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Reducing the extent of facetectomy may
decrease morbidity in failed back surgery
syndrome
Jingchi Li1,2, Xiaoyu Zhang2, Wenqiang Xu1, Zhipeng Xi1 and Lin Xie1,2*

Abstract

Background: Percutaneous transforaminal endoscopic discectomy (PTED) is widely used for the treatment of
lumbar disc herniation. Facetectomy in PTED is necessary for accessing the intraspinal region and for
decompressing the exiting nerve roots in patients who suffer from hypertrophy of the facet joints. However, this
may increase morbidity in failed back surgery syndrome (FBSS) and has not been clearly elucidated.

Methods: A three-dimensional lumbosacral model was reconstructed and validated. And corresponding models
after PTED with one-quarter and one-half excisions of the superior articular process were reconstructed. The
maximum shear stress on the annulus in L5, von Mises stress of the facet cartilage, maximum principle capsular
strain and deformation of the lumbosacral model were calculated using finite element methods.

Results: Calculated results show no significant differences in the complete model and the model with one-quarter
excision of the superior articular process, but all biomechanical indexes have been deteriorated under most of the
loading conditions tested in the model with one-half excision of the superior articular process.

Conclusions: Less facetectomy is better because it may reduce the risk of biomechanical deterioration and
consequently, that of FBSS.

Keywords: Percutaneous transforaminal endoscopic discectomy, Facetectomy, Failed back surgery syndrome, Finite
element research

Background
Failed back surgery syndrome (FBSS) is a frequently oc-
curring postoperative complication [1]. Many studies
have reported that biomechanical deterioration is the
most crucial reason for postoperative complications such
as FBSS [2–6].
Percutaneous transforaminal endoscopic discectomy

(PTED) has already been used in the treatment of lum-
bar disc herniation (LDH) [7, 8]. In PTED, it is necessary
to perform facetectomy to expand the neuroforamen.
And in patients who suffer from hypertrophy of the facet
joints, extensive facetectomy is needed for the decom-
pression of exiting nerve roots. However, such a

procedure may be closely associated with postoperative
complications (Fig.1).
Aetiologies related to facet joints involved in the

pathogenesis of low back pain (LBP) occur in 15–37% of
patients after surgery [9, 10], .and injury to the facet
joint has been reported to cause a series of postoperative
complications [6, 11]. Meanwhile, tears in the posterior
annulus is an important trigger for discogenic LBP and
LDH, which are two principal causes of FBSS [1, 12, 13].
The facet cartilage plays a key role in protecting the pos-
terior annulus during torsion, and the capsule of the
facet joint plays a similar role during flexion [14, 15].
Given that facetectomy does not directly cause injury to
the articular surface and the capsule, variation in the
stress distribution may result in secondary damage and
increase the incidence of annulus tears [1, 12]. Further-
more, rich innervation is a typical histological feature of
the facet capsule, and any increase in the mobility of the
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facet joint will affect the strain on the capsule and
stimulate the nociceptors, thereby leading to LBP [16,
17, 18]. In addition, surgical intervention will change the
force applied on the facet cartilage, leading to possible
degeneration [19, 20]. Besides, the facet joint is import-
ant in the maintenance of spine stability [16, 21], and
iatrogenic instability is common in patients suffering
from FBSS [22, 23]. Taken together, we hypothesise that
facetectomy and extensive facetectomy increase the risk
of FBSS. However, this conjecture lacks the theoretical
basis of biomechanics.
As a mechanical simulation research method, finite

element analysis has been widely used in the investiga-
tion of postoperative biomechanical variations to infer
the risk of postoperative complications [3–5, 24]. To
clarify our hypothesis and provide theoretical guidance
for the PTED application, we reconstructed a lumbosa-
cral finite element model (FEM) to determine whether
varying extents of facetectomy will affect its biomechan-
ical indexes. To the best of our knowledge, published lit-
eratures have not adequately clarified this issue.

