorer
when the correlation between traits (genetic and residual) and between
environments was low; however, in Figure 3 under scenario (S3), we
can see than sometimes it was better.

Prediction accuracy using real data sets

In this section, we present the results of predictions under the four
proposed methods for the three real data sets. We begin by presenting the
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Figure 2 Simulated data. Average Pearson correlation (APC) for each environment-trait combination using the four methods being studied [IBCF,
matrix factorization (MF), ME, and MTME] for data simulated with a correlation of traits (genetic and residual) and correlation of environments of
0.5. S1 is the scenario under normality, S2 is the scenario under the error negative skew multiplied by 1.25, and S3 represents the scenario under
the error positive skew multiplied by 1.25. The notation E1_T1 means environment 1, trait 1.

results obtained using the first data set (wheat data set), followed by the
results for the second data set (maize data set), and finally, the results for
the third real data set (large wheat data set).

In Table 4 we present the prediction accuracies using the wheat data
set under method MF with 10 different values of the regularization
parameter lambda (A). The table shows that the worst predictions were
made without the regularization parameter, that is, when A = 0. Then
it shows that when A = 0.4, the prediction accuracy increased with
regard to A = 0 by 15.5%, continuing to increase the value of A until
1.6, the increase in the average prediction accuracy is up to 0.594
(21.88%). However, after a value of A = 2.2, the prediction accuracy
starts to decrease. This implies that to get the best performance of
method matrix factorization, various values of the parameter A need
to be tested before doing the final implementation of this model.

In Table 5, we compare the predictions of the four proposed meth-
ods using the first data set (wheat data set). Table 5 indicates that IBCF
without markers was the best method in terms of prediction accuracy,
as shown by six out of the 12 environment-trait combinations; the
second best was method matrix factorization, and the worst was
method ME with and without markers. Method IBCF without markers
was, on average, better than methods IBCF with markers, matrix fac-
torization and ME without markers, ME with markers, MTME without
markers, and MTME with markers by 44.6, 1.7, 99.2, 99.5, 29.9, and
36.3%, respectively. These findings of the good performance of method
IBCF are related to the phenotypic correlations between traits, which
are not low, as can be seen in Appendix A4. Here it is important to point
out that to take into account the marker information, the genomic
relationship matrix created with the marker information was used as
a proxy for the phenotypic correlation between genotypes (users). Then
we applied the UBCF instead of the IBCF. However, according to these
results, there is evidence that using the genomic relationship matrix
alone as a proxy for the phenotypic correlation between genotypes is
not very reasonable.
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Table 6 indicates that for the second data set (maize data set), the
best prediction accuracies were observed under ME with markers (uni-
variate model), followed by model MTME with markers (multivariate
model), and the worst were observed under model matrix factorization
without makers. In general, the predictions of ME were slightly better
than those of MTME with and without markers; the second best were
obtained using method IBCF with markers, while the worst were
obtained using matrix factorization without markers. Methods ME
and MTME were considerably better than the remaining methods.
ME and MTME with markers were ~30.9% better than method IBCF
without markers, 27.8% better than IBCF with markers, 35.4% better
than matrix factorization without markers, 37.5% better than ME with-
out markers, and 37.7% better than MTME without markers. Here it is
important to point out that when methods IBCF, ME, and MTME took
into account the genomic relationship matrix, the predictions im-
proved. However, the improvement of IBCF by taking into account
the markers with regard to IBCF without markers was only 4.4%. In general,
the predictions with this real data set were low, which is mainly explained
by the low phenotypic correlations between the nine environment-trait
combinations, as can be seen in Appendix A5.

Table 7 shows the results for the third real data set (the large wheat
data set), where only methods IBCF and matrix factorization were
implemented. Method matrix factorization was implemented with
three values of latent features (K = 2,3,4). It is important to recall
that in this data set there are five columns (items) in the rating matrix
(GY, HD, DMT, PH, and lodging) and 36,181 rows (observations), with
each row corresponding to a different wheat line. The lines were eval-
uated in 4 yr: 7672 were evaluated in year_13_14, 9091 were evaluated
in year_14_15, 9501 were evaluated in year_15_16, and 9917 were
evaluated in year_16_17. In this cross-validation scheme (CV2), we
assumed trait GY was missing in the following year and predicted using
as training data 1, 2, or 3 yr before. For example, when GY was pre-
dicted in year_14_15, only the information of year_13_14 and
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Figure 3 Simulated data. Average Pearson correlation (APC) for each environment-trait combination using the four methods under study [IBCF,
matrix factorization (MF), ME, and MTME] for data simulated with a correlation of traits (genetic and residual) and correlation of environments of
0.25. S1 is the scenario under normality, S2 denotes the scenario under the error negative skew multiplied by 1.25, and S3 is the scenario under
the error positive skew multiplied by 1.25. The notation E1_T1 means environment 1, trait 1.

year_14_15 was used as training data, with 9091 lines missing trait
GY in year_14_15 to be predicted. When 9501 lines (missing trait
GY) were predicted for year_15_16, two scenarios were studied: (1)
when only one previous year was used as training and denoted as
GY_Year_15_16_1yb; and (2) when two previous years were used as
training and denoted as GY_Year_15_16_2yb. Finally, when 9917 lines
(missing trait GY) were predicted for year_16_17, three scenarios were
studied: (1) when only one previous year was used as training, denoted
as GY_Year_16_17_1yb; (2) when two previous years were used as
training, denoted as GY_Year_16_17_2yb; and (3) when three previous
years, denoted as GY_Year_16_17_3yb, were used as training sets.
When the other traits were predicted, the same scenarios were studied,
and the corresponding trait to be predicted was assumed to be missing.

