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The functional properties of the vascular endothelium are diverse and heterogeneous
between vascular beds. This is especially evident when new blood vessels develop
from a pre-existing closed cardiovascular system, a process termed angiogenesis.
Endothelial cells are key drivers of angiogenesis as they undergo a highly choreographed
cascade of events that has both exogenous (e.g., hypoxia and VEGF) and endogenous
regulatory inputs. Not surprisingly, angiogenesis is critical in health and disease. Diverse
therapeutics target proteins involved in coordinating angiogenesis with varying degrees
of efficacy. It is of great interest that recent work on non-coding RNAs, especially long
non-coding RNAs (lncRNAs), indicates that they are also important regulators of the
gene expression paradigms that underpin this cellular cascade. The protean effects of
lncRNAs are dependent, in part, on their subcellular localization. For instance, lncRNAs
enriched in the nucleus can act as epigenetic modifiers of gene expression in the
vascular endothelium. Of great interest to genetic disease, they are undergoing rapid
evolution and show extensive inter- and intra-species heterogeneity. In this review, we
describe endothelial-enriched lncRNAs that have robust effects in angiogenesis.
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INTRODUCTION

The cardiovascular system is a complex and dynamic network of blood vessels pumping blood from
the heart to the rest of the body. Through the blood vessels, nutrients and oxygen are delivered
to the cells, and carbon dioxide and waste products are removed. This occurs at a rapid rate in
advanced species, and to maintain this, there is a tight interplay of multiple hemodynamic forces
including circumferential stretch, hydrostatic pressure, shear stress and rates of blood flow. At the
interface between the circulating blood and the vascular wall is the vascular endothelium, acting
as a dynamic barrier. The endothelium is a monolayer of endothelial cells (ECs) that lines the
entire closed cardiovascular system. We have previously argued that ECs are professional sensors
of hemodynamic forces (Ku et al., 2019). ECs sense and respond to these forces, which in turn
affect EC phenotype.

A finite number of cis-DNA elements and associated trans-factors mediate the nuclear-based
response to the interplay of these varied hemodynamic factors. One such cis-DNA element
that is activated by atheroprotective, laminar flow is the shear stress response element (SSRE),
which was first identified in the promoter region of platelet-derived growth factor-B (PDGF-B)
(Resnick et al., 1993). We now know that the SSRE is detected in many other flow-regulated EC
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genes such as intercellular adhesion molecule 1 (ICAM1),
endothelin-1 (ET-1/EDN1), monocyte chemoattractant protein
1 (MCP1)/chemokine (C-C motif) ligand 2 (CCL2), and the
prototypic EC gene responsible for nitric oxide production,
endothelial nitric oxide synthase (eNOS) (Ku et al., 2021).
Another important flow-regulated cis-DNA element is Krüppel-
like factor (KLF). The KLFs are zinc-finger transcription factors
(Anderson et al., 1995). In particular, it is known that KLF2
and KLF4 are important flow-regulated transcription factors
that signal through the MEF5/ERK5/MEF2 pathway to mediate
transcription of many flow-responsive genes (Dekker et al.,
2002b; Parmar et al., 2005; Ohnesorge et al., 2010; Le et al.,
2013; Sangwung et al., 2017). KLF2 regulates vascular tone
by inducing expression of eNOS (Dekker et al., 2005; Parmar
et al., 2005). Models of atherosclerosis confirm the critical role
for these KLF transcription factors in vascular homeostasis. In
apolipoprotein E (ApoE) deficient mice with hemizygous KLF2
deficiency, there is a notable increase in atherosclerosis (Atkins
et al., 2008). Similar results are observed with EC-specific loss
of KLF4 in ApoE deficient mice (Zhou et al., 2012). Together,
these studies demonstrate an important atheroprotective role for
KLF2 and KLF4. Finally, there is the myocyte enhancer factor-2
(MEF2) family, members of which bind to the promoter region
of KLF2 and regulate its expression under shear stress (Kato
et al., 1997; Parmar et al., 2005; Wang et al., 2010). EC-specific
deletions in mice of MEF2 factors, Mef2a, -c, and -d, disrupt
vascular homeostasis (Lu et al., 2021). Combined deletion of these
MEF2 factors significantly decreased KLF2/KLF4 expression.
In summary, these independent cis-DNA elements, namely the
SSRE, KLF and MEF2 elements mediate transcriptional responses
to changes in shear stress.

Adding to this classic cis-trans paradigm, EC gene expression
is also regulated by epigenetic mechanisms. Broadly defined,
epigenetics refers to chromatin-based mechanisms important in
the regulation of gene expression that do not involve changes
to the DNA sequence per se (Matouk and Marsden, 2008;
Yan et al., 2010; Webster et al., 2013). Epigenetic mechanisms
include DNA methylation, histone modifications and RNA-based
mechanisms, including long non-coding RNAs (lncRNAs). They
are highly responsive to changes in the environment, making
them quite dynamic. Epigenetic mechanisms have profound
effects on many biological processes in which ECs participate
in, especially hemodynamic regulation and angiogenesis. Short
non-coding RNAs, such as microRNAs (miRNAs), have been
gaining scientists’ attention for their post-transcriptional effects
since the early 2000s (Battistella and Marsden, 2015). In recent
years, a newer class of non-coding RNAs called long non-
coding RNAs have emerged, and they have been shown to be
important regulators of gene expression in health and disease.
LncRNAs tend to be enriched in the nucleus, where they
can act as epigenetic modifiers of gene expression (Man and
Marsden, 2019). Some of the best studied lncRNAs are X-inactive
specific transcript (XIST) which is known to inactivate one
of the X chromosomes in females; HOX transcript antisense
RNA (HOTAIR), which is involved in limb development; and
antisense non-coding RNA in the Inhibitors of CDK4 (INK4)
locus (ANRIL), which is strongly correlated with cardiovascular
disease risk. The identification and characterization of angiogenic

lncRNAs has introduced the idea that lncRNAs may serve as
biomarkers and/or therapeutic targets for diseases in which
angiogenesis is disrupted, such as in cancers or cardiovascular
disease. In this review, we will discuss how nuclear endothelial-
enriched lncRNAs, affect EC angiogenesis. We will especially
highlight the STEEL, GATA6-AS and MANTIS lncRNAs.

LONG NON-CODING RNAs

Historically believed to be “transcriptional noise” or “dark
matter,” lncRNAs have emerged as key modulators of many
biological processes. Scientists have identified thousands of
lncRNAs, with the online database “LncBook” citing > 270,000
lncRNAs in humans (Ma et al., 2019). However, the number
of lncRNAs that have been functionally characterized is
∼<1% of those identified (Quek et al., 2015). LncRNAs are
primarily characterized by their length as >200 nucleotides
long, mainly to distinguish this class of non-coding molecules
from shorter transcripts (Mercer et al., 2009; Mattick and
Rinn, 2015). LncRNAs can be 5′-capped, spliced, polyadenylated,
and often have low expression levels relative to protein-
coding genes (Guttman et al., 2009; Derrien et al., 2012).
As their name suggests, they are not translated into proteins
and thus, often have trivial or non-functional open reading
frames (ORFs). This can be assessed through bioinformatic
analysis of coding domain sequence, secondary structure, di/tri-
nucleotide sequence frequencies and cross-species conservation
(Ulitsky and Bartel, 2013; Ventola et al., 2017). LncRNAs
can be classified based on several criteria, but broadly
are often grouped by their organization relative to other
genes, due to a lack of clarity on their sequence-structure-
function relationship. They can be described as intronic,
intergenic, antisense, bidirectional, enhancer, or promoter-
associated lncRNAs.