Method
L3-S1 FEM of a healthy spine
A three-dimensional model from L3 to S1 was recon-
structed based on high-resolution computed tomography
(CT) image of a 24-year-old male volunteer who was
one of the authors of this manscript and without any
history of lumbar diseases. The model comprised four
vertebral bodies, three segments of intervertebral discs
(IVDs), six facet joints and six ligaments. Components

that could not be clearly distinguished by CT were re-
constructed based on anatomical observations [4, 24].
The bone structure included a cortical bone shell

(0.8 mm), a cancellous bone core, two endplates (0.8
mm) and posterior structure. The IVD consisted of the
inner nucleus and the surrounding annulus, and the
nucleus occupied 44% of the cross-sectional area of the
IVD and was located slightly posterior to the centre of
the disc [25, 26]. Facet joints consisted of the surround-
ing capsule and two cartilage surfaces (0.25 mm) [4, 5].
Ligaments, which include the anterior longitudinal liga-
ment, posterior longitudinal ligament, ligamentum fla-
vum (LF), intertransverse ligament, interspinous
ligament and supraspinous ligament, were constructed
in the preprocessing process of the finite element ana-
lysis, and the capsule of the facet joints was recon-
structed similarly [3, 27].

Spine models after PTED
The reconstruction PTED model was based on the
complete model described above, and the L4–L5 seg-
ment was selected for simulation due to the high inci-
dence rate of LDH in this segment [28, 29]. Surgery was
simulated on the right side; a 5-mm incision in the an-
nulus was made to simulate the annulus tear and the nu-
cleus was removed to imitate discectomy [7, 8].
Additionally, one-third of the LF on the right side was
excised in the two PTED models. All procedures were
identical except for whether they were one-quarter or
one-half facetectomy procedures of the superior articular
process [5, 7]. Pictorial representation of the simulated
PTED procedures are shown in Fig. 2, and magnetic

Fig. 1 The necessity of facetectomy in patients suffer from exiting nerve roots compression. a. Free exiting nerve root. b. Compressed exiting
nerve root
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resonance images of patients subjected to PTED in dif-
ferent sides with various grades of facetectomy are
shown in Fig. 3.

Boundary and loading conditions
Boundary and loading conditions were identical in all
models. All degrees of freedom were fixed below the in-
ferior surface of S1, and five different loading conditions
including flexion, extension, left lateral bending, right
lateral bending and axial rotation were simulated by ap-
plying 10 NM moments on the superior surface of the
L3. All simulation conditions were based on 800 N of
vertical compression [25]. In addition, 85% of the force
was applied on the anterior and the middle columns,
while l5% was applied on the posterior column [30, 31].
For brevity, the complete model was labelled model 1,
that after one-quarter excision of the superior articular

process as model 2 and that after one-half excision of
the superior articular process as model 3.
The tetrahedral solid elements was selected for this

models as it is appropriate for filling models with complex
surfaces, and we used mesh refinement in areas where
mesh distortion was needed to improve mesh quality and
reduce calculation error. The bounded contact type was
selected for all surfaces in the lumbosacral model, as the
surfaces do not separate under normal stress conditions,
except at the facet cartilage surfaces, which were therefore
defined as frictionless [25, 27]. Additionally, the centrum,
endplates and facet cartilages were defined as being com-
posed of isotropic and homogeneous elastic materials, the
nucleus was defined as an ‘incompressible fluid bag’, the
annulus as a hyper-elastic ‘Mooney–Rivlin’ material and
the ligaments as tension-only cable elements. Material
properties in the current model were based on published
FEM studies (Tables 1 and 2) [32, 33].

Fig. 2 Models in the current research (ligaments have been hided for the sake of brevity in the schematic diagram of PTED). a. The complete
lumbo-sacral model. b. Model1: The preoperative model. c. Model2: The model after one-quarter excision of the superior articular process. d.
Model3: The model after one-half excision of the superior articular process

Fig. 3 The magnetic resonance imaging (MRI) of patients subjected to PTED with different grades of facetectomy. a. PTED in the left side. b.
PTED in the right side. 1. Preoperative data. 2 .Postoperative data
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Results
Validation of model reconstruction
We validated our complete model (model 1) by com-
paring disc compression values and intradiscal pres-
sure in model 1 with those from two well-validated
and repeatedly cited in vitro biomechanical re-
searches, henceforth referred to as ‘specimen’. Values
of disc compression under a load of 1200 N in the
specimen were 1.6 ± 0.55, 1.6 ± 0.5 and 1.3 ± 0.5 mm
in L3–L4, L4–L5 and L5–S1 IVD segments [34], and
values of intradiscal pressure were 0.3 ± 0.09, 0.9 ±
0.26 and 1.85 ± 0.46 MPa under 300 N, 1000 N and
2000 N loads, respectively [35]. The disc compression
values of our current model were 1.7, 1.5 and 1.1
mm, and the intradiscal pressures were 0.2, 0.78 and
1.49 MPa, respectively. Significantly, values from
model 1 were within one standard deviation of those
reported for the specimen (Fig. 4), except for the
intradiscal pressure under 300 N. Considering that it
was only 0.01 MPa below the standard deviation and
equal to the lowest value in the original data [35],
the complete model was well-validated and can be
regarded as a reliable representation of the normal
spine.