The results in Table 7 indicate that when we predicted GY with
IBCEF in all six scenarios, the average prediction in terms of the Pearson
correlation was ~0.305, with an average agreement of 30.93% among
the first 2000 lines predicted and observed. Under matrix factorization,
GY predictions were lower, with Pearson correlations between 0.16
(with K = 2 latent features) and 0.175 (with K = 3); however, it is
interesting to point out that under the three latent features used, the
average agreement among the first 2000 lines predicted and observed
was also 30.93%. When the HD trait was predicted under all six sce-
narios, good performance was observed, as the average prediction for
the Pearson correlation was 0.601 under IBCF, 0.454 under matrix
factorization with K = 2, 0.59 under matrix factorization with K = 3,
and 0.60 under matrix factorization with K = 4, with average agreement
of 48.33% in the first 2000 lines predicted and observed using the two
methods. Similar behavior was observed when predicting the DMT
trait, as the average prediction accuracy was 0.569 (Pearson correlation)
under IBCF, 0.454 under matrix factorization with K = 2, 0.60 with K =
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3, and 0.61 under matrix factorization with K = 4. In this trait, an average
agreement of 41.6% in the first 2000 lines was predicted and observed for
the two methods. On the other hand, when we predicted the traits PH and
lodging, the average predictions were really poor: lower than 0.1145 for PH
using the two methods and lower than 0.11 for lodging using the two
methods. Additionally, the average agreements in the first 2000 lines pre-
dicted and observed were 24.642 and 20.77% for traits PH and lodging,
respectively. The results in Table 6 show that methods IBCF and matrix
factorization did a good job of predicting HD and DMT, and a reasonable
job of predicting GY. However, they did a poor job of predicting PH and
lodging. These contrasting results are due to the level of phenotypic cor-
relation (see Appendix A6) since the traits that had high correlation with at
least one other trait showed higher prediction accuracy and vice versa; that
is, traits with low correlation with other traits were found to have low
prediction accuracies. Also in Table 7 it is clear that for this data set, model
IBCF was better than model matrix factorization.

DISCUSSION

In this article, we propose using two methods for recommender systems:
IBCF and matrix factorization for predicting multiple traits of some
genotypes that are missing in some environments. Our results using
simulated and real data sets are interesting, since we found that when the
phenotypic correlation between traits and environments is reasonably
high, we can make predictions with reasonable accuracy (as shown in the
simulation study presented) with both methods IBCF and matrix
factorization, but method IBCF was the best. This is a very good sign,
since the implementation of method IBCF is straightforward, as it is only
necessary to place the information in a rectangular rating matrix where the
rows are the genotypes and the columns represent the trait-environment
combinations. Then, we need to scale each column by subtracting its
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M Table 4 Wheat data set 1

Bed2IR_HD 0.773 0.022 0.817 0.012 0.835 0.009 0.858 0.010 0.858 0.010
Bed2IR_GNDVI 0.627 0.014 0.659 0.013 0.660 0.011 0.662 0.011 0.661 0.011
Bed2IR_GY 0.496 0.027 0.523 0.016 0.513 0.014 0.502 0.014 0.499 0.014
Bed2IR_PH 0.479 0.033 0.530 0.019 0.616 0.012 0.626 0.010 0.621 0.010
Bed5IR_HD 0.765 0.029 0.811 0.012 0.854 0.007 0.873 0.007 0.876 0.007
Bed5IR_GNDVI 0.453 0.042 0.529 0.016 0.548 0.015 0.560 0.013 0.563 0.013
BedSIR_GY -0.018 0.027 0.078 0.027 0.077 0.030 0.078 0.030 0.077 0.031
Bed5IR_PH 0.058 0.053 0.264 0.031 0.367 0.020 0.382 0.022 0.383 0.023
Drip_HD 0.872 0.011 0.872 0.009 0.900 0.005 0.906 0.004 0.908 0.004
Drip_GNDVI 0.546 0.025 0.537 0.021 0.554 0.018 0.560 0.018 0.562 0.018
Drip_GY 0.209 0.076 0.466 0.024 0.472 0.020 0.462 0.020 0.461 0.020
Drip_PH 0.301 0.036 0.492 0.025 0.589 0.022 0.636 0.018 0.652 0.017
Average 0.464 0.033 0.548 0.019 0.582 0.015 0.592 0.015 0.593 0.015
A=16 A=138 A=22 A=26 A=3
Bed2IR_HD 0.864 0.011 0.864 0.011 0.859 0.012 0.856 0.012 0.856 0.011
Bed2IR_GNDVI 0.660 0.012 0.657 0.012 0.646 0.012 0.642 0.013 0.641 0.013
Bed2IR_GY 0.495 0.014 0.491 0.015 0.480 0.015 0.465 0.016 0.459 0.016
Bed2IR_PH 0.617 0.011 0.612 0.011 0.604 0.012 0.601 0.013 0.597 0.014
Bed5IR_HD 0.877 0.007 0.877 0.007 0.874 0.007 0.871 0.007 0.869 0.007
Bed5IR_GNDVI 0.565 0.012 0.567 0.012 0.571 0.012 0.572 0.012 0.574 0.012
BedSIR_GY 0.077 0.031 0.076 0.031 0.075 0.031 0.076 0.030 0.078 0.030
Bed5IR_PH 0.383 0.023 0.384 0.023 0.385 0.023 0.382 0.022 0.381 0.022
Drip_HD 0.909 0.004 0.909 0.003 0.908 0.003 0.906 0.003 0.906 0.003
Drip_GNDVI 0.563 0.017 0.564 0.017 0.563 0.017 0.563 0.017 0.565 0.017
Drip_GY 0.462 0.020 0.462 0.020 0.463 0.021 0.460 0.021 0.453 0.022
Drip_PH 0.660 0.016 0.664 0.016 0.667 0.016 0.670 0.015 0.670 0.015
Average 0.594 0.015 0.594 0.015 0.591 0.015 0.589 0.015 0.587 0.015