LncRNAs can be present in the nucleus, cytoplasm, or
mitochondria, and they may also be secreted (Rackham et al.,
2011; van Heesch et al., 2014; see Figure 1). A lncRNA can also
be expressed in multiple compartments, such as GAS5, which is
expressed in both the nucleus and the cytoplasm (Kino et al.,
2010). Since subcellular localization often confers function, the
mechanism of action of a lncRNA can be inferred, in part, by
defining where they are targeted (Cai and Cullen, 2007; Quinodoz
and Guttman, 2014; Romero-Barrios et al., 2018; Hou et al.,
2019; Mishra and Kanduri, 2019; Rom et al., 2019). Nuclear
lncRNAs like XIST or HOTAIR are often important mediators
of regulating epigenetic mechanisms (Mercer et al., 2009). They
can act in cis or in trans by interacting with neighboring or
non-neighboring genes to exert their effects (Rinn et al., 2007;
Wang et al., 2011; Engreitz et al., 2013; Novikova et al., 2013).
Cytoplasmic lncRNAs like Tie1-AS can interact with protein-
coding genes, and others still can act as a scaffold for protein-
protein interactions (Li et al., 2010). Many lncRNAs, including
ones we will highlight in this review regulate gene expression
through chromatin-based mechanisms.

Finally, non-coding RNAs can be enriched in particular cell-
or tissue-types. For example, spliced-transcript endothelial-
enriched lncRNA (STEEL) is an endothelial-enriched
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FIGURE 1 | Functions of long non-coding RNAs. Long non-coding RNAs (lncRNAs) are a diverse class of molecules that are distributed throughout the cell. The
function of lncRNAs are dependent, in part, on their subcellular localization. Here, we illustrate known lncRNA functions in the nucleus and the cytoplasm. Our review
focuses on the nuclear function of lncRNAs. This figure was adapted; it was originally published in Current Opinion in Pharmacology, Volume 45, Hon-Sum Jeffrey
Man and Philip A Marsden, LncRNAs and epigenetic regulation of vascular endothelium: genome positioning system and regulators of chromatin modifiers, pp.
72–80, Copyright Elsevier, 2019.
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lncRNA that has EC-specific functions (Man et al., 2018).
In contrast, there are lncRNAs like metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) that is expressed
at very high levels and is found widely across almost all cell
types. Some lncRNAs are highly upregulated by environmental
stimuli that are especially relevant to ECs, such as the lncRNA
that enhances eNOS expression (LEENE), which is induced
under physiological blood flow and pulsatile shear stress (Miao
et al., 2018). Another example is GATA6-AS, which is hypoxia-
responsive (Neumann et al., 2018). Disease-associated lncRNAs
have also been identified, with the best example being ANRIL
(McPherson et al., 2007; Holdt et al., 2010; Congrains et al., 2012).
Through genome-wide association studies (GWAS), exons 13-19
of ANRIL comprise a disease-associated haplotype noted for a
marked increased risk of coronary artery disease (CAD). Now we
know that it is also associated with other cardiovascular diseases,
such as ischemic peripheral vascular disease and ischemic stroke
(Zeggini et al., 2007; Foroud et al., 2012; Kremer et al., 2015;
Kong et al., 2016; Tan et al., 2019). Evidently, lncRNAs are
biologically important and functionally diverse.

How to Detect lncRNAs
There are many methods to identify lncRNAs, but microarrays
were by far the method of choice for a long time—until the
advent of deep RNA-sequencing (RNA-seq; Table 1; Mockler
et al., 2005). While microarrays are high throughput, cost-
effective, and computationally manageable, they also limit
novel lncRNA discovery due to pre-determined probe sets;
optimal probe coverage and density; and background noise
from cross-hybridizations or weak binding (Uchida, 2017). Deep
RNA-seq has become the current method of choice because
it enables researchers to discover non-annotated transcripts,
single nucleotide variations (SNVs), splice variants, novel splice
junctions and gene fusion events (Sultan et al., 2008; Trapnell
et al., 2009; Edgren et al., 2011; Djebali et al., 2012; Quinn
et al., 2013). Moreover, deep RNA-seq has greater specificity
and sensitivity enabling detection of low expression and rare
transcripts as well as cell- and tissue-specific lncRNAs (Wang
et al., 2014; Liu et al., 2015; Li et al., 2016). Thus, an important
parameter of RNA-seq for accurate quantification is read depth.
For RNAs of moderate abundance, ∼30–40 million reads are
needed whereas for higher coverage (e.g., detecting rare and
lowly expressed transcripts), reads of up to 500 million are
recommended (Fu et al., 2014).

RNA-seq and next generation sequencing (NGS) has
expanded significantly and over 400 methods have been

established over the last decade (Hadfield and Retief, 2018).
Emerging approaches include single-cell RNA-seq (scRNA-seq)
which examines gene expression at a single-cell resolution,
or assay for transposase-accessible chromatin sequencing
(ATAC-seq) which locates regions of open chromatin, in
genomic regions devoid of protein-coding genes. However,
RNA-seq is not without its challenges. The analyses are more
difficult and require more computational power; it is more
costly; and multiple cycles of polymerase chain reaction
(PCR) may introduce some amplification bias (Uchida, 2017).
Importantly, lncRNA discovery is limited by annotations and
genome build accuracy.

LncRNAs are difficult to annotate because of their low
expression levels, our limited understanding of their sequence-
function relationship and their lack of evolutionary conservation.
Thus, lncRNAs are currently annotated primarily based on
transcriptomic evidence (Uszczynska-Ratajczak et al., 2018).
The 2 main annotation approaches are automated or manual.
With manual annotation, humans strategically put together
transcriptomic and genomic data to build models that can
create relatively accurate annotations. Automated annotation
uses transcriptome assembly approaches that are quick and
not costly, but typically result in incomplete and inaccurate
annotations. To date, manual annotations are more accurate.
Moreover, manual annotations have a higher quality assessment
of lncRNA coding potential (via mass spectrometry, PhyloCSF,
UniProt, and Pfam) (Sonnhammer et al., 1998; Apweiler et al.,
2004; Lin et al., 2011). The most widely used manual annotation
is GENCODE, followed by Reference Sequence (Refseq) (Harrow
et al., 2012; Pruitt et al., 2014; Fang et al., 2018). There has
been a historical bias toward using cell lines, adult tissues and
tumor samples to build these reference databases. LncRNAs
specifically expressed in rare cell populations, in response to
various environmental stimuli, and in development may be
excluded from these annotations. As technologies continue to
advance, we predict that these databases will become more
comprehensive with higher confidence lncRNA annotations.

How to Study lncRNAs
In order to study lncRNAs and their epigenetic and non-
epigenetic functions, an arsenal of molecular biology techniques
are employed by scientists. In Table 2, we outline the most
commonly used methodologies to study lncRNA-chromatin and
lncRNA-protein interactions. To identify chromatin associated
lncRNAs, approaches have been broadly classified into either
“one-to-many” or “all-to-all.” One-to-many approaches include

TABLE 1 | Methods to detect a lncRNA.

Method Function Advantages Disadvantages Example lncRNA

Microarrays To detect RNAs High throughput;
computationally manageable

Background noise from
cross-hybridizations or weak binding

HOTAIR, STEEL (Rinn
et al., 2007; Man et al.,
2018)

RNA sequencing To detect RNAs Able to detect new transcripts;
high sensitivity with increased
read depth

LncRNA discovery limited by
annotations and genome build
accuracy

GATA6-AS (Neumann
et al., 2018)
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TABLE 2 | Methods to study lncRNA function.

Method Function Advantages Disadvantages LncRNA example Method
Reference

Chromatin Isolation
by RNA purification
(ChIRP)

To identify
lncRNA-chromatin
interactions

Probes can be designed
without knowledge of
structure or functional
domains of target lncRNA

Background noise from
non-specific binding

MEG3, HOTAIR (Chu
et al., 2011; Iyer et al.,
2017)

Chu et al., 2011

Capture hybridization
analysis of RNA
targets (CHART)

To identify
lncRNA-chromatin
interactions

Probes can be designed
without knowledge of
structure or functional
domains of target lncRNA

Background noise from
non-specific binding

NEAT1, MALAT1 (West
et al., 2014)

Simon et al., 2011

RNA antisense
purification (RAP)

To identify
lncRNA-chromatin
interactions

Longer probes mitigate
background noise

Need probes to overlap
entire length of lncRNA for
capture

XIST, FIRRE (Engreitz
et al., 2013;
Hacisuleyman et al.,
2014)

Engreitz et al., 2013

Mapping
RNA-genome
interactions (MARGI)

To identify
lncRNA-chromatin
interactions

Identifies native
RNA-chromatin interactions
in vivo and in vitro

Moderate sensitivity might
decrease detection of low
abundance
chromatin-associated
RNAs

