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Background: The non-invasive preoperative diagnosis of microvascular invasion (MVI) in
hepatocellular carcinoma (HCC) is vital for precise surgical decision-making and patient
prognosis. Herein, we aimed to develop an MVI prediction model with valid performance
and clinical interpretability.

Methods: A total of 2160 patients with HCC without macroscopic invasion who
underwent hepatectomy for the first time in West China Hospital from January 2015 to
June 2019 were retrospectively included, and randomly divided into training and a
validation cohort at a ratio of 8:2. Preoperative demographic features, imaging
characteristics, and laboratory indexes of the patients were collected. Five machine
learning algorithms were used: logistic regression, random forest, support vector
machine, extreme gradient boosting (XGBoost), and multilayer perception. Performance
was evaluated using the area under the receiver operating characteristic curve (AUC). We
also determined the Shapley Additive exPlanation value to explain the influence of each
feature on the MVI prediction model.

Results: The top six important preoperative factors associated with MVI were the
maximum image diameter, protein induced by vitamin K absence or antagonist-II, a-
fetoprotein level, satellite nodules, alanine aminotransferase (AST)/aspartate
aminotransferase (ALT) ratio, and AST level, according to the XGBoost model. The
XGBoost model for preoperative prediction of MVI exhibited a better AUC (0.8, 95%
confidence interval: 0.74–0.83) than the other prediction models. Furthermore, to facilitate
use of the model in clinical settings, we developed a user-friendly online calculator for MVI
risk prediction based on the XGBoost model.
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Conclusions: The XGBoost model achieved outstanding performance for non-invasive
preoperative prediction of MVI based on big data. Moreover, the MVI risk calculator would
assist clinicians in conveniently determining the optimal therapeutic remedy and
ameliorating the prognosis of patients with HCC.
Keywords: microvascular invasion, non-invasive predictive models, machine learning, extreme gradient boosting
(XGBoost), hepatocellular carcinoma
1 INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignancies and the third leading cause of cancer-related death
worldwide (1). Surgical resection is one of the predominant
treatments for early-stage HCC; however, the high incidence of
postoperative recurrence and metastasis largely threatens the
long-term survival of patients (2). Microvascular invasion
(MVI), the embolus of cancer cells with micro-metastasis in
liver vessels, is an independent prognostic factor for recurrence
and metastasis in HCC (3). Recently, an increasing number of
studies (4, 5) have shown that a precise surgical approach and
timely postoperative adjuvant therapy for patients with HCC and
MVI could reduce recurrence and improve survival.

Patients with HCC and MVI have been demonstrated to
achieve better prognosis through anatomical resection than
through non-anatomical resection (6). In addition, scholars have
suggested that patients with HCC andMVI should be treated with
wide margin resection rather than narrow margin resection, as it
achieves better relapse-free survival (7). Besides, surgical resection
provides better tumor control than radiofrequency ablation (RFA)
treatment in patients with small HCC, especially those with a high
risk of MVI (8). MVI status is crucially important for clinicians to
choose the optimal therapy, while MVI can only be confirmed by
postoperative histopathological examination; therefore,
preoperative prediction of MVI is urgent.

Early studies have focused on blood biomarkers that can
predict MVI; among these, a-fetoprotein (AFP) is considered
one of the most notable biomarkers (9). However, its predictive
efficacy for MVI was poor in univariate analysis (10, 11), while
the combination of multiple biomarkers showed greater potential
(12, 13). With the development of big-data-driven approaches,
machine learning (ML) has been extensively used in various
diseases, such as cardiac abnormalities (14), pulmonary diseases
(15), neurological disorders (16), and oncology (17–20), showing
great ability in prediction model construction. ML algorithms
demonstrate the advantages of robust feature selection and the
ability to identify clinically important risks among patients, are
dedicated to finding complex patterns in big data with high
accuracy and are suitable for constructing predictive models
from numerous multidimensional factors, especially non-linear
complex data.