Prediction accuracies with Pearson correlation for each environment-trait (Env-Trait) combination of the matrix factorization model (MF) with different values of
lambda (A) under cross-validation scheme CV1. The best predictions of the four methods are in boldface, and the comparisons are made by row. Wheat data set
obtained from Rutkoski et al. (2016).

mean and dividing by its SD. Obviously, this scaling process should be
done only on the training data. Then, using the R code provided in
Appendix Al, we can apply the IBCF technique. See the example in
Appendix A3 to understand how to implement this algorithm.

We also provided the R code (Appendix A2) for implementing the
matrix factorization method. However, the implementation of matrix

factorization, even though it produced competitive predictions, was
lower than that produced by method IBCF (using the R code given in
Appendix Al). For its successful application, the following should to be
taken into account: (1) first obtain the tuning parameter A using cross-
validation, (2) choose the number of latent features (parameter K) also
using cross-validation; and (3) obtain appropriate starting values to get

M Table 5 Wheat data set 1

Bed2IR_HD 0.875 0.011 0374 0.023 0.864 0.011 -0.005 0.030 -0.022 0.030 0.829 0.008 0.880 0.006
Bed2IR_GNDVI 0.664 0.012 0.411 0.020 0.660 0.012 -0.012 0.023 -0.012 0.023 0.154 0.027 0.040 0.022
Bed2IR_GY 0.557 0.012 0.353 0.018 0.495 0.014 -0.014 0.024 0.043 0.022 0.181 0.024 0.098 0.025
Bed2IR_PH 0.647 0.011 0325 0.023 0.617 0.011 -0.022 0.016 0.026 0.015 0.235 0.014 0.031 0.015
Bed5IR_HD 0.873 0.007 0390 0.015 0.877 0.007 -0.006 0.028 0.024 0.028 0.866 0.01 0.893 0.008
BedSIR_GNDVI 0.586 0.011 0.249 0.022 0.565 0.012 -0.008 0.019 0.005 0.019 0.001 0.033 -—0.003 0.033
Bed5IR_GY 0.091 0.032 0.035 0.021 0.077 0.031 0.019 0.024 0.024 0.024 0.403 0.022 0.393 0.027
BedSIR_PH 0410 0.022 0345 0.018 0.383 0.023 0.063 0.021 -0.013 0.025 0.603 0.012 0.505 0.015
Drip_HD 0.920 0.003 0.464 0.023 0.909 0.004 0.018 0.023 0.006 0.023 0.917 0.004 0.922 0.003
Drip_GNDVI 0.568 0.016 0.371 0.031 0.563 0.017 0.047 0.034 -0.005 0.036 -0.12 0.027 -0.043 0.026
Drip_GY 0.401 0.024 0362 0.018 0.462 0.020 -0.025 0.027 -0.015 0.027 0.432 0.019 0.364 0.017
Drip_PH 0.657 0.016 0.335 0.022 0.660 0.016 0.003 0.017 -0.021 0.017 0.579 0.022 0.538 0.022
Average 0.604 0.015 0.335 0.021 0.594 0.015 0.005 0.024 0.003 0.024 0.424 0.018 0.385 0.018

Prediction accuracies with Pearson correlation for each environment-trait (Env-Trait) combination of the proposed methods for the wheat data set from Rutkoski et al.
(2016), under cross-validation scheme CV1. The best predictions of the four methods are in boldface, and the comparisons are made by row. “No markers” means
that genomic information was not used, while “with markers” means that genomic information was used. MF, matrix factorization.
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M Table 6 Maize data set 2

EBU_GY 0.232 0.0177 0214 0.023 0.209 0.013 0.236 0.019 0345 0018 0.233 0.020 0.353 0.019
EBU_ASI 0375 0.020 0434 0.012 0379 0.019 0310 0.018 0.510 0.015 0326 0.019 0495 0.014
EBU_PH 0.214 0.022 0.421 0.018 0.188 0.021 0.123 0.020 0.515 0.014 0.117 0.022 0.485 0.016
KAK_GY 0.281 0.023 0.285 0.022 0.269 0.026 0269 0017 0401 0.021 0263 0019 0399 0.023
KAK_ASI 0332 0.016 0272 0.018 0336 0.018 0.298 0.020 0.418 0.018 0.316 0.019 0412 0.017
KAK_PH 0.317 0.023 0272 0.023 0.234 0.024 0260 0.019 0409 0.020 0278 0.019 0.452 0.022