XIST, SNHG1, NEAT1,
MALAT1 (Sridhar et al.,
2017)

Sridhar et al., 2017

Global RNA
interaction with DNA
sequencing
(GRID-seq)

To identify
lncRNA-chromatin
interactions

Identifies genome-wide
lncRNA-chromatin
interactions in situ

Moderate sensitivity might
decrease detection of low
abundance
chromatin-associated
RNAs

MALAT1, NEAT1 (Li X.
et al., 2017)

Li X. et al., 2017

Chromatin-
associated RNA
sequencing
(ChAR-seq)

To identify
lncRNA-chromatin
interactions

Identifies genome-wide
lncRNA-chromatin
interactions in situ

Moderate sensitivity might
decrease detection of low
abundance
chromatin-associated
RNAs

roX1 and roX2 in
Drosophila (Bell et al.,
2018)

Bell et al., 2018

RNA and DNA
interacting
complexes ligated
and sequenced
(RADICL-seq)

To identify
lncRNA-chromatin
interactions

RNase H and actinomycin
D decrease bias for nascent
transcripts; improved
genomic coverage and
unique mapping efficiency

Moderate sensitivity might
decrease detection of low
abundance
chromatin-associated
RNAs

MALAT1 (Bonetti et al.,
2020)

Bonetti et al., 2020

Chromosome
conformation capture
(3C)

Characterizing spatial
topology of long-range
DNA interactions

High throughput; many
variations have emerged

Risk of artifacts during data
analysis

ANRIL (Nakaoka et al.,
2016)

Dekker et al.,
2002a;

Lieberman-Aiden
et al., 2009; Han

et al., 2018

RNA
Immunoprecipitation
(RIP)

Identifies lncRNA-protein
interactions

Sensitive and specific for
RNA detection

Need specific antibodies for
protein targets

HOTTIP (Hu et al.,
2019)

Lerner and Steitz,
1979; Ule et al.,

2018

Cross-linking and
immunoprecipitation
(CLIP)

Identifies lncRNA-protein
interactions

No nucleases used; do not
need special
reagents/equipment

UV light can cause
mutations; low sensitivity

NEAT1 (Wen et al.,
2020)

Ule et al., 2003

RNA pull-down Identifies lncRNA-protein
interactions

Improved discovery of
weak/transient binding

Artificially increasing
lncRNA of interest may
generate false positives

STEEL (Man et al.,
2018)

Marín-Béjar and
Huarte, 2015

Chromatin
immunoprecipitation
(ChIP)

Identifies proteins
associated with specific
genomic regions

Can identify histone
proteins and histones with
modifications (e.g.,
methylation, acetylation)

Need specific antibodies HOTTIP and ANRIL
(Nakaoka et al., 2016;
Hu et al., 2019)

Massie and Mills,
2012; Xie et al.,

2016

RNA fluorescence
in situ hybridization
(RNA FISH)

Visualization of subcellular
localization of lncRNA

Branched chain
approaches can detect low
abundance lncRNAs with
single-cell resolution

Hybridization artifacts MEG3 (Cabili et al.,
2015)

Gall and Pardue,
1969

RNA interference
(e.g., siRNA, shRNA)

Guilt by association defined
by lncRNA knockdown

High knockdown efficiency Potential off-target effects
could lead to decreased
specificity; transfection
method artifacts

STEEL (Man et al.,
2018)

Dorsett and Tuschl,
2004; Taxman

et al., 2006

Antisense
oligonucleotides
(ASOs)

To silence lncRNA in order
to assess function

Ideal for targeting
non-coding nuclear RNAs

Potential off-target effects
could lead to decreased
specificity

MALAT1 (Gong et al.,
2019)

Crooke, 2017

Clustered regularly
interspersed short
palindromic Repeats
(CRISPR)

Ablate native lncRNA locus Can edit any regulatory
element (e.g., enhancer,
promoter, etc.); no mediator
machinery involved

Need to have
“CRISPRable” genomic
locus; challenge to study
primary human cell types

MANTIS, PRANCR
(Leisegang et al., 2017;
Cai et al., 2020)

Jinek et al., 2012
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chromatin isolation by RNA purification (ChIRP), capture
hybridization analysis of RNA targets (CHART) and RNA
antisense purification (RAP) (Chu et al., 2011; Simon et al.,
2011; Engreitz et al., 2013). These methods are based on
hybridizations of biotin-labeled probes targeted to lncRNAs of
interest, followed by pull-down of the associated chromatin
fraction. These techniques are limited by background noise from
non-specific binding. RAP has relatively less background noise
due to the use of longer probes, but these capture approaches
could all be improved with further background corrections (Li
and Fu, 2019). ChIRP, CHART, and RAP can be combined
with other techniques to discover more interactions within
a single experiment. One example is domain-specific ChIRP
(dsChIRP), a method by which lncRNAs domain-by-domain are
assessed to identify functional elements (Quinn et al., 2014). Deep
sequencing and/or mass spectrometry can be also be combined to
obtain more high-resolution data on lncRNA interactions.

All-to-all approaches enable global detection of RNA-
chromatin interactions across all RNAs. These methods include
mapping RNA-genome interactions (MARGI), global RNA
interaction with DNA sequencing (GRID-seq), and chromatin-
associated RNA sequencing (ChAR-seq) (Li X. et al., 2017;
Sridhar et al., 2017; Bell et al., 2018). More recently, RADICL-seq
(RNA and DNA interacting complexes ligated and sequenced)
was developed (Bonetti et al., 2020). These techniques are based
on a bivalent linker in which one end ligates to an RNA and
the other end ligates to a restriction-digested DNA. Specifically,
MARGI maps chromatin-RNA interactions through ligation of
a lncRNA to its target genomic sequences, generating RNA-
DNA chimeric sequences prior to sequencing. GRID-seq and
ChAR-seq are very similar but GRID-seq employs a linker with
2 restriction sites for a type IIS restriction enzyme, MmeI,
followed by digestion to produce size-specific products. On the
other hand, ChAR-seq employs sonication of ligated products
to generate smaller fragments prior to library preparation.
RADICL-seq is similar to GRID-seq in that its linker also has
2 restriction sites (for EcoP15I), but it also uniquely employs
RNase H and actinomycin D to reduce bias toward abundant
nascent transcripts. These all-to-all methods are limited by their
moderate sensitivity, which could decrease the detection of low
abundance chromatin-associated RNAs.

To visualize 3D chromatin interactions, chromosome
conformation capture (3C) has historically been used to
characterize long-range DNA contacts (Dekker et al., 2002a;
Han et al., 2018). Many adaptations of this technique exist,
including chromosome conformation capture-on-chip (4C),
or chromosome conformation capture carbon copy (5C).
These variations require knowledge of the target loci, but
another adaptation referred to as Hi-C, provides unbiased
locations of chromatin interactions across the genome
(Lieberman-Aiden et al., 2009).

To study lncRNA-protein interactions, scientists utilize
RNA immunoprecipitation (RIP), cross-linking and
immunoprecipitation (CLIP), and RNA pull-down (Lerner and
Steitz, 1979; Ule et al., 2003, 2018; Marín-Béjar and Huarte, 2015).
Another immunoprecipitation-based approach is chromatin
immunoprecipitation (ChIP) which identifies protein-DNA
interactions (Massie and Mills, 2012; Xie et al., 2016). These

techniques have further advanced in recent years. For example,
RIP can be combined with APEX (engineered ascorbate
peroxidase)-catalyzed proximity biotinylation of endogenous
proteins (APEX-RIP) to improve the spatial resolution of
RNA mapping (Kaewsapsak et al., 2017). A recent study
used APEX-RIP to generate a transcriptome-wide RNA atlas
(Fazal et al., 2019).

Another powerful technique is RNA fluorescence in situ
hybridization (FISH) which allows researchers to visualize
RNA and DNA molecules while retaining cell morphology
(Gall and Pardue, 1969; Collins et al., 1997; Cabili et al.,
2015). The quantitative strength of this assay has increased
with improvements of the branched DNA signal amplification
technology to amplify the signal 1,000–10,000-fold. FISH
improves the detection of lowly expressed lncRNAs.
Recently, fluorescence in situ RNA sequencing (FISSEQ) was
developed (Lee et al., 2015). FISSEQ provides high throughput
information on tissue-specific gene expression while maintaining
spatial context.

