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Introduction
Copy number variation (CNV) is a disturbance in the number of 
copies of a given DNA fragment1 and may be one of the follow-
ing types: deletion or duplication.2 Currently, the subject of the 
occurrence of CNV in the human genome is being researched 
more and more often3 because CNVs have been identified as a 
significant cause of structural variation in the genome, involving 
both duplications and deletions of sequences.4-6 For example, Li 
et al7 described strong associations between rare CNVs and 4 
major disease categories, including autoimmune, cardio-meta-
bolic, oncologic, and neurological/psychiatric diseases. Despite 
the great importance of detecting rare CNVs in the human 
genome, the current CNV detection tools are characterized by 
insufficient performance.8-11

There are 5 main strategies for detecting CNVs in whole-
exome sequencing (WES) data12: (1) paired-end mapping, (2) 
split read, (3) read depth, (4) de novo assembly of a genome, and 
(5) combination of the above approaches. The most popular 
method is read depth (26 tools reported by Zhao et al12), mainly 
due to the popularity of high-coverage next-generation 
sequencing (NGS) data.

A typical pipeline of detecting CNVs based on read depth 
consists of several steps: (1) mapping DNA reads to reference 
genome, (2) counting number of mapped reads in sequencing 
regions, (3) quality control, (4) selecting reference sample set, 
(5) normalizing read depth, and (6) segmentation and calling 
CNVs. Even though some of the applications do not have all of 
the steps listed above, eg, selecting a reference sample set, there 

is a typical stage for all CNV callers: counting the number of 
mapped DNA reads in sequencing regions. However, this pro-
cess in other applications is slightly different, eg, algorithms, 
parameter values, considered flags, etc; some different counting 
methods are presented below.

Herein, we present a comparison of strategies for counting 
the depth of coverage in other CNV calling tools. This article 
compares the theoretical advantages and disadvantages of vari-
ous methods of counting the depth of coverage and their influ-
ence on the number of CNVs detected by different CNV 
callers. What is more, theoretical considerations have been 
confirmed by experiments on a real data set; all scripts, test 
data, and evaluated applications are available online: https://
github.com/wkusmirek/cnv-depth-of-coverage-comparison.

Materials and Methods
Compared applications

As a part of our research, we compared the strategies for calcu-
lating the depth of coverage from the CODEX,13 CNVind,14 
CLAMMS,15 CANOES,16 CNVkit,17 exomeCopy,18 and 
ExomeDepth19 applications. All the algorithms compared are 
briefly described below and summarized in Table 1.

The CODEX13 and CNVind14 tools implement the same 
strategy for counting the depth of coverage. First, the applica-
tions expand each of the sequencing regions by flanking 10 kbp 
to the left and right. The default CODEX and CNVind algo-
rithms for counting the depth of coverage count reads that are 
mapped to the specified sequencing region and (1) the 
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mapping quality is greater or equal to 20, (2) the DNA read is 
not a duplicate, (3) the DNA read passed quality control filters, 
and (4) the read is the first DNA read or mate-pair reads. If the 
counting process with the mentioned parameter set does not 
return any result, then the last filter (the first read of mate-pair) 
is disabled; the depth of coverage for the investigated sample is 
recounted (without this filter) one more time.

The CLAMMS15 application does not implement its own 
strategy for counting the depth of coverage, but advises the use 
of external tools: samtools bedcov or GATK DepthOfCoverage. 
On the github page, the CLAMMS authors suggest setting 
the minimum mapping quality for a read to be counted to 30.

The CANOES16 tool expresses the depth of coverage in a 
slightly different way—as the total number of DNA reads 
that intersect with the investigated sequencing region. To 
count the depth of coverage table, bedtools20 multicov pack-
age with minimum mapping quality set to 20 is used. Other 
parameters are set to default values. The results include all 
DNA reads that intersect with the specified sequencing 
region (even if the start of the read does not belong to the 
investigated target).