KTI_GY 0.206 0.016 0.197 0.018 0.190 0.018 0.236 0.015 0.299 0.018 0.234 0.018 0.306 0.020
KTI_ASI 0.269 0.020 0.083 0.024 0.286 0.019 0303 0.017 0.273 0.022 0.264 0.015 0.239 0.021
KTI_PH 0.282 0.019 0445 0.014 0.253 0.022 0.235 0.019 0475 0016 0.233 0.020 0.491 0.015

Average 0.279 0.019 0292 0.019 0.261 0.020 0.252 0.018 0405 0.018 0.252 0.019 0404 0.019

Prediction accuracies with Pearson correlation for each environment-trait (Env-Trait) combination of the proposed methods for the maize data set under cross-
validation scheme CV1. The best predictions of the seven methods are in boldface, and the comparisons are made by row. “No markers” means that genomic
information was not used, while “with markers” means that genomic information was used. MF, matrix factorization.

convergence. Since the IBCF is extremely fast, we suggest using these From our results with simulated and real data sets, we found that the
values as starting values for implementing the matrix factorization = IBCF technique (method IBCF) is very competitive even compared to
method. See the example in Appendix A3 to learn how to implement ~ the MTME model for positive skew data. Under most scenarios where
the matrix factorization algorithm. there was moderately high phenotypic correlation, the IBCF technique

B Table 7 Large wheat data set 3

GY_Year_14_15 0.333 33.30 0.311 33.30 0.374 333 0.353 333
GY_Year_15_16_1yb 0.335 33.80 0.254 33.80 0.241 33.8 0.240 33.8
GY_Year_15_16_2yb 0.305 33.75 0.234 33.75 0.198 33.75 0.197 33.75
GY_Year_16_17_1yb 0.285 28.30 -0.178 28.30 -0.178 28.30 -0.179 28.30
GY_Year_16_17_2yb 0.286 28.15 0.193 28.15 0.222 28.15 0.230 28.15
GY_Year_16_17_3yb 0.287 28.25 0.148 28.25 0.193 28.25 0.196 28.25
Average 0.305 30.93 0.160 30.93 0.175 30.93 0.17 30.93
HD_Year_14_15 0.627 53.65 0.483 53.65 0.556 53.65 0.565 53.65
HD_Year_15_16_1yb 0.508 48.35 0.320 48.35 0.616 48.35 0.607 48.35
HD_Year_15_16_2yb 0.537 49.45 0.440 49.45 0.567 49.45 0.563 49.45
HD_Year_16_17_1yb 0.650 47.55 0.335 47.55 0.564 47.55 0.571 47.55
HD_Year_16_17_2yb 0.646 47.70 0.554 47.70 0.602 47.7 0.611 47.7
HD_Year_16_17_3yb 0.637 47.20 0.589 47.20 0.655 47.2 0.656 47.2
Average 0.601 48.98 0.454 48.98 0.59 48.98 0.60 48.98
DMT_Year_14_15 0.647 49.50 0.427 49.50 0.546 49.50 0.566 49.50
DMT _Year_15_16_1yb 0.491 39.55 0.510 39.55 0.697 39.55 0.694 39.55
DMT_Year_15_16_2yb 0.636 48.85 0.460 48.85 0.596 48.85 0.625 48.85
DMT _Year_16_17_1yb 0.527 37.30 0.270 37.30 0.582 37.30 0.580 37.30
DMT _Year_16_17_2yb 0.566 40.35 0.494 40.35 0.611 40.35 0.611 40.35
DMT _Year_16_17_3yb 0.548 38.90 0.565 38.90 0.592 38.90 0.588 38.90
Average 0.569 42.41 0.454 42.41 0.60 42.41 0.61 42.41
PH_Year_14_15 0.015 20.30 0.088 20.00 0.044 20 -0.014 20
PH_Year_15_16_1yb 0.026 20.40 0.069 20.40 -0.010 20.40 0.057 20.4
PH_Year_15_16_2yb 0.044 21.35 0.092 21.35 0.051 21.35 0.058 21.35
PH_Year_16_17_1yb 0.217 27.60 0.226 27.60 0.225 27.6 0.187 27.6
PH_Year_16_17_2yb 0.243 29.25 0.229 29.25 0.228 29.25 0.197 29.25
PH_Year_16_17_3yb 0.238 28.95 0.166 28.95 0.241 28.95 0.223 28.95
Average 0.131 24.64 0.145 24.59 0.13 24.59 0.12 24.59
Lodging_Year_14_15 0.347 40.70 0.104 40.70 0.120 40.70 0.124 40.70
Lodging_Year_15_16_1yb -0.195 11.95 0.024 31.45 0.060 31.45 0.074 31.45
Lodging_Year_15_16_2yb —-0.274 9.65 0.099 37.25 0.115 37.25 0.140 37.25
Average —0.041 20.77 0.076 36.467 0.098 36.47 0.11 36.47