To silence lncRNAs and study their functions, there are many
well-established techniques. There is RNA interference (RNAi),
which is widely used, and is very efficient at knocking down
RNAs (Watts and Corey, 2012; Chery, 2016). RNAi works best
at targeting cytoplasmic lncRNAs. To silence nuclear lncRNAs,
antisense oligonucleotides (ASOs) can be used in which RNase
H is recruited to hydrolyze RNA in a DNA: RNA complex,
causing transcriptional silencing of the target lncRNA. Finally,
there is clustered regularly interspaced short palindromic repeats
(CRISPR) which is similar to RNAi except that it is not reliant
on mediator machinery (Jinek et al., 2012; Awwad, 2019).
CRISPR can directly target genomic regions, allowing scientists
to target regulatory regions like promoters or enhancers. CRISPR
interference (CRISPRi) has been used for large-scale, systematic
lncRNA screens in cell lines, demonstrating how this tool can
be used to identify lncRNAs and further study their functions
(Koch, 2017; Liu et al., 2017, 2020; Cai et al., 2020). Importantly,
not all lncRNAs can be studied using CRISPR because CRISPR
efficiency is affected by internal or bidirectional promoters
(Goyal et al., 2017).

LncRNAs are a highly heterogeneous and functionally diverse
class of molecules. As we illustrate in this section, there
is a growing number of methods that enable functional
characterization of lncRNAs. Many of these methods can
be combined to efficiently map the lncRNA interactome.
The data generated are increasingly being archived on a
multitude of public databases. We direct readers to reviews
that outline existing lncRNA databases (Peng et al., 2020;
Pinkney et al., 2020). There is no doubt that high-throughput
technologies will continue to advance to produce higher quality
lncRNA data and improve our overall understanding of their
molecular functions.

ANGIOGENESIS

The de novo formation of blood vessels from angioblasts and
circulating hematopoietic stem cells is called vasculogenesis
(Cines et al., 1998). In the absence of healthy vascular
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development, embryonic lethality results. Post-natally, new
blood vessels form from pre-existing blood vessels in a
closed cardiovascular system in a process called angiogenesis.
Angiogenesis plays an important role in development, wound
healing, and many other physiological processes (Schmidt and
Carmeliet, 2010). ECs are instrumental in the orchestration of
angiogenesis. It is a highly choreographed cascade of events
that involves both exogeneous (e.g., hypoxia and VEGF) and
endogenous regulatory inputs. There are two main types
of angiogenesis: sprouting angiogenesis and intussusceptive
angiogenesis. In sprouting angiogenesis, as the name suggests,
new blood vessels grow via “sprout” formation from existing
vessels through EC proliferation and migration (Ackermann
et al., 2014). In contrast, intussusceptive angiogenesis, also
referred to as splitting angiogenesis, there is little dependence
on EC proliferation and migration. Instead, the ECs reorganize,
and the cells invade the lumen forcing the vessel to split
(Konerding et al., 2012). Both forms of angiogenesis, which are
believed to occur in nearly all organs and tissues, produce new
vasculature, most often in capillary beds (Adair and Montani,
2010). Sprouting angiogenesis, hereafter angiogenesis, is better
understood and the most well-studied. As such, it will be the
focus of this review.

A multitude of factors work together in a dynamic network
to maintain tight regulation of angiogenesis. This is to prevent
insufficient or over-vascularization from occurring. A major

environmental regulator is hypoxia, which can be defined as
an imbalance between oxygen supply and demand. The main
intracellular signaling molecule is hypoxia inducible factor
(HIF), a transcription factor comprised of HIF-alpha and HIF-
beta subunits (Shweiki et al., 1992). The HIF-alpha subunit is
functionally regulated by oxygen-dependent post-translational
modifications of prolyl residues. In normoxia, the prolyls are
hydroxylated, and Von Hippel-Lindau (VHL) recruits the E3
ubiquitin ligase complex to ubiquitinate the HIF-alpha subunits
and make them a target for proteasomal degradation (Chen
et al., 2009). In contrast, in hypoxic conditions, there is no
hydroxylation and therefore no subsequent ubiquitination. Thus,
HIF is not degraded and instead accumulates and translocates to
the nucleus. Together with the constitutively expressed HIF-beta,
it can bind to the hypoxia-responsive cis-DNA element (HRE)
and modify transcription of a number of genes, many of which
are involved in angiogenesis. This includes genes like matrix
metalloproteinase-2 (MMP-2), angiopoietin-2 (Ang-2), Tie-2,
PDGF, Delta-like 4 (DLL4) and many more factors. However,
the most important target is arguably vascular endothelial growth
factor (VEGF). The development of normal vasculature is heavily
dependent on a VEGF gradient (see Figure 2). When the gene
dose of VEGF is reduced by 50%, it causes embryonic lethality
due to vascular deficiencies (Carmeliet et al., 1996; Ferrara
et al., 1996). Conversely, overexpression of VEGF, as seen in
tumors, causes exuberant EC activation, leading to a disorganized

FIGURE 2 | Endothelial heterogeneity in the angiogenic response. New blood vessels develop from a pre-existing closed cardiovascular system, a process termed
angiogenesis. (A) In regions of hypoxia, there is an increase in the release of the pro-angiogenic ligand VEGF. An inverse gradient is established between free oxygen
concentration and VEGF. (B) Quiescent endothelial cells respond to VEGF and compete to be the leader or the “tip” of the newly forming blood vessel. (C) The cell
that becomes the tip cell represses expression of tip markers in adjacent cells, which are known as stalk cells. Stalk cells proliferate to form the body of the vessel.
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vasculature (Jain, 2005). Since VEGF is a potent regulator of
angiogenesis, VEGF is often targeted therapeutically to treat
diseases in which this process is dysregulated.

In healthy adult blood vessels, vascular ECs exhibit a
low rate of cell number turnover (Sender and Milo, 2021).
Adult humans exhibit approximately 1 trillion ECs, with a
mean life span typically of 3–10 years. This long-life span
can be contrasted with red blood cells or circulating white
blood cells, which approximate 120 and 7 days, respectively.
Importantly, the basal low rate of turnover of ECs can be
markedly augmented. Our current understanding of angiogenesis
can be encapsulated by the tip-stalk paradigm (see Figure 2).
Once hypoxia has helped establish the VEGF gradient from
non-endothelial cell types (e.g., macrophages), ECs respond
and begin to migrate toward this angiogenic stimulus. These
ECs are called “tip cells,” and they are morphologically
characterized by filopodia and stress fibers, which facilitate
invasion into the surrounding tissue and creates a clear path
for sprouting to commence (Eilken and Adams, 2010). VEGF
binds to vascular endothelial growth factor receptor 2 (VEGFR2)
receptors in tip cells, activating DLL4, which then binds to
Notch receptors in adjacent ECs (Adams and Alitalo, 2007).
Notch signaling is activated in adjacent ECs and suppresses tip
genes, such as VEGFR2 and DLL4, to prevent these ECs from
also becoming tip cells. These cells are referred to as “stalk
cells.” In addition to positional identity, stalk cells are highly
proliferative, lack filopodia and contribute to lumen formation.
They express soluble VEGFR1 (sVEGFR1), which sequesters
VEGF-A in a regulatory manner to prevent VEGF-induced
signaling (del Toro et al., 2010).

Once multiple sprouts have formed, tip cells of different
sprouts will anastomose with each other, which is believed
to occur through filopodial interactions (Bentley et al.,
2009). This creates vessel networks. Wnt signaling is also
important in angiogenesis. Specifically, the interplay between
Notch signaling and Wnt signaling causes an upregulation of
β-catenin expression. β-catenin is important in stabilizing tight
junctions and activating PDGF-B expression. PDGF-B promotes
recruitment of mural cells/support cells, which is an indicator
of healthy and mature vessels and prevents vessel “leakiness”
(Gavard and Gutkind, 2008; Reis et al., 2012). Lumenization and
blood flow will further stabilize these new vessel connections
(Chappell et al., 2011; Potente et al., 2011). Once the vessels have
been perfused, the ECs will move toward a quiescent phenotype.
It is important to note that the underlying mechanisms, in
particular of these final phases of sprouting angiogenesis, are not
well understood.