However, different ML algorithms have their own advantages
and disadvantages. Recently, Deng et al. combined the
neutrophil-to-lymphocyte ratio, tumor size, and AFP to
establish a nomogram for predicting MVI in 513 patients with
HCC, but the sensitivity and specificity of the model were only
2

61.64% and 71.53%, respectively (21). Lei et al. constructed a
nomogram to predict MVI in 1004 patients with HCC, but the
high false-positive (23.4%) and false-negative rates (26.5%) still
need to be considered when it is applied in clinical decision-
making (22). These models were based on logistic regression
algorithms; although simple to construct, they were prone to
underfitting, and the clinical application accuracy was not ideal.
Therefore, more ML algorithms have been applied to predict the
occurrence of MVI and achieve better performance. Chen et al.
proposed an MVI prediction model by integrating blood tests
based on a deep learning method with concordance indexes of
0.9341 and 0.9052 in the training and validation cohorts,
respectively (23). Additionally, the inclusion of radiomic
features and multi-omics data improved the model’s predictive
performance of MVI. Xu et al. integrated radiomics, clinical
features, and liver and renal function indicators and developed a
multivariate logistic regression MVI prediction model in 495
patients with HCC, with an area under the receiver operating
characteristic curve (AUC) of 0.889 (24). However, these
radiomic features require sophisticated techniques and experts
and are not easy to popularize. Overall, the sample size of
previous studies was small, ranging from 150 to 1004 patients
(24, 25), and it was demonstrated that the robustness of the
model based on big data was better than that based on small data
(26). Therefore, it is necessary to establish an MVI prediction
model with reliable and excellent performance using
conveniently available clinical indicators and big data.

The noninvasive preoperative diagnosis of MVI in HCC is
vital for precise surgical decision-making and patient prognosis.
In this study, we attempted to use multiple ML algorithms to
develop a preoperative MVI prediction model and select an
optimal one, based on the big data of patients with HCC at the
West China Hospital, from multidimensional and conveniently
available variables. Simultaneously, we quantified and explained
the important variables related to MVI, visually exhibiting them
using the Shapley Additive exPlanation (SHAP) algorithm.
Remarkably, to make it more convenient in clinical situations,
we created an MVI risk online calculator for clinicians to assist in
precise HCC treatment visually and operationally.
2 METHODS

2.1 Ethics and Statements
This study was approved by the Institutional Ethics Committee
of the West China Hospital, Sichuan University [number:
2019 (203)].
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2.2 Study Design and Patients
Patients with HCC who underwent surgery at the West China
Hospital between January 2015 and June 2019 were retrospectively
enrolled (Figure 1). The inclusion criteria were as follows: 1)
patients who had undergone hepatectomy or l iver
transplantation for the first time and were pathologically
diagnosed with HCC alone, regardless of whether they had
received transcatheter arterial chemoembolization (TACE)
before; and 2) the Guidelines for Diagnosis and Treatment of
Primary Liver Cancer in China (2017 Edition) (27) were used as
diagnostic criteria. The exclusion criteria were as follows: 1)
Patients with HCC with recurrence who had previously
undergone hepatectomy or RFA; 2) HCC with macroscopic
invasion; 3) Patients with HCC and tumors at other sites; and 4)
Patients with HCC and other tumors, such as bile duct
adenocarcinoma, intrahepatic cholangiocarcinoma, and sarcoma.

MVI diagnosis has relied on the judgment of two or more
experienced pathologists based on seven-point sampling (28) to
Frontiers in Oncology | www.frontiersin.org 3
ensure MVI detection ability since 2015 in our hospital; hence,
we used data from 2015.

2.3 Preoperative Examination and
Clinicopathologic Variables
In total, 88 indicators were extracted from Electronic Health
Records (EHR) of all patients. All of the indicators were all
collected within 1 month before surgery, including three
categories of characteristics: 1) demographic data: age, gender,
height, weight, body mass index, ethnicity, preoperative TACE
(yes or no), hepatitis B, and hepatitis C; 2) imaging features:
single or multiple tumors, maximum diameter of the tumors,
imaging cirrhosis, tumor margin, etc.; 3) laboratory examination
results: routine blood test results, biochemical test results
(hepatic function indexes, kidney function indexes, glucose,
etc.), routine coagulation test results (activated partial
thromboplastin time [APTT], prothrombin time, etc.),
hepatitis B virus (HBV)-DNA load and tumor markers (AFP,
FIGURE 1 | Flow chart of patient selection.
March 2022 | Volume 12 | Article 852736
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carbohydrate antigen, carcinoembryonic antigen, cancer antigen
125, protein induced by vitamin K absence or antagonist-II
[PIVKA-II]). The details of all indicators are listed in
Supplemental Table 1.