Prediction accuracies with Pearson correlation for all genotypes missing in the years: GY_Year_14_15, GY_Year_15_16, and GY_Year_16_17 for the wheat data set
under cross-validation scheme CV2. Here, only the IBCF and MF methods were implemented. Method MF was implemented with three values of latent features (K =
2,3, 4). Traits in 1 yr were predicted with data from 1 yr before (1yb), 2 yr before (2yb), and 3 yr before (3yb). PCL denotes the percentage of common lines in the top
2000 lines. MF, matrix factorization.
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outperformed (in terms of prediction accuracy and implementation
time) the MTME. The IBCF technique is very efficient in terms of the
computational time required for its implementation and can be applied
on large data sets. These techniques (IBCF and matrix factorization) can
also be applied to MT or ME analysis only, as was done on the third real
data set (large wheat data set). However, the placement of the data are
slightly different, since in the rectangular rating matrix the rows are the
genotypes but the columns are the phenotypes of traits or the phenotypes
of environments. The expected predictions depend on the degree of the
phenotypic correlation between traits or environments. We believe that
these approaches could be very useful when the number of traits or
environments, as well as the correlations between them, are large. The
results obtained for the large wheat data set are very promising mostly
under method IBCF, since they show that when the phenotypic corre-
lation between traits is moderately high, we can predict the information
of thousands of lines using cross-validation CV2 (in this case, 9091 lines
were predicted for year_14_15,9501 lines for year_15_16,and 9917 lines
for year_17_17). The IBCF technique also has the advantage that the
implementation time is fast and allows parallel computing in the event of
larger data sets.

A disadvantage of using IBCF is that it works with phenotypic
correlations between items (trait-environment combinations) or
users (genotypes), and when we use the genomic relationship ma-
trix as a proxy for the phenotypic correlation between genotypes,
this does not really represent the phenotypic correlation between
genotypes and can produce poor predictions. This was observed in
our results where only in the second real data set using the geno-
mic relationship matrix produced a little improvement in predic-
tion accuracy when the genomic relationship matrix was used.
When applied to the first real data set (wheat data set), the pre-
dictions obtained were poor. Also, it is important to point out that
due to the nature of both models (IBCF and matrix factorization),
they not allow for inclusion of the genomic relationship matrix.
For this reason, we used the genomic relationship matrix as a
proxy for the phenotypic correlation between genotypes (users)
to be able to implement the UBCF technique, but we did not find
an efficient way to incorporate this information under the matrix
factorization method. However, according to the results obtained,
we have evidence that using the genomic relationship matrix alone
as proxy for the phenotypic correlation between genotypes (users)
using the UBCF is not reasonable. For this reason, we believe that
to take into account the genomic relationship matrix in these
models (IBCF and matrix factorization), some novel modifications
need to be made to these recommender systems methods to be able
to take advantage of all the genomic information.

We must point out that the process for scaling each column is very
important in order to have all the columns (items = trait-environment
combinations) on the same scale, since methods IBCF and matrix
factorization were originally proposed for ordinal items (example 1 =
totally disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = totally agree).
For this reason, the user must remember to scale each column of the
rating matrix. We encourage the use of both IBCF and matrix factor-
ization for ordinal or binary phenotypic data, given that IBCF was
originally proposed in the context of ordinal data. However, according
to our review of these two statistical techniques (methods IBCF and
matrix factorization), they had only been implemented using the cosine
and Pearson correlation. However, we believe that predictions can be
improved using the polychoric correlation for ordinal data or the tet-
rachoric correlation for binary data. Also, since we usually use 0, 1, or
2 to denote the information of each marker in a line in its position in the
genome with SNPs, we believe that when the correlation between the
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columns of SNPs is reasonably large, this method can be used success-
fully for imputation of missing markers.

It is important to point out that both methods can be implemented
using the R code given in Appendices Al and A2. Although there are
some R packages that can be used to implement IBCF and matrix
factorization, we need to be careful when using these packages, since
some of them were developed exclusively for binary or ordinal data; thus,
when we want to use them for scaled continuous data, they do not work
because the maximization process they use is only for positive values of
the input provided. One package that has such restrictions is the package
rrecsys (Coba et al. 2017).

Finally, one of the main advantages of using IBCF is that its
implementation is very fast and can be used on large data sets without
problems. In the case of data sets with very large numbers of columns,
parallel processing is possible because its computation is not iterative.
However, if the correlation between the columns of the created rating
matrix is poor (low correlation), this technique produces poor predic-
tions; the larger the correlation between the columns of the rating matrix,
the better the sample predictions will be.

Conclusions

It is necessary to improve the accuracy of the prediction models used
in GS. For this reason, we explored two recommender systems
techniques: IBCF and matrix factorization. Both are very popular
in the context of online marketing to recommend products or items.
The IBCF technique is attributed to Amazon.com (Linden et al.
2003), which implemented it as its recommender system. It works
based on the similarity between items, calculated using people’s
ratings of those items (Sarwar et al. 2001). The IBCF uses the items
most similar to a user’s already rated items to generate a list of
predictions (recommendations). Usually the predictions are a
weighted sum or linear regression. From our results using real
and simulated data, we obtained empirical evidence showing that
both methods, IBCF and matrix factorization, work well for predict-
ing phenotypes that are missing in some traits and environments,
but the IBCF was the best. Both methods are very efficient if, and
only if, the correlation between traits and between environments is
moderately high. However, when the correlation between traits and
between environments is low, the performance of both techniques
in terms of prediction accuracy is poor. We believe that more em-
pirical evidence is required to be able to consider these techniques as
an attractive alternative for whole-genome prediction. Additionally,
we observed that the implementation of the IBCF technique is fast
and can be used for large data sets. It produced reasonable predic-
tions of thousands of lines for a trait that needs to be predicted next
year.
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APPENDIX A1