As inferred from above, hemodynamic forces must regulate
angiogenesis. In regions of the body in which angiogenesis occurs
such as in muscle that undergoes remodeling following exercise,
there are markedly increased levels of shear stress. In contrast,
there is low shear stress in a tumor. Of note, angiogenesis occurs
at both these levels of shear stress, though in opposite directions
(Kaunas et al., 2011). In normal physiological conditions, shear
stress varies depending on the vessel type. In arteries, shear
stress can range between 10 and 70 dynes/cm2, whereas in veins,
shear stress can range between 1 and 6 dynes/cm2 (Lipowsky,
1995; Malek, 1999). Thus, it is not the absolute value of shear

stress that induces angiogenesis, but instead, the deviation
from normal levels detected by the ECs that stimulates this
physiological response.

NUCLEAR ENDOTHELIAL-ENRICHED
ANGIOGENIC lncRNAs

In the last several years, lncRNAs that regulate biological
processes like angiogenesis have emerged. In this section, we will
highlight angiogenic lncRNAs that act through chromatin-based
mechanisms to effect angiogenesis, including STEEL, GATA6-AS,
and MANTIS (Table 3). These lncRNAs are also of particular
interest because they are regulated by environmental stimuli that
regulate angiogenesis: hemodynamic forces and hypoxia.

STEEL
STEEL was the first flow-regulated, endothelial-enriched
lncRNA identified. STEEL is a pro-angiogenic lncRNA that
links decreased laminar shear stress with pro-angiogenic
programming. It is downregulated by laminar flow (10
dynes/cm2) and enriched in microvascular ECs (Man et al.,
2018). In static conditions, STEEL maintains eNOS and KLF2
expression at basal levels required for angiogenesis. Consistent
with its nuclear localization, we found evidence that STEEL
regulates eNOS and KLF2 by transcriptional mechanisms.
First, STEEL knockdown decreased heterogeneous nuclear
RNA (hnRNA) levels and decreased RNA polymerase II (Pol
II) loading at the proximal promoters of eNOS and KLF2.
Moreover, STEEL regulates chromatin accessibility, nucleosome
occupancy and histone 3 lysine 4 trimethylation (H3K4me3)
at both eNOS and KLF2 proximal promoters. Interestingly, a
feedback loop exists in which laminar shear stress (10 dynes/cm2)
induces high levels of eNOS and KLF2, which in turn represses
STEEL expression. In this way, STEEL functions as a rheostat
of angiogenesis that responds to shear stress conditions.
Mechanistically, they identified a lncRNA-protein interaction
that presents a new mechanism for genomic targeting of the poly-
ADP ribosylase 1 (PARP1), which contributes to transcriptional
regulation, DNA damage repair, and cardiovascular disease
(Chaudhuri and Nussenzweig, 2017). Using RNA pulldown
followed by mass spectrometry and RIP to identify and confirm
this interaction, respectively, and ChIP to demonstrate an effect
of STEEL knockdown on PARP1 occupancy at the eNOS and
KLF2 promoters. Together, these mechanistic studies of the
STEEL lncRNA provide evidence for epigenetic regulation
of gene expression and novel lncRNA-protein interactions.
The underlying mechanisms of these interactions require
further investigation.

Regarding its angiogenic functions, STEEL was shown to
affect blood vessel formation both in vitro and in vivo. Using
a Matrigel network assay in HUVEC, STEEL knockdown
decreased network formation while STEEL overexpression
increased network formation (Man et al., 2018). Cell
migration is characteristic of tip cells and cell proliferation
is characteristic of stalk cells. Both assessments are key measures
of sprouting angiogenesis and were therefore examined. As
expected, through scratch wound assay, carboxyfluorescein
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TABLE 3 | Summary of endothelial-enriched angiogenic lncRNA function.

LncRNA Epigenetic mechanism of action Function in angiogenesis References

STEEL In static conditions, STEEL is recruited to EC proximal promoter
regions, eNOS and KLF2, where STEEL’s association will
enhance transcription.

STEEL increases angiogenesis in vitro
and in vivo.

Man et al., 2018

GATA6-AS Hypoxia-responsive GATA6-AS interacts with LOXL2 and
deactivates H3K4me3 to repress transcription of COX-2 and
POSTN.

GATA6-AS increases sprouting in vitro
but decreases blood vessel formation
in vivo.

Neumann et al.,
2018

MANTIS When JARID1B is repressed, MANTIS increases and associates
with BRG1, which is associated with the SWI/SNF remodeling
complex and is stabilized by BAF155.

MANTIS increases transcription of
pro-angiogenic factors (i.e., COUP-TFII,
SMAD6, SOX18) in vitro.

Leisegang et al.,
2017, 2019

succinimidyl ester (CFSE) labeling and bromodeoxyuridine
(BrdU) incorporation, STEEL overexpression promoted EC
proliferation and migration. These results were confirmed
in vivo using a mouse model. Collagen modules with stromal
cells were coated with either control or STEEL overexpressing
ECs transduced and implanted into immunocompromised
mice. Using micro-computed tomography (micro-CT) imaging,
it was found that STEEL-transduced implants had more
vessels that were perfused compared to control implants,
which not only had fewer vessels, but also demonstrated
extravasation and pooling. Further examination of the STEEL-
transduced implants’ vascular networks revealed that the blood
vessels showed mural cell support, as indicated by smooth
muscle actin staining, demonstrating vessel maturity. Of note,
STEEL-induced angiogenesis did not display evidence of
morphologically abnormal vessels (e.g., contrast leakage, lack of
pericyte coverage).

GATA6-AS
Another endothelial-enriched lncRNA is the antisense
transcript of GATA6 (GATA6-AS). GATA6-AS is upregulated
approximately 2.5-fold under chronic hypoxia (24 h) and
localized primarily to the nucleus (Neumann et al., 2018). Using
mass spectrometry, it was found that GATA6-AS interacts
with lysyl oxidase-like 2 (LOXL2), a known hypoxia regulator
(Bignon et al., 2011). Nuclear LOXL2 is a known co-repressor
of transcriptional activity and deactivates H3K4me3. With
GATA6-AS repression, there was a 30% decrease in H3K4me3,
which also occurred under hypoxia. Curiously, when LOXL2 was
repressed, H3K4me3 was increased, and the majority of GATA6-
AS regulated genes were inversely expressed when compared
to GATA6-AS repression. Cyclooxygenase-2 (COX-2) and
periostin (POSTN) were more closely examined with ChIP-PCR.
COX-2 catalyzes the production of prostaglandins in ECs, which
contributes to flow-mediated vasodilation whereas POSTN acts
through Erk/VEGF signaling to stimulate angiogenesis (Koller
et al., 1993; Duffy et al., 1998). GATA6-AS silencing markedly
decreased H3K4me3 at the promoter regions of both these
genes, pointing toward an epigenetic role for GATA6-AS on EC
gene expression.

It was argued that GATA6-AS regulates angiogenesis through
endothelial-to-mesenchymal transition (EndMT), a process that
can be induced by hypoxia (Neumann et al., 2018). Using
an EndMT-assay, repressing GATA6-AS in HUVECs largely

inhibited EndMT. Further in vitro analysis of angiogenesis using
a spheroid assay showed that GATA6-AS silencing significantly
decreased sprouting. GATA6-AS repression decreased cell
migration, but it did not affect proliferation or apoptosis. The
effect GATA6-AS has on the EndMT process may in turn,
be affecting angiogenic potential. Using an in vivo immune
deficient mouse model, HUVEC transfected with control
GapmeRs or GapmeRs against GATA6-AS were transplanted.
Through histological visualization, GATA6-AS repressed cells
had a marked increase in the number of perfused, mature
blood vessels compared to controls. These in vivo findings are
contradictory to the in vitro results. The decrease in sprouting
in vitro may be compensated for through other mechanisms
in vivo. LOXL2 in the extracellular matrix is also involved in
angiogenesis. When LOXL2 was repressed, there was a decrease
in sprouting. Interestingly, LOXL2 did not decrease with GATA6-
AS silencing. It is clear GATA6-AS is regulating angiogenesis, but
the mechanisms require further study.