Biomechanical change with different extents of
facetectomy
We choose the L5-S1 segment IVD to investigate
changes in maximum shear stress on the annulus

due to the elevated levels of morbidity associated
with LDH of this segment.The maximum annulus
shear stress in the L5 IVD increased with larger ex-
tents of facetectomy under most conditions, except
during right lateral bending. The variation of the
total deformation shows the same trend and which
was most significant under extension in model 3, as
it increased by 67.3 and 47.5%, compared to models
1 and 2, respectively (Fig. 5).
The variation in maximum principle strain on the

capsule and von Mises stress on the facet cartilage
in the L3–L4 segment showed a similar trend, as
values increased with higher grades of facetectomy
under all loading conditions. With respect to the op-
erated segment (L4–L5), an exception was observed
during right lateral bending, in which higher grades
of facetectomy led to lower maximum principle
strain on the capsule and lower von Mises stress on
the facet cartilage in the operated side of the facet
joint. Interestingly, corresponding values in the op-
posite side under the same loading conditions were
dramatically higher; compared to the values in
models 1 and 2, the maximum principal strain in
model 3 increased by 77.9 and 51.8% and von Mises
stress in the facet cartilage increased by 217.6 and
204.2%, respectively. The patterns of variation in the
L5–S1 segment were consistent with those of the
upper two segments, but note that all values are ob-
viously higher in this segment. The patterns of
change in the two values under different loading
conditions are shown in Figs. 6 and 7.

Discussion
FBSS is a significant postoperative complication with
typical symptoms of persistent LBP and has been

Table 1 The material properties used in finite element models

Components Young’s modulus (Mpa) Poisson’s ratio Cross-section area(mm2)

Cortical 12,000 0.3 /

Cancellous 100 0.2 /

Posterior elements 3500 0.25 /

Endplate 1000 0.4 /

Cartilage 10 0.4 /

Capsular 26 0.3 67.5

ALL 20 0.3 60

PLL 70 0.3 21

LF 50 0.3 60

ITL 50 0.3 10

ISL 28 0.3 40

SSL 28 0.3 30

Note: ALL: anterior longitudinal ligament; PLL:posterior longitudinal ligament; LF:ligamantum flavum; ISL:interspinous ligament; SSL: supraspinal ligament;
ITL:intertransverse ligament

Table 2 The material properties of Intervertebral discs

Annulus Nucleus

C1 (MPA) C2 (MPA) Young’s modulus (Mpa) Poisson’s ratio

0.2 0.05 1 0.499
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reported to be an important predictor of postoperative
poor outcome [1, 22, 36]. Considering that biomechan-
ical deterioration is the key trigger of postoperative
complications [2, 4–6], the investigation of the biomech-
anical conditions of FBSS is vital to reduce its risk.
Compared to traditional open discectomy, PTED may

reduce the risk of FBSS. Previously studies reported
that open posterior lumbar surgery will lead to the
damage and atrophy of paraspinal muscles, which have
been indicated as a significant cause of FBSS [36–38].
Meanwhile, the weakness of paraspinal muscle will re-
sult in lumbar instability, a significant trigger of FBSS
[1, 39]. As a minimally invasive surgical method, PTED
will not damage the paraspinal muscles and the conclu-
sion that PTED reduces the risk of FBSS seems credible
[39, 40]. However, clinical studies have shown that min-
imally invasive surgical methods do not significantly
decrease morbidity associated with postoperative com-
plications compared to open surgery, and the damage
to osteoligamentous structures during the microdis-
cectomy procedure can also result in biomechanical

deterioration [5, 37, 41]. Thus, the conclusion that min-
imally invasive spine surgery could decrease the risk of
FBSS may be unreliable. Given these contradictory con-
clusions, it is critical to pay attention on the relation-
ship between PTED and FBSS from a biomechanical
point of view.
Facetectomy is needed in PTED for accessing the

intraspinal region. For patients who suffer from hyper-
trophy of the facet joints, larger extents of facetectomy
are important for exiting nerve root decompression.
However, such procedure may be closely associated with
postoperative complications [6, 9, 11, 42].
To identify the effect of various extents of facetectomy

on morbidity during FBSS, an issue that has not been
clearly studied, a three-dimensional lumbosacral model
was reconstructed and validated to assess changes in
biomechanical indexes that are directly associated with
FBSS, namely, maximum shear stress on the annulus in
the L5 segment, von Mises stress at the facet cartilage,
maximum principle capsular strain on the capsule and
the total deformation of current models.