R Code for Implementing Item-Based Collaborative Filtering
rec_IBCF=function(geno_no)
{ genoRatings=ratings[geno_no,]
non_rated_items=list()
rated_items=list()
for(i in 2:ncol(genoRatings)){
if(is.na(genoRatings[,i]))
{non_rated_items=c(non_rated_items,colnames(genoRatings)|[i])}
else
{rated_items=c(rated_items,colnames(genoRatings)[i])}}
non_rated_items = unlist(non_rated_items)
rated_items = unlist(rated_items)
#create weighted similarity for all the rated items by geno
non_rated_pred_score = list()
for(j in 1l:length(non_rated_items)){
temp_sum=0
df =item_sim[which(rownames(item_sim)==non_rated_items]j]),]
for(i in 1:length(rated_items)){
temp_sum = temp_sum+ abs(dffwhich(names(df)==rated_items[i])])}
weight_mat = df*ratings[geno_no,2:(length(genoRatings))]
non_rated_pred_score = c(non_rated_pred_score,rowSums(weight_mat,na.rm=T)/temp_sum)}
pred_rat_mat = as.data.frame(non_rated_pred_score)
names(pred_rat_mat) = non_rated_items
for(k in 1:ncol(pred_rat_mat)){
ratings[geno_no,][which(names(ratings[geno_no,]) == names(pred_rat_mat)[k])]=pred_rat_mat[1,k]}
return(ratings[geno_no,])}

APPENDIX A2

R Code for Implementing the Matrix-Factorization Algorithm with Regularization
rec_Mat_fact<-function(R,P,Q,K,maxiter,alpha,Jambda,tol)
{

Q=t(Q)

for(s in 1:maxiter)

{for(i in 1:dim(R)[1]) {for(j in 1:dim(R)[2]){
if(tis.na(R[i,j]))

{e_ij = R[i,j] - crossprod(P[i,],Q[,])

for(k in 1:K)

{

P[ik] = P[L,k] + alpha * (2 * e_ij * Q[k,j] - lambda * P[i,k])
Qlk,j] = Q[k,j] + alpha * (2 * e_ij * P[i,k] - lambda * Q[k,])
i

sse=0

for(i in 1:dim(R)[1])

{for(j in 1:dim(R)[2]){

if(tis.na(R[L,])){

sse = sse + (R[i,j] - crossprod(P[1,],Q[,j]))2

for(k in 1:K)

{sse = sse + lambda/2*(P[1,k]*2+Q[k,j] A2)}}}}

if(sse<<tol)

break }

list(P=P,Q=t(Q))}

APPENDIX A3

Example for Implementing the IBCF and Matrix-Factorization Algorithms
library(mvtnorm)
library(lsa)
########Generating data from 15 lines (users) and traits (items) ##############
set.seed(2)
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A=matrix(0.85,ncol=5,nrow=>5)
diag(A)=1
R=rmvnorm(15,mean=rep(0,5),sigma=A)
########Selecting 20% as missing data#####H##HHRRIHAHHHRRIRAH R RRRRAA Y
pos.missing=sample(1:75,15,replace=F)
Ppos.missing
R_mis=R
R_mis[pos.missing] =NA
############Loading the IBCF and the Matrix factorization methods###############
source(“Colab_Filtering IBCF.r”) ###Code given in Appendix Al
source(“Colab_Filtering Mat_Fact_Final.r”) ###Code given in Appendn( A2
#unsntins###Predictions using the IBCF method########t#####H#t###HHHH#HHHH
ratings=data.frame(cbind(c(1:nrow(R _ mls)),R_mls))
colnames(ratings)=c(“geno_no”,”11”, “I2”, “I3”, “I4”, “I5”)
ratings
nrow_ratings=nrow(ratings)
ncol_ratings=ncol(ratings)
x=R_mis

x[is.na(x)] =
1tem_51m—c051ne(as.matrix((x)))
colnames(item_sim)=c(“11”, “I2”, “I3”, “I4”, “I5”)
rownames(item_sim)=c(“I1”, “I2”, “I3”, “I4”, “I5”)
item_sim
R.pred=data.matrix(ratings)
######HH####ROW positions with no missing values######### #####HHH#H#H#IH
pos.wn.Na= c(as.numenc(noquote(rownames(na.omlt(data.frame(ratlngs))))))
R.pred=data.matrix(ratings)
######HH####ROW positions with no missing values##############HHH#H#HHIH
pos.wn.Na=c(as. numerlc(noquote(rownames(na omlt(data frame(ratlngs))))))

pos.used=c(1:nrow_ratings)

#H####H#######ROW positions with missing values#################H####HH
pos.final=pos.used[-pos.wn.Na]

for (i in 1l:length(pos.final))

{

pos=pos.finalli]
R.pred[pos,c(2:ncol_ratings)]=c(data.matrix(rec_IBCF((pos))))[2:ncol_ratings]

}

R.pred1=R.pred|,-1]

#R.pred1[pos.missing]

#R.pred_IBCF

setwd(“C:\\Multi-trait analysis Crossa”)

library(mvtnorm)

library(Isa)

########Generating data from 15 lines (users) and traits (items) ##############
A=matrix(0.85,ncol=5,nrow=>5)

diag(A)=1

R=rmvnorm(15,mean=rep(0,5),sigma=A)