2.4 Statistical Analysis
Continuous variables with normal distribution are expressed as
mean ± standard deviation and were compared between the MVI
and non-microvascular invasion (NMVI) groups using Student’s
t-test. Non-normal variables were analyzed using the Kruskal-
Wallis rank sum test. Categorical variables are expressed as
frequency (%), and chi-square tests or Fisher exact tests were
applied to these data, as appropriate. All statistical analyses were
performed using Python (version 3.7.9), and p < 0.05 indicated
statistical significance.

2.5 Machine Learning Models
Establishment
The patients with HCC in this study were randomly divided into
a training cohort and a validation cohort at a ratio of 8:2. To
overcome the imbalance in the data, an under-sampling
approach was applied (29). We attempted to develop MVI
predictive models using five ML algorithms: logistic regression
(LR), random forest (RF), support vector machine (SVM),
multilayer perception (MLP), and extreme gradient boosting
(XGBoost). LR involves modeling the relationship between
explanatory variables and the log odds of a binary outcome by
employing the maximum likelihood algorithm (30). RF, a tree-
like model, integrates multiple decision trees through major
voting, reducing variance, and increasing robustness (31). SVM
is a computational algorithm that separates binary labeled data
based on a line to realize the maximum distance between the
labeled data using hinge loss to calculate the empirical risk (32).
An MLP is typically built into structured node groups with
activation functions and connection weights that mimic the
behavior of biological neural networks and processes
distributed and parallel information (33). XGBoost is an
optimized distributed gradient boosting algorithm that uses a
second-order Taylor expansion to approximate the loss function,
which efficiently avoids overfitting problems by adding a
regularization term to the objective function, providing
excellent predictions by transforming a set of weak learners
into strong learners (34).

In this study, we randomly divided the data into five equal
subsets. Four subsets were used to train the model and were then
validated in the remaining subsets. In this process,
hyperparameter adjustment was performed for the higher area
under the receiver operating characteristic curve (AU-ROC),
which could evaluate the prediction ability of the model. The
hyperparameters were determined using a grid search, which can
be tuned and scored in a loop. Changing the subset ratio to display
the learning curve of the AU-ROCmodel helps prevent overfitting
and underfitting. After adjusting the hyperparameters, the final
model of the entire training set was obtained, and then the model
was evaluated on the test set. The LR, RF, SVM, and MLP models
were implemented in Python (version 3.7.9) using the scikit-learn
Frontiers in Oncology | www.frontiersin.org 4
package. The XGBoost model was implemented using the Python
XGBoost package.

2.6 Hyperparameters Adjustment of
Microvascular Invasion-Predicting Model
Hyperparameters were fully optimized since the training log-loss
decreased as the number of trees increased; when the test log-loss
was <0.693(-log0.5 = 0.693, the test log-loss of blind guess was
0.693; a lower log-loss means a better prediction) or only slightly
larger than the training log-loss, the hyperparameters were fully
adjusted. We ran 100 bootstrap iterations to determine the
number of trees in the final model, as recommended in previous
literature. Based on the grid search, the hyperparameters used in
XGBoost were set as follows: learning rate = 0.13, minimum child
weight = 1, maximum tree depth = 6, and number of rounds =
100. The hyperparameters used in the other models are presented
in Supplemental Table 2.

2.7 Model Performance Evaluation
To evaluate the prediction performance of the various ML
models, the AUC was measured and compared. We also used
precision recall curve (PRC) to measure the number of positive
examples that were correctly classified, which better reflecting
the predictive performance when an imbalance between the
groups exists. The confusion matrix was used to visually
describe the accuracy of XGBoost in identifying the MVI and
NMVI statuses, including true positive (TP), false positive (FP),
true negative (TN), and false negative (FN).

Accuracy = (TP + TN)=(TP + FN + TN + FP)

Specificity = TN=ðTN + FPÞ

2.8 Interpretation of the Model by the
Shapley Additive exPlanation
It is critical to correctly interpret the prediction model. Thus, the
SHAP algorithm (35), a game-theoretic approach to explain the
output of any ML model, was employed to obtain accurate
attribution values for each feature within the prediction model.
The SHAP value can be considered a quantified contribution. We
can easily determine the contribution of all features and which
contribution is the most.
3 RESULTS

3.1 Basic Characteristics
The characteristics of the 2160 patients with HCC are
summarized in Table 1; 575 (27%) had MVI and 1585 (73%)
had NMVI. The mean age of the patients was 53.2 years. The
Han ethnic group accounted for 94.7% of the population. HBV
positivity was found in 1773 (82%) cases. Hepatitis C virus
positivity was observed in 23 cases (1.1%). HCC with cirrhosis
was observed in 911 (42.2%) patients. We randomly divided
these patients and allocated 80% of them to the training set and
the remaining 20% to the test set. For all variables, the differences
March 2022 | Volume 12 | Article 852736
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between the training and test sets were not significant. Details are
presented in Supplemental Table 3.