The CNVkit17 implements the depth of coverage as the 
number of reads whose origin is mapped in a given sequencing 
window. The application then normalizes the obtained number 
by the length of the sequencing window.

The exomeCopy18 and ExomeDepth19 tools use the same 
countBamInGRanges function to count the depth of coverage. 
However, both applications set slightly different parameters 
for the mentioned function, which significantly affects the 
depth of coverage. First of all, the minimum mapping quality 
for exomeCopy is equal to 1, while for ExomeDepth this 
value is set to 20. Second, exomeCopy counts the DNA read 
as correctly mapped, with the default settings, if the start of 
the investigated DNA read is mapped in the specified 

sequencing region. On the contrary, ExomeDepth counts the 
DNA reads as correctly mapped if any intersection of the 
DNA read with the specified sequencing region is present. 
Moreover, the critical difference between the exomeCopy 
and ExomeDepth applications is the approach to paired-end 
tags. The exomeCopy application handles each DNA read 
independently, without checking that the read is correctly 
paired and where the second DNA read in the pair is mapped 
on the reference genome. However, ExomeDepth only con-
siders correctly paired reads; even if both DNA reads in a 
pair are mapped to the same sequencing region, the depth of 
coverage for that sequencing region is increased by 1 (not 2).

Workflow

The workflow of the research is presented in Figure 1. Briefly, 
the data processing began by counting the depth of coverage 
on each sequencing region by 7 applications: CANOES, 
CODEX, exomeCopy, ExomeDepth, CLAMMS, CNVkit, 
and CNVind. This process resulted in 7 raw depth of cover-
age tables, where consecutive samples are in columns, in 
rows—successive sequencing regions. Then, the quality con-
trol process was carried out on each 7 resulting raw depth of 
coverage tables. Next, each of the 7 depth of coverage tables 
was given as input of 7 CNVs callers, resulting in 49 CNV 
sets detected (7 tables of coverage depths × 7 CNVs detec-
tion applications). Finally, the resulting sets of CNVs were 
evaluated. All of the steps listed and the set of test data are 
characterized later in this section.

The first stage of our research was to count the coverage 
for each sequencing region in each sample using modules 
from different CNV callers. In our research, we used the 
CANOES, CODEX, exomeCopy, ExomeDepth, CLAMMS, 
CNVkit, and CNVind tools. This process resulted in 7 depth 
of coverage tables. Each of the tables had the same number 
of rows and columns, numerical values in the tables represent 
the depth of coverage of a given sample in a given sequencing 
region.

Then, the quality control process from the CODEX tool 
was applied on each of the resulting depth of coverage table. 
Briefly, all targets with median read depth across all samples 
below 20 or greater than 4000, targets shorter than 20 bp or 
longer than 2000 bp, with mappability factor below 0.9 and 
GC content below 20% or greater than 80% were removed. 
The process was applied to all coverage tables, from each cov-
erage table the same (not passing quality control filters) 
sequencing regions were removed.

After quality control, we normalized the depth of coverage 
tables and called CNVs by CODEX, CANOES, exomeCopy, 
ExomeDepth, CLAMMS, CNVkit, and CNVind tools. Each 
of the reported application was launched 7 times with different 
input depth of coverage table. What is more, for CODEX and 
exomeCopy tools, we did not divide samples into groups by 

Table 1. Comparison of depth of coverage calculation algorithms 
implemented in different CNVs detection tools.

Fl. 
SEq.

MIN. 
qUAl.

NORM. TEChN.

CANOES − 20 − bedtools multicov

CODEX 10 kbp 20 − R

exomeCopy − 1 − R

ExomeDepth − 20 − R

ClAMMS − 30 + samtools bedcov

CNVkit − 0 + Python

CNVind 10 kbp 20 − R

Abbreviations: CNV, copy number variation; Fl. seq., size of flanking sequences; 
Min. qual., minimum mapping quality; Norm., normalization to the length of 
the sequencing window; Techn., technology used to implement the depth of 
coverage calculation module.
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k-means21 algorithm as in Kuśmirek et al.22 For CANOES and 
ExomeDepth, we used default reference sample set selection 
algorithms—CANOES with k nearest neighbors algorithm23 
(kNN), where k is equal to 30 (default value), ExomeDepth 
also with kNN where k value is determined automatically by 
ExomeDepth software.