Fig. 4 Validation process for the current model. a. Comparasion of the intradiscal pressure with the validated vitro study. b. Comparasion of the
disc compression value with the validated vitro study

Fig. 5 Biomechanical changes in three models. a. maximum shear stress on the annulus in L5-S1 disc. b. Total deformation of the lumbo-sacral
model. Model1 The complete model. Model2 The model after one-quarter excision of the superior articular process. Model3 The model after one-
half excision of the superior articular process. F. Flexion. E. Extension. L. Left lateral bending. R. Right lateral bending. A. Axial rotation
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Causes of LBP that involve facet joints have been
recognised as risk factors for more than half century
[19, 43], and changes in the force applied on the facet
surface and to capsular strain are closely associated
with facet joint diseases [18, 23, 44]. In the current
study, we have discovered that von Mises stress on
the facet cartilage increases with larger extents of
facetectomy, which may accentuate degeneration of
the facet joints [45, 46], while an increase in the

maximum principal strain on the capsule can result
in local neuropathic pain [16, 17]. Thus, our results
indicate that larger extents of facetectomy may lead
to facet joint diseases and LBP, especially in the
contralateral side and when the body bends in the
direction of the operated side.
Notably, we show that the stress on the facet cartilage

and the strain on the capsule were the highest in the
L5–S1 segment, and such phenomenon may occur when

Fig. 6 von Mises stress on the facet cartilage. Model1 The complete model. Model2 The model after one-quarter excision of the superior articular
process. Model3 The model after one-half excision of the superior articular process. F. Flexion. E. Extension. L. Left lateral bending. R. Right lateral
bending. A. Axial rotation
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biomechanical indexes is applied close to a fixed surface
and specific data for this segment may be less reliable.
Nonetheless, as this is a qualitative rather than a quanti-
tative study, we believe that the results are credible.
An increase in the maximum shear stress on the annu-

lus is an important factor that results in radical annulus
tears, which may lead to discogenic LBP and LDH, two
key triggers of FBSS [1, 12, 25, 26, 36]. In this study, the
maximum shear stress on the annulus obviously

increased during flexion and axial rotation with larger
extents of facetectomy, and stress concentration can be
observed at the posterior annulus (Fig. 8). In addition,
the variation trends of biomechanical indexes in the an-
nulus and the facets are same. Considering that facet
cartilages and capsules will protect the posterior annulus
during torsion and flexion, respectively [15], the risk of
annulus tears may be increased with larger extents of
facetectomy.

Fig. 7 Maximum principle strain on the capsule. Model1 The complete model. Model2 The model after one-quarter excision of the superior
articular process. Model3 The model after one-half excision of the superior articular process. L left side. R right side. F. Flexion. E. Extension. L. Left
lateral bending. R. Right lateral bending. A. Axial rotation
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Facet joints are crucial for spine stabilisation, and
spine instability is a common cause of FBSS [21, 22, 47,
48]. Postoperative hypermobility will accelerate disc de-
generation and result in FBSS [49, 50]. The increase in
the total deformation of the current models is a good in-
dicator of lumbar instability, and we observed this
phenomenon with larger extents of facetectomy under
all loading conditions.
Finally, note that some patients suffer from severe

postoperative LBP even if typical changes in imaging are
absent [1, 51]. In such patients, we hypothesise that
postoperative deterioration of biomechanical indexes
leads to LBP before an organic change could be detected
by imaging. Importantly, this phenomenon is further
supported by the necessity to avoid, or at least reduce,
biomechanical deterioration by surgical intervention. In
summary, the results from this study suggest that less
facetectomy is better in PTED on the premise of achiev-
ing the goal surgery, i.e. to reduce morbidity due to
FBSS.
The current conclusion must be accepted on the

premise of the awareness of the following limitations.
LDH patients who underwent PTED present with vary-
ing grades of disc degeneration, facet degeneration and
osteoporosis. In addition, this study was conducted
under a single load condition rather than different load
conditions. These factors influence the change in bio-
mechanical conditions of the spine after facetectomy
and can thereby affect risk in FBSS [13, 17, 25, 44].
However, these factors were not incorporated into the

present study, and we expect to analyse their effects in
future studies.

Conclusions
Less facetectomy is better in PTED for which may re-
duce the risk of biomechanical deterioration and conse-
quently FBSS.
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