MANTIS
MANTIS is a flow-regulated lncRNA expressed by ECs. This
nuclear lncRNA was identified through inhibition of an
EC-enriched H3K4 lysine-specific demethylase 5B (JARID1B)
(Leisegang et al., 2017). MANTIS is not specific to ECs; it
is also expressed by smooth muscle cells. Steady, laminar
flow upregulates MANTIS and is mediated through KLF2 and
KLF4 (Leisegang et al., 2019). Moreover, when MANTIS was
repressed, HUVEC were unable to align in the direction of flow.
Using ChIP, JARID1B was bound to an H3K4me3 region near
the MANTIS transcription start site (TSS), which was further
increased with JARID1B silencing. Using mass spectrometry,
MANTIS was found to be highly associated with Brahma Related
Gene 1 (BRG1), an ATPase involved in the SWItch/Sucrose
Non-Fermentable (SWI/SNF) chromatin remodeling complex
and important for EC function. BRG1 is stabilized by BAF155.
With MANTIS silencing, there was marked reduction in BRG1
and BAF155 binding and the ability of BRG1 to bind to
target promoters.

Using CRISPR/Cas9, MANTIS was functionally inactivated
in HUVEC, resulting in significantly less tube formation and
sprouting. Silencing MANTIS yielded similar results and also
decreased cell migration. This also resulted in decreased mRNA
and protein expression of factors important in angiogenesis
including chicken ovalbumin upstream promoter – transcription
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factor 2 (COUP-TFII), SMAD6 and sex determining region Y-box
18 (SOX18). It should be noted that there are many other tip
and stalk genes that are also relevant that were not assessed in
this study. When these 3 factors are reduced, there is decreased
sprouting and yet, overexpression of these factors does not restore
sprouting to normal. However, the regulation of these proteins
through MANTIS may be important in maintaining healthy
sprouting in ECs. MANTIS was knocked down and ATAC-Seq
was conducted. BRG1 protein levels were unchanged, but at the
TSS of COUP-TFII, SMAD6 and SOX18, there was a decrease
in open chromatin. Using micrococcal nuclease (MN) digestion,
there was an increase in nucleosomal formation at the TSS of
these 3 genes when MANTIS was decreased. MANTIS repression
increased H3K27me3, and decreased RNA Pol II at the TSS of all
3 genes. In addition, silencing MANTIS reduced BRG1 binding
at the TSS of COUP-TFII, SMAD6 and SOX18. Since BRG1 is
known to play a role in nucleosome remodeling, this may suggest
that BRG1’s interactions with these proteins may be mediated
through MANTIS. Further study of MANTIS is needed to better
understand these interactions.

ANGIOGENIC lncRNAs IN DISEASE

The majority of lncRNAs that have been identified and
characterized have been in diseases. This include cancers (Jin
et al., 2020; Teppan et al., 2020; Zhou et al., 2020; Katsushima
et al., 2021), diabetes (Taheri et al., 2020; Xu E. et al., 2020; Ismail
et al., 2021), cardiovascular diseases (Fang et al., 2020; Meng et al.,
2020; Yeh et al., 2020) and ischemic stroke (Gan et al., 2021;
Wolska et al., 2021). In this section, we will focus on angiogenic
lncRNAs enriched in disease and their epigenetic functions. We

will highlight some of the most extensively studied lncRNAs:
MALAT1, MEG3 and ANRIL. A summary of these as well
as other more recently published disease-associated angiogenic
lncRNAs can be seen in Table 4 (Zhou et al., 2016; Li Y. et al.,
2017; Ruan et al., 2018; Niu et al., 2020; Xu X. et al., 2020; Zhang
H. et al., 2020; Biswas et al., 2021).

MALAT1
MALAT1, as the name suggests, is implicated in protean cancer
cell types. It is extremely abundant in multiple cell types,
including vascular ECs (Gutschner et al., 2013; Michalik et al.,
2014; Yan et al., 2016). Primarily localized in the nucleus as part
of nuclear speckles, MALAT1 associates with the serine/arginine
(SR) family of pre-mRNA splicing factors such as SRSF1/2/3; it
plays an important role in alternative splicing. When MALAT1 is
silenced, it results in reduced nuclear speckle association of many
pre-mRNA splicing factors including SF1, U2AF65, SF3a60,
and U2snRNP in vitro (Tripathi et al., 2010). MALAT1 may
have species-specific function. Unexpectedly, Malat1 knockout
mice evidenced no change in nuclear speckle markers compared
to wildtype mice (Nakagawa et al., 2012). This finding in
mice was confirmed by other studies (Eißmann et al., 2012;
Zhang et al., 2012).

MALAT1 also plays a critical role in transcriptional regulation,
through direct binding to the 3′ end of actively transcribing
gene bodies, and mediating localization of unmethylated proteins
in nuclear speckles (Engreitz et al., 2014). MALAT1 functions
as a molecular scaffold for unmethylated polycomb 2 proteins
(PC2), E2F transcription factor, and histones involved in active
transcription and the transcriptional coactivator complex (Yang
et al., 2011). MALAT1 has a role in regulating expression of

TABLE 4 | Summary of disease-associated angiogenic lncRNA function.

LncRNA Disease Epigenetic mechanism of
action

Function in angiogenesis References

HOX transcript antisense
RNA (HOTAIR)

Diabetic retinopathy Histone methylation, histone
acetylation, DNA methylation

HOTAIR regulates glucose-mediated
increases of angiogenesis in diabetic
retinopathy

Biswas et al., 2021

Small nucleolar RNA host
gene 14 (SNHG14)

Hepatocellular carcinoma SNHG14 upregulates PABPC1
expression via H3K27
acetylation

SNHG14 promotes proliferation and
tube formation in endothelial cells

Zhang H. et al.,
2020

LINC00337 Colorectal cancer LINC00337 recruits DNMT1 to
CNN1 promoter, which inhibits
its transcription and increases
VEGF-mediated angiogenesis

LINC00337 increases tumor growth
and microvascular density

Xu X. et al., 2020

RAB11B Antisense RNA
1 (RAB11B-AS1)

Breast cancer, osteosarcoma RAB11B-AS1 increases RNA
Pol II in hypoxia to upregulates
VEGFA and ANGPLT4

HIF2 induces RAB11B-AS1 which
increases angiogenic factors

Niu et al., 2020

Metastasis associated
lung adenocarcinoma
transcript 1 (MALAT1)

Multiple cancers Formation of molecular
scaffolds, splicing and
regulating histones and
transcription factors

MALAT1 increased proliferation,
sprouting and migration in ECs

Li Y. et al., 2017

Maternally expressed 3
(MEG3)

Idiopathic pulmonary fibrosis,
cholestatic liver injury

MEG3 interacts with JARID2
which recruits PRC2

MEG3 regulates NOTCH and VEGF
pathways

Ruan et al., 2018

Antisense non-coding
RNA in the INK4 locus
(ANRIL, CDKN2B,
CDKN2B-AS1)

Coronary heart disease,
ischemic stroke, type 2
diabetes, atherosclerosis

Promoter methylation,
chromatin modifications,
alternative splicing and
post-transcriptional
modifications

High glucose upregulates ANRIL in
retinal ECs and is involved in VEGF
regulation

Zhou et al., 2016
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cyclins and cell cycle kinases. Specifically, it regulates S-phase
cyclins, p21 and p27Kip1 in mouse (Michalik et al., 2014).
Overall, MALAT1’s abundance in the cell, varied half-life and
structural stability conferred by its 3′ end triple-helix structure,
contributes to its functional stability and diversity.

In gastric cancer, MALAT1 promotes vascular mimicry and
angiogenesis to establish tumorigenicity and metastasis (Li Y.
et al., 2017). When MALAT1 is repressed in HUVEC, ECs were
no longer able to form vessels via the tube formation assay.
Knockdown was also able to increase EC permeability. With
hypoxia, MALAT1 is upregulated and enhances proliferation
of ECs in vitro. In another study by Michalik et al., MALAT1
knockdown in ECs increased sprouting and migration, but
decreased stalk cell proliferation via cell cycle inhibition.
Examining a mouse knockout of Malat1, scientists found no
affect in adults, but it reduced vascular proliferation and
network formation in embryonic retina. In the hind limb
ischemia model, Malat1 deficiency decreased neovascularization,
capillary density and recovery of blood flow. In thyroid
tumors, MALAT1 promotes Fibroblast Growth Factor 2 (FGF2)
secretion from tumor-associated macrophages into the tumor
microenvironment to mediate angiogenesis (Huang et al., 2017).
Together, the role of MALAT1 in angiogenesis is conferred by
its role in alternative splicing, molecular scaffold formation and
binding to actively transcribed gene loci, in particular the cell
cycle genes. Clearly, MALAT1’s functions are diverse.