Finally, we have evaluated the resultant CNVs set of each 
pair of (1) depth of coverage table and (2) CNVs calling tool, 
comparing the resultant CNVs of the pair and the CNVs call 
set golden record provided by 1000 Genomes Consortium24 
generated based on the whole-genome sequencing (WGS) 
data. To accurately evaluate the results, the variants were cate-
gorized into short (encompassing 1 or 2 sequencing regions) 
and long (encompassing more than 2 sequencing regions) 
CNVs, as well as rare (frequency ⩽5%) and common (>5%) 
events.

Results
To compare different strategies for counting mapped DNA 
reads in sequencing regions and to present the impact on CNV 
calling results, we used 1000 Genomes project phase 3 WES 
data from 861 individuals (444 females and 417 males), includ-
ing 313 samples from Asia, 276 samples from Africa, 205 sam-
ples from Europe, and 67 samples from America. To speed up 
calculations we limited our research to chromosomes 1 and 11 

only. As a result of the quality control process, 2273 out of 
20 106 sequencing regions for chromosome 1 and 966 out of 
10 565 sequencing regions from chromosome 11 were removed.

Comparison of another depth of coverage tables

First, we compared the depth of coverage tables obtained from 
the other counting algorithms implemented in the CANOES, 
CODEX, exomeCopy, ExomeDepth, CLAMMS, CNVkit, 
and CNVind tools. The results of the comparison are presented 
in Figure 2. The diagram shows that the average depth of cov-
erage counted by the CODEX and ExomeDepth tools is 
smaller than the average depth of coverage counted by the 
CANOES and ExomeCopy tools. The main reason for this 
observation is that the CODEX and ExomeDepth tools count 
pairs of reads where the first read is mapped to the sequencing 
region; the CANOES and exomeCopy tools treat each DNA 
read independently. It follows that if we are dealing with a large 
sequencing region in which both DNA reads from a pair of 
paired-end tags are mapped, the CODEX and ExomeDepth 
applications increase the depth of coverage value by 1, while 
the CANOES and exomeCopy applications by 2. Moreover, it 
is worth noting that the diagrams for the CODEX and 
CNVind applications are identical—both applications count 
the depth of coverage in the same way. In addition, the graphs 

Figure 1. Research workflow. The input data for the study were a set of BAM files with the results of mapping DNA reads to the reference genome, a BED 

file containing the coordinates of the sequencing regions in WES, and the DNA sequence of the reference genome. The depth of coverage was counted 

using 7 strategies implemented in CANOES, CODEX, exomeCopy, ExomeDepth, ClAMMS, CNVkit, and CNVind. As a result of the depth of coverage 

counting, we obtained 7 other tables containing the depth of coverage in a given sequencing region for each sample. The resulting tables were used as 

input to the appropriately modified CANOES, CODEX, exomeCopy, ExomeDepth, ClAMMS, CNVkit, and CNVind tools to detect CNVs. As a result of the 

7 CNVs callers’ operation, we obtained 49 result sets of CNVs—7 CNVs calling tools were run 7 times, each time using a different table with the depth of 

coverage. CNV indicates copy number variation; WES, whole-exome sequencing.
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for the CLAMMS and CNVkit applications are also very sim-
ilar—they differ only in their outliers.

Moreover, the values of the depth of coverage in the 
NA06984 sample on the first 25 sequencing regions of chro-
mosome 11 are presented on panel B. In the mentioned dia-
gram, we can see that the 7 compared applications counted the 
depth of coverage from the same input BAM file very differ-
ently. In the diagram, we can see that, as expected, the greatest 
depths of coverage are counted by the algorithms implemented 
in the CANOES and exomeCopy applications. However, these 
values are not stable—there are sequencing regions for which 
CANOES and exomeCopy return nearly identical depth of 
coverage, while for other sequencing regions the depth can vary 
significantly. Moreover, a similar observation can also be seen 
for the CODEX, ExomeDepth, CLAMMS, CNVkit, and 
CNVind applications.