R

pos.missing=sample(1:75,15,replace=F)

pos.missing

R_mis=R

R_mis[pos.missing]=NA

R_mis

##n#######Loading the IBCF and the Matrix factorization methods###############
source(“Colab_Filtering IBCF.r”) ###Code given in Appendix Al
source(“Colab_Filtering Mat_Fact_Final.r”) ###Code given in Appendix A2
#######Predictions using the IBCF method########### ####H#H#HHHHHAH S
ratings=data.frame(cbind(c(1:nrow(R_mis)),R_mis))

» 2

colnames(ratings)=c(“geno_no”,”11”, “I2”, “I3”, “I4”, “I5”)
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ratings

nrow_ratings=nrow(ratings)
ncol_ratings=ncol(ratings)

x=R_mis

x[is.na(x)] =0

item_sim=cosine(as.matrix((x)))
colnames(item_sim)=c(“I1”, “I2”, “I3”, “I4”, “I5”)

»

rownames(item_sim)=c(“11”, “I2”, “I3”, “I4”, “I5”)

item_sim

R pred=data.matrix(ratings)

#H####H#######ROW positions with no missing values########### HEHHEHB R
pos.wn.Na=c(as.numeric(noquote(rownames(na.omit(data.frame(ratings))))))
pos.wn.Na

#HARHBRHBHHAHFE AL TOWS (O USCHAHABHHBHBHHHHHBHBHHHHHUHBHHHHHHHBHHRHHHHRHY
pos.used=c(1:nrow_ratings)

##H########Row positions with missing values###
pos.final=pos.used[-pos.wn.Na]

for (iin l:length(pos.final))

{

pos=pos.finalli]
R.pred[pos,c(2:ncol_ratings)]=c(data.matrix(rec_IBCF((pos))))[2:ncol_ratings]

}

R.pred_IBCF=R.pred|,-1]

R.pred_IBCF

############Predictions using the matrix factorization method (MF)##############
K = 3 #####Number of latent features

n = dim(R_mis)[1]

L = dim(R_mis)[2]

P = matrix(rnorm(n*K,0,1),nc=K) ####Starting values of P
Q = matrix(rnorm(L*K,0,1),nc=K) ####Starting values of Q
Mat_fact=rec_Mat_fact(R=R_mis,P,Q,K,maxiter=1e3,alpha = 2e-3,Jambda=21e-3,tol=1e-2)

#Predictions

output=Mat_fact$P%*%t(Mat_fact$Q)
R_pred_Mat_Fact=R_mis
R_pred_Mat_Fact[pos.missing]=output[pos.missing]
R_pred_Mat_Fact

APPENDIX A4

Phenotypic cosine correlations for environment-trait combinations in data set 1 (wheat data set)

-0.223
—0.148
0.187
0.236
—0.268
—0.144
—0.085
0.013
—0.535
—0.298
0.460

BedSIR_HD 1.000 0.698 —-0.271 -0.120 0.564 0.461 0.207
Bed5IR_GNDVI 0.698 1.000 -0.204 -0.035 0.470 0.527 0.131
BedSIR_GY -0.271  -0.204 1.000 0.577 -0.149 -0.058 0.207
Bed5IR_PH —-0.120 —0.035 0.577 1.000 —0.052 0.083 0.247
Bed2IR_HD 0.564 0.470 -0.149 -0.052 1.000 0.787 0.386
Bed2IR_GNDVI 0.461 0.527 —0.058 0.083 0.787 1.000 0.493
Bed2IR_GY 0.207 0.131 0.207 0.247 0.386 0.493 1.000
Bed2IR_PH 0.341 0.259 0.138 0.318 0.628 0.640 0.534
Drip_HD 0.486 0.398 -0.324 -0.157 0.505 0.401 0.147
Drip_G_NDVI 0.192 0.286 —0.385 —0.262 0.201 0.166 —0.034
Drip_GY -0.036 —0.032 0.481 0.397 -0.020 0.100 0.192
Drip_PH —0.223 —0.148 0.187 0.236 —0.268 —0.144 -0.085

0.341
0.259
0.138
0.318
0.628
0.640
0.534
1.000
0.213
—0.089
0.277
0.013

0.486
0.398
-0.324
—0.157
0.505
0.401
0.147
0.213
1.000
0.551
—0.401
—0.535

0.192
0.286
—0.385
—0.262
0.201
0.166
—0.034
—0.089
0.551
1.000
—-0.575
—0.298

—0.036
—0.032
0.481
0.397
—0.020
0.100
0.192
0.277
—0.401
—0.575
1.000
0.460

1.000
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APPENDIX A5

Phenotypic cosine correlations for environment-trait combinations in data set 2 (maize data set)

EBU_GY 1,000 ~0.146 0.197 0.055 ~0.029 0.236 0.120 ~0.049 0.107
EBU_ASI ~0.146 1,000 ~0.134 0.097 0.133 0.049 -0013 0.045 ~0.057
EBU_PH 0.197 ~0.134 1,000 ~0.094 0.100 0.068 0.043 0.034 0.010
KAK_GY 0.055 0.097 ~0.094 1,000 ~0.078 0.351 0.110 0.047 ~0.013
KAK_ASI ~0.029 0.133 0.100 ~0.078 1,000 -0.138 0.020 0.188 ~0.036
KAK_PH 0.236 0.049 0.068 0.351 ~0.138 1.000 0.016 0.057 0.080
KTI_GY 0.120 -0013 0.043 0.110 0.020 0.016 1,000 ~0.263 0.429
KTI_ASI ~0.049 0.045 0.034 0.047 0.188 0.057 ~0.263 1000  —0318
KTI_PH 0.107 ~0.057 0.010 ~0013 ~0.036 0.080 0.429 ~0318 1,000
APPENDIX A6