MEG3
Maternally expressed gene 3 (MEG3) is a nuclear and EC-
enriched lncRNA that exhibits multiple mRNA transcript
variants (Zhang et al., 2010). It is also an imprinted gene
(Michalik et al., 2014). Imprinting is an epigenetic phenomenon
in which monoallelic silencing of some genes occurs in a parent-
of-origin specific manner (Autuoro et al., 2014). This process is
thought to be regulated by lncRNAs, though the mechanisms
have yet to be fully elucidated. MEG3 is encoded by the imprinted
DLK1-DIO3 locus, and it was found that it interacts with Jumonji
And AT-Rich Interaction Domain Containing 2 (JARID2), an
important component of PRC2 in pluripotent stem cells (Kaneko
et al., 2014). This interaction is needed in order to recruit and
assemble PRC2 at a subset of pluripotent stem cell genes. This
suggests that the interplay of these RNA-based interactions may
participate in the epigenetic regulation of genes involved in the
process of transitioning stem cell pluripotency to differentiation.
MEG3’s binding sites also have GA rich regions critical to guiding
MEG3 to chromatin through the formation of RNA-DNA triplex
structures (Mondal et al., 2015).

MEG3 was shown to be among the top 10 most abundant
lncRNAs in HUVEC, strongly suggesting a clear biological
role in ECs (Michalik et al., 2014). It also inhibits VEGF
and Notch pathways, which we know are important signaling
pathways in angiogenesis (Gordon et al., 2010). Adding to
this, MEG3 expression is also upregulated by hypoxia. Ruan
et al. overexpressed constitutive HIF-1alpha and found increased
activity in the MEG3 promoter. Next, they examined chronic
treatment (24 h) of pro-angiogenic growth factors like VEGF,
bFGF and Transforming Growth Factor β (TGFβ). There was
no effect on MEG3 expression, but there were still notable

angiogenic effects. MEG3 knockdown markedly decreased
VEGFR2 mRNA and protein expression in HUVEC, which then
inhibited cell migration. Moreover, it impaired the ability of ECs
to form tube-like structures and significantly decreased sprouting
from spheroids in both normoxic and hypoxic conditions
(Ruan et al., 2018). It also was found that genes of the TGFβ

signaling pathway are direct targets of MEG3 and that MEG3
binds to distal regulatory sites of these genes. Thus, even
though there was not a direct effect with pro-angiogenic factors,
the downstream factors of these angiogenic pathways are still
indirectly regulated by MEG3.

MEG3 can be characterized as a tumor suppressor important
in cell cycle regulation and apoptosis (Li et al., 2015). Long-range
interaction between distal loops of MEG3 secondary structure
forms a pseudoknot which allows MEG3 to upregulate p53
expression (Li et al., 2015; Uroda et al., 2019). MEG3 allelic
loss of locus is associated with meningioma pathogenesis and
progression (Zhang et al., 2010). Expression of MEG3 in human
meningioma cell lines clearly shows marked suppression of
tumor cell growth and activation of p53. MEG3 also regulates
age-associated decline in endothelial function; MEG3 was
significantly upregulated in senescent HUVEC (passages 16–18)
compared to earlier HUVEC passages (3–4) (Boon et al., 2016;
He et al., 2017; Wu et al., 2017). Scientists found that when
Meg3 was repressed in HUVEC, age-mediated inhibition of
sprouting was stopped, implying that Meg3 silencing could be a
potential way to rescue age-associated impairments in angiogenic
potential. In the brain, Meg3 null mice exhibit enhanced vascular
density (Gordon et al., 2010). Examining this closer, Meg3 null
mice, showed increased VEGFA, VEGFR1, DLL4, among other
angiogenic genes. It was previously shown that p53 could bind to
Sp1 sites in the VEGFA promoter to negatively regulate VEGFA
transcription (Pal et al., 2001). Thus, loss of MEG3 may decrease
p53 binding, thereby causing an increase in transcription of genes
involved in VEGF signaling. Clearly, MEG3 has an important role
as an angiogenic regulator.

ANRIL
ANRIL (also known as CDKN2B or CDKN2B-AS1) is located
on chromosome 9p21. GWAS identified this disease-associated
locus as a “protein gene desert” (Cheng et al., 2005; Iaconetti
et al., 2013; Wahlestedt, 2013; Carninci et al., 2021). ANRIL
is transcribed antisense to the INK4b-ARF-INK4a gene cluster
(Derrien et al., 2012). Exons 13-19 of ANRIL overlapped with
a high-risk haplotype associated with genetic predisposition to
coronary artery disease (CAD) (Broadbent et al., 2008). A genetic
association is also evident with ischemic stroke, aneurysms, and
peripheral vascular diseases (Zeggini et al., 2007; Foroud et al.,
2012; Kremer et al., 2015; Kong et al., 2016; Tan et al., 2019).
ANRIL is especially enriched in vascular smooth muscle cells
(VSMC) and mononuclear phagocytes within atherosclerotic
plaques (The Encode Project Consortium, 2012; Zollbrecht
et al., 2013; Bai et al., 2014; Nanda et al., 2016). ANRIL is a
better genetic predictor of cardiovascular diseases than classical
clinical measures such as blood pressure and dyslipidemia
(Holdt et al., 2010).

ANRIL has at least 20 linear or circular isoforms associated
with atherosclerosis (Burd et al., 2010; Hubberten et al., 2019).
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Though the mechanism(s) by which minor frequency alleles of
ANRIL still predispose to disease remain to be fully elucidated,
it is argued that ANRIL regulates this genomic region in cis
whereby the risk allele leads to an increase in linear ANRIL,
but reduced levels of circular ANRIL (Holdt and Teupser, 2018).
Linear ANRIL may function as a scaffold for epigenetic protein
complexes that stimulate pro-atherosclerotic cellular functions.
ANRIL is highly enriched in the nucleus, playing an active role
in chromatin modification (Zhou et al., 2016). It is regulated by
promoter methylation, transcription factors, alternative splicing
and post-transcriptional modifications. ANRIL interacts with
PRC1 & PRC2 to epigenetically repress neighboring genes such
as CDKN2A and CDKN2B in cis. ANRIL and CDKN2A form a
scaffold with H3K27me3 with polycomb Chromobox 7′′ (CBX7);
ANRIL with CDKN2B interact with PRC2 subunit SUZ12 (Yap
et al., 2010). Trans activity of ANRIL through PRC1/2 represses
distant genes that are dependent on the Alu elements found
in ANRIL and in target gene promoters. ANRIL creates a
scaffold for WD repeat-containing protein 5 (WDR5), a histone
H3K4 presenter and histone deacetylase 3 (HDAC3) coordinating
histone modification on target genes of vascular smooth muscle
cell phenotypes (Zhang C. et al., 2020).

ANRIL has been shown to be upregulated in human retinal
ECs stimulated by high glucose and diabetes. In diabetic
retinopathy, ANRIL regulates VEGF through interactions with
PRC2 components p300, miR200b, and enhancer of zeste
homolog 2 (EZH2) (Thomas et al., 2017). Since VEGF is
involved in stimulating vascular permeability, migration and
proliferation of ECs, ANRIL upregulating VEGF contributes to
promoting endothelial injury, which occurs via tumor necrosis
factor-alpha (TNFα)- nuclear factor kappa light-chain-enhancer
of activated B cells (NFkB)-ANRIL/YY-IL6 signaling pathways
(Zhou et al., 2016). Similarly, in a rat model with diabetes
and cerebral infarction, overexpression of ANRIL increased
VEGF expression, resulting in increased angiogenesis via NFkB
signaling (Zhang et al., 2017). ANRIL also regulates Akt
phosphorylation in ECs and scientists recently showed that
in mice, ANRIL improves cardiac function and post-ischemic
angiogenesis following myocardial infarction by upregulating
angiogenesis through Akt activation (Huang et al., 2020).
Finally, Zeng et al. recently showed that ANRIL levels were
elevated in the serum of thrombosis patients relative to
healthy patients (Zeng et al., 2019). To assess the effect
of ANRIL on angiogenesis, they took Sprague Dawley rats
and injected si-ANRIL and examined lumen formation. They
found that there were fewer lumens and smaller lumens in
the rats with repressed ANRIL relative to the control group,
confirming a role for ANRIL in angiogenesis. These disease
associations position ANRIL as a key target for treatment of
cardiovascular disease.