Comparison of another resultant CNVs data set

Second, we compared 49 result sets of CNVs detected using 
the CANOES, CODEX, exomeCopy, ExomeDepth, 
CLAMMS, CNVkit, and CNVind tools. Each of the CNVs 
callers was run 7 times with the different input depth of cover-
age table. The results for the chromosome 1 and chromosome 
11 data sets are shown in Figures 3 and 4, respectively.

The results showed that for exomeCopy (panel C), the 
resulting sets of detected CNVs are very similar regardless of 
the input depth of coverage table selected. On the contrary, for 
rare CNVs detected by the CODEX tool, the depth of cover-
age tables from the CODEX, CLAMMS, CNVkit, CNVind, 

and ExomeDepth tools yield better results than the depth of 
coverage tables from the CANOES and exomeCopy tools. 
Especially for rare events, the best results were obtained from 
the CLAMMS and CNVkit depth of coverage table.

A similar observation can be seen for the ExomeDepth 
tool—the best rare CNV sets yielded depth of coverage tables 
from the CLAMMS and CNVkit tools. Mentioned sets of 
rare CNVs detected were much better than the resultant sets of 
rare CNVs obtained from the CANOES and exomeCopy 
depth of coverage tables.

Moreover, different CNV callers detect a different num-
ber of CNVs from different ranges. By far the least FP (false 
positive; the situation where the caller report CNV in the 
investigated sample, but in reality, there is no CNV in this 
position of this sample) CNVs are detected by the CANOES 
tool. Unfortunately, this is also associated with a very low 
number of TP (true positive; the situation where the caller 
report CNV in the investigated sample, and in reality, there 
is the CNV in this position of this sample) calls detected. 
On the contrary, some tools detect a much larger number of 
rare TP calls. Unfortunately, as the number of detected TP 
calls increases, the number of rare FP calls detected also 
increases.

Discussion
To sum up, in this article, we indicated the problem of the diver-
sity of strategies for counting the depth of coverage in the WES 
data. There are many applications for detecting CNVs based on 
depth of coverage. One of the critical steps in these applications 
is the process of counting the depth of coverage table.

Figure 2. Comparison of the results of counting the depth of coverage with different tools. The figure presents the box plot (A) and course changes in the 

depth of coverage values (B) for chromosome 11 of the NA06984 sample. First, statistics of the counted depth of coverage values for each tool are 

different (A). Second, an interesting observation is that the other behavior of different counting depth of coverage strategies in the following sequencing 

regions. CNV indicates copy number variation.
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First, the presented research shows that the best methods of 
counting the depth of coverage are the algorithms implemented 
in the CLAMMS and CNVkit applications. Both ways allow 
obtaining much better sets of detected CNVs compared to 
counting the depth of coverage implemented in the CNVind, 
CODEX, ExomeDepth, CANOES, and exomeCopy tools. 
This observation concerns the rare CNVs and the CNV detec-
tion algorithms implemented in the CANOES, CLAMMS, 
CNVkit, CNVind, CODEX, and ExomeDepth tools. 
Moreover, this observation is reproducible for both independent 
data sets used in the study—chromosomes 1 and 11.

Second, some CNV detection tools are reasonably resistant 
to changing the input depth of coverage table. In this study, we 

proved that the exomeCopy applications give an approximately 
similar set of the resulting rare CNVs, regardless of the method 
of counting the depth of coverage table. This observation is 
quite surprising because, as presented in the study, the 7 inves-
tigated input depth of coverage tables are pretty different and 
represent another depth of coverage values, even for the same 
sample in the same sequencing region.