Phenotypic cosine correlations for environment-trait combinations in data set 3 (large wheat data set)

HD 1.000 0.760 0.228 ~0.069 0.401
DMT 0.760 1.000 0.251 0.012 0.454
PH 0.228 0.251 1.000 ~0.165 0.386
Lodging ~0.069 0.012 ~0.165 1.000 -0.443
GY 0.401 0.454 0.386 -0.443 1.000
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APPENDIX A7
Simulated data

E1_T1

E2_T1

E3_T1

S1 E1_T2
E2_T2

E3_T2

E1_T3

E2_T3

E3_T3
Average

E1_T1

E2_T1

E3_T1

S2 E1_T2
E2_T2

E3_T2

E1_T3

E2_T3

E3_T3
Average

E1_T1

E2_T1

E3_T1

E1_T2

S3 E2 T2
E3_T2

E1_T3

E2_T3

E3_T3
Average

0.004
0.004
0.005
0.005
0.005
0.005
0.004
0.004
0.004
0.004
0.006
0.003
0.005
0.006
0.004
0.006
0.004
0.005
0.005
0.005
0.003
0.003
0.003
0.004
0.004
0.005
0.005
0.004
0.005
0.004

0.005
0.006
0.007
0.006
0.006
0.006
0.005
0.004
0.006
0.006
0.006
0.004
0.005
0.007
0.004
0.006
0.005
0.005
0.005
0.005
0.004
0.003
0.004
0.004
0.004
0.005
0.005
0.004
0.005
0.004

0.034
0.024
0.021
0.014
0.036
0.021
0.017
0.023
0.029
0.024
0.009
0.014
0.018
0.021
0.014
0.023
0.019
0.014
0.013
0.016
0.040
0.051
0.040
0.043
0.059
0.040
0.034
0.049
0.053
0.045

0.007
0.010
0.008
0.008
0.010
0.008
0.009
0.010
0.008
0.009
0.002
0.003
0.002
0.003
0.003
0.002
0.003
0.005
0.003
0.003
0.009
0.008
0.012
0.011
0.014
0.015
0.010
0.012
0.012
0.012

0.008
0.008
0.008
0.010
0.009
0.009
0.006
0.009
0.008
0.008
0.011
0.006
0.007
0.010
0.007
0.010
0.008
0.009
0.010
0.009
0.008
0.006
0.007
0.007
0.007
0.009
0.009
0.009
0.010
0.008

0.008
0.009
0.010
0.010
0.009
0.009
0.006
0.008
0.009
0.009
0.011
0.007
0.008
0.010
0.007
0.010
0.008
0.009
0.010
0.009
0.008
0.006
0.007
0.007
0.007
0.009
0.009
0.009
0.010
0.008

0.039
0.041
0.041
0.026
0.038
0.034
0.036
0.050
0.035
0.038
0.014
0.031
0.034
0.040
0.025
0.047
0.040
0.031
0.021
0.031
0.046
0.068
0.050
0.060
0.057
0.048
0.039
0.037
0.044
0.050

0.007
0.011
0.009
0.008
0.011
0.010
0.009
0.010
0.010
0.009
0.003
0.005
0.003
0.004
0.005
0.005
0.004
0.007
0.005
0.005
0.009
0.008
0.014
0.010
0.014
0.012
0.009
0.011
0.011
0.011

0.010
0.009
0.010
0.012
0.010
0.010
0.007
0.011
0.010
0.010
0.013
0.008
0.008
0.011
0.008
0.011
0.008
0.010
0.011
0.010
0.010
0.007
0.009
0.009
0.008
0.011
0.011
0.012
0.011
0.010

0.010
0.011
0.012
0.012
0.011
0.010
0.007
0.011
0.010
0.010
0.013
0.009
0.009
0.011
0.009
0.011
0.009
0.010
0.011
0.010
0.010
0.007
0.009
0.009
0.008
0.011
0.011
0.011
0.011
0.010

0.042
0.045
0.049
0.031
0.038
0.038
0.046
0.060
0.038
0.043
0.018
0.041
0.038
0.045
0.031
0.052
0.045
0.034
0.025
0.037
0.049
0.067
0.051
0.056
0.062
0.050
0.046
0.049
0.039
0.052

0.008
0.010
0.009
0.008
0.012
0.011
0.010
0.010
0.011
0.010
0.004
0.006
0.003
0.005
0.007
0.006
0.005
0.008
0.006
0.006
0.010
0.009
0.014
0.010
0.012
0.011
0.008
0.011
0.010
0.011

SE of the prediction accuracies given in Figure 1, Figure 2, and Figure 3, with Pearson correlation for each environment-trait (Env-Trait) combination using the four
methods under study [IBCF, matrix factorization (MF), ME, and MTME] for data simulated with a correlation (Cor) of traits (genetic and residual) and correlation of
environments of 0.85, 0.5, and 0.25. S1 is the scenario under normality, S2 is the scenario under the error negative skew multiplied by 1.25, and S3 represents the
scenario under the error positive skew multiplied by 1.25. The notation E1_T1 means environment 1, trait 1.
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