CHALLENGES ASSOCIATED WITH
STUDYING lncRNAs

There are many challenges associated with studying lncRNAs.
The first question when studying a lncRNA is verifying whether it
is truly a bona fide lncRNA. RNA-seq data is mapped to the most

recent build of the human genome. These reference databases
are not comprehensive with respect to lncRNA annotation,
thus limiting discovery. Moreover, lncRNAs are typically rare
transcripts. Many are only expressed in specific contexts (e.g.,
development, disease, specific environmental stimuli, etc.), which
can make discovery difficult. This review does not address the
emerging concepts on the role of lncRNAs as post-transcriptional
modifiers of gene expression and function. We and others have
recently addressed the cytoplasmic function of lncRNAs (Rashid
et al., 2016; Noh et al., 2018; Aillaud and Schulte, 2020; Ho et al.,
2021). We also acknowledge that a key concept, and one that
warrants deeper study, is the shuttling of lncRNAs in and out of
the nucleus. Moreover, the varied RNA transcripts derived from
specific lncRNA genes may have distinct subcellular locations. It
is paramount that the candidate lncRNA structure and diversity
be assessed before proceeding with detailed mechanistic and
functional studies.

The paradigm that a gene must have either protein-coding or a
non-coding function, but not both, is too simplistic. Some RNAs
have both coding and non-coding functions (Robb et al., 2004;
Fish et al., 2007). The sONE RNA, is a lncRNA antisense to eNOS
that exhibits exon/exon sense/antisense interactions. The sONE
locus also has a minor mRNA variant that encodes a protein
involved in the autophagy pathway. Human ECs have high levels
of eNOS mRNA, but low levels of sONE RNA. When sONE RNA
is overexpressed, there is decreased eNOS mRNA and protein
expression. Adding to this, sONE RNA is upregulated by hypoxia
in ECs and VSMCs. Notably, sONE is primarily localized to the
nucleus in normoxia, but with hypoxia, the sONE RNA is shuttled
into the cytoplasm.

LncRNAs exhibit protean intra-species allelic diversity.
Furthermore, it follows and has been noted that lncRNAs have
low inter-species sequence conservation, likely due to rapid
evolutionary turnover (Hezroni et al., 2015; Quinn et al., 2016).
For lncRNA homologs, generally the length of an alignable
sequence is about 5 times shorter than that of a protein-coding
gene. A normal lncRNA that is conserved between humans
and mice will have about 20% interspecies homology, which
decreases to about 5% in fish. As a result, lncRNAs may be absent
in model organisms, making it hard for scientists to not only
discover lncRNAs, but also to assess their in vivo function. There
is some sequence conservation in lncRNAs, typically in short
sequence islands, and perhaps this is because these are regions
that are required for specific interactions with other RNAs,
proteins or DNA (Kapusta and Feschotte, 2014; Quinn et al.,
2016; Ulitsky, 2016). However, there are other factors to consider
in the discussion of conservation besides sequence similarity
alone. In fact, scientists have identified many orthologous RNAs
with highly divergent sequences, that they would no longer be
identifiable as orthologs by sequence similarity alone, but their
function is preserved (Ponjavic et al., 2007; Ulitsky et al., 2011;
Ulitsky, 2016). Another factor is positional conservation in which
lncRNAs can be detected from syntenic loci even in the absence
of most, if not all sequence similarity. It is clear that we need
to define lncRNA conservation traits/signals. Another debated
factor is structural conservation. Scientists have shown that there
is limited association between secondary structure and sequence
conservation (Managadze et al., 2011; Yang and Zhang, 2015).
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Moreover, there is evidence that specific lncRNAs act through
specific tertiary or quaternary structural features, such as the
triplex elements at the 3′-termini of MALAT1 or Nuclear
Enriched Abundant Transcript 1 (NEAT1) (Wilusz et al., 2012).
Further study on lncRNA structural conservation is evidently
needed to improve our understanding on inter- and intra-species
lncRNA conservation.

NEW FRONTIERS: LncRNAs AS
DIAGNOSTIC AND THERAPEUTIC
TARGETS IN MEDICINE

As we look toward the next decade of lncRNA research,
it will be interesting to see more clinical studies evaluating
whether lncRNAs have the potential to be used as biomarkers
or therapeutic targets for clinical interventions to improve
disease outcomes. LncRNAs are lowly expressed, so we know
quantification in biological fluids will be challenging. Moreover,
they are poorly conserved across species making them difficult
to study using in vivo models of disease. However, lncRNAs can
be highly tissue-specific, which sets up these molecules to be very
specific biomarkers. To date, prostate cancer antigen 3 (PCA3) is
the only lncRNA approved as a clinical diagnostic biomarker for
early detection of prostate cancer (Groskopf et al., 2006).

As for targeting lncRNAs, many scientists agree that the key
will be through identifying the optimal delivery system. There
has been growing interest in recent years in extracellular vesicles.
Though we did not discuss it in this review, many lncRNAs,
especially those expressed in cancer, have also been shown to
be secreted by extracellular vesicles (Wu et al., 2017; Tellez-
Gabriel and Heymann, 2019; Zhao et al., 2019; Fan et al., 2020).
Extracellular vesicles are of interest because they are encapsulated
by a lipid bilayer, which overcomes concerns with stability. In
addition, extracellular vesicles have less immunogenicity and
higher in vivo stability compared to widely used viral and
non-viral vectors (Chen et al., 2021). Exosomes, a subtype
of extracellular vesicles, are currently being examined. They
have poor efficiency with respect to packaging large nucleic
acids, but this is overcome through integration with liposomes
or nanoparticles, which improves both specificity and control
of delivery. Recent work has found that exosome-liposome
hybrids were able to successfully deliver CRISPR-Cas9 systems
in vitro and in vivo (Lin et al., 2018; Tao et al., 2018). This
is particularly exciting for the future of precision medicine.
Importantly, exosomal studies are not without challenge. There
is a high degree of heterogeneity in vesicles, variability between

in vitro and in vivo findings, and difficulty in determining vesicle
origin or destination. Advances in isolating and characterizing
extracellular vesicle-associated lncRNAs will significantly help
move the field forward and has the potential to revolutionize
clinical medicine.

Notably, even once we are able to identify “druggable”
lncRNAs, it is still unclear what the downstream or off-target
effects would be and if they would be adverse. Until clinical trials
are conducted, the safety and efficacy of lncRNAs as therapeutic
targets remains unknown. Evidently, the emerging study of
lncRNAs has many challenges, but recent work underscores the
importance of the contribution of lncRNAs to the regulation of
angiogenesis in health and disease.

CONCLUSION

Our review is an overview of angiogenic long non-coding RNAs,
and their epigenetic regulation of the vascular endothelium. The
functional properties of the vascular endothelium are diverse
and heterogeneous between vascular beds. Our understanding
of angiogenesis to date has largely focused on protein signaling,
but recent work by scientists has revealed that long non-coding
RNAs, which are a functionally diverse class of molecules, are
involved in regulating this process. As the function of lncRNAs
is often dependent on their subcellular localization, nuclear
lncRNAs act as epigenetic modifiers. Scientists have begun to
identify and characterize a sub-class of lncRNAs: angiogenic
lncRNAs. This includes: STEEL, GATA6-AS, and MANTIS, and
the disease-associated angiogenic lncRNAs: MEG3, MALAT1, or
ANRIL. Taken together, these emerging concepts may provide a
novel avenue for therapeutic targets or biomarkers for disease in
the next decade.
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