One of the main directions of research in the future that 
opens the presented study is to analyze the process of mapping 
DNA reads to the reference genome. In the proposed research, 
the input data was the set of BAM files, ie, the set of binary 
files containing information about mapping DNA reads to the 
reference genome. The BAM files set was created with the 

Figure 3. (Continued)
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Figure 3. Comparison of the results obtained by the CANOES, CODEX, exomeCopy, ExomeDepth, ClAMMS, CNVkit, and CNVind applications for 

chromosome 1 data set. The diagram shows the evaluation of the resulting CNVs sets for the CANOES (A), CODEX (B), exomeCopy (C), ExomeDepth 

(D), ClAMMS (E), CNVkit (F), and CNVind (G) tools. Each of the tools was run 7 times with different input depth of coverage tables counted by other 

methods (the 7 strategies for counting the depth of coverage tested in the experiment were shown in different colors). Each of the result sets of detected 

CNVs was divided based on frequency (common and rare) and length (short and long). The number of FP calls is presented on the vertical axis, and the 

number of TP calls on the horizontal axis. It is worth noting that for all applications, the results obtained using the coverage table from the CODEX and 

CNVind tools are identical—the CODEX and CNVind tools calculate the coverage depth in the same way. CNV indicates copy number variation; FP, false 

positive; TP, true positive.

BWA25 and mrsFAST26 applications.27 However, other appli-
cations and algorithms are also present for mapping DNA 
reads to the reference genome, such as Bowtie2,28 HISAT2,29 
and MUMmer4.30 In the future, we plan to check what impact 
the selection of different mapping algorithms has on the result-
ing BAM file and, as a result, on the resulting set of detected 
CNVs. In addition, other steps of CNV detection, which differ 
in other CNV callers, should be compared, eg, in the 

segmentation step, depending on the application, the Hidden 
Markov Model31 or the circular binary segmentation32 algo-
rithm is used.

Moreover, the presented research could be the starting 
point of developing a new algorithm for counting the depth 
of coverage table. This algorithm will at its base use the 
algorithms from the CLAMMS and CNVkit tools, as these 
algorithms give the best results. One approach might be to 
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extract the average depth of coverage from both tools—each 
application computes its depth of coverage table. The aver-
age of both tables is taken, which is the input table for the 
CNV detection process. We should also consider whether 
the mentioned averaging process should use arithmetic 
mean, but a weighted mean with completely different 
weights for different sequencing regions. Another approach 
that should be checked in the future would be to extend the 
BAM file in the process of mapping the DNA reads to the 
reference genome, eg, characterizing the site on the refer-
ence genome to which the given DNA read is mapped (eg, 
segmental duplication). This approach will require the 
extension and modification of the appropriate DNA reads 
mapping application. The additional mapping information 

in the BAM file could be used in the depth of coverage 
counting process and have a crucial impact on the resulting 
set of detected CNVs.

Conclusions
The detection of rare CNVs is crucial in the diagnosis of many 
genetic diseases. Despite the vast role of rare CNVs in the 
human genome, detection methods based on the depth of cov-
erage still do not obtain satisfactory results, mainly due to many 
FP calls. In this article, we compared different strategies for 
counting the depth of coverage in CNV detection applications. 
The results indicated that the best strategies for counting the 
depth of coverage are the methods implemented in the 
CLAMMS and CNVkit tools.

Figure 4. (Continued)
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Figure 4. Comparison of the results obtained by the CANOES, CODEX, exomeCopy, ExomeDepth, ClAMMS, CNVkit, and CNVind applications for 

chromosome 11 data set. The diagram presents a comparison of the different results of CNVs detected by another tool and with different input depth of 

coverage tables. The following panels show the results for the CANOES (A), CODEX (B), exomeCopy (C), ExomeDepth (D), ClAMMS (E), CNVkit (F), and 

CNVind (G) tools, and different algorithms for counting the depth of coverage are marked with other colors. CNV indicates copy number variation; FP, 

false positive; TP, true positive.
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