3.2 Clinical Characteristic Differences
Between the Study Groups
The preoperative clinical characteristics of all the patients are
shown in Table 2. Overall, in terms of imaging features, the MVI
group had a larger maximum tumor diameter than the NMVI
group (7.1 cm ± 3.7 cm versus [vs.] 4.9 cm ± 3.1 cm, p < 0.001).
The occurrence frequency of satellite nodules (19.5% vs. 7.4%,
p < 0.001) and intra-tumoral artery (29.1% vs. 14.4%, p < 0.001)
were higher in the MVI group than in the NMVI group.
Regarding laboratory examinations, the MVI group had a
higher PLT count (158.9 × 109/L ± 77.9 × 109/L vs. 136.2 ×
109/L ± 67.6 × 109/L, p < 0.001), aspartate aminotransferase
(AST) level (55.3 IU/L ± 49.1 IU/L vs. 43.7 IU/L ± 38.3 IU/L, p <
0.001), AST/alanine aminotransferase (ALT) ratio (1.3 ± 0.9 vs.
1.1 ± 0.5, p < 0.001), g-glutamyl transferase (GGT) level (116.7
IU/L ± 127.2 IU/L vs. 85.6 IU/L ± 122.8 IU/L, p < 0.001), lactate
dehydrogenase level (215.2 IU/L ± 118.9 IU/L vs. 186.8 IU/L ±
69.5 IU/L, p < 0.001), hydroxybutyrate dehydrogenase (HBDH)
level (160.6 IU/L ± 83.1 IU/L vs. 146.1 IU/L ± 54.7 IU/L, p <
0.001), AFP level >400 ng/mL (50.0% vs. 28.9%, p < 0.001), and
PIVKA-II level (11905 mAU/mL ± 21680.9 mAU/mL vs. 3009.1
mAU/mL ± 9716.8 mAU/mL, p < 0.001) than the NMVI group.
Moreover, the MVI group had more abnormal imaging and
laboratory examination results than the NMVI group
(Supplemental Table 1).

3.3 Development and Validation of the
MVI-Predicting Model
3.3.1 Development of the MVI-Predicting Model
All models were parameterized with these hyperparameters, and
bootstrap validation training log-loss decreased as the number of
integration trees increased. The bootstrap validation testing log-
loss was <0.693, which was only slightly higher than the training
Frontiers in Oncology | www.frontiersin.org 5
log-loss when the number of rounds increased. Here, we only
show the training curve of the XGBoost model as an example,
which indicated a good fitting (Figure 2A). When the sample
size reached 200 rounds, the log-loss of the training and test sets
gradually tended to be stable, indicating that the model was
well turned.

The learning curve showed that as the score of the training
cohort decreased, the score of the validation cohort increased
with an increase in training samples. We also used the XGBoost
model for demonstration (Figure 2B). This revealed that as the
sample size increased, the model had not been overfitted or
underfitted, indicating a robust predictive performance.

3.3.2 Model Performance
We used RF, SVM, LR, XGBoost, and MLP algorithms to
construct and optimize the MVI prediction model, and found
that the XGBoost model achieved the highest AUC (0.8, 95%
confidence interval [CI]: 0.74–0.83) (Figure 3A), followed by the
RF (0.77, 95% CI: 0.73–0.81), LR (0.73, 95% CI: 0.70–0.77), SVM
(0.66, 95% CI: 0.61–0.71), and MLP models (0.65, 95% CI: 0.60–
0.70). Since the positive and negative samples were highly
skewed datasets in our study, we used PRC to reflect the
performance of the classifier more effectively. The area under
the precision recall curve (AUPRC) value of the XGBoost model
was much higher (0.71, 95% CI: 0.64–0.78) than that of the other
models (Figure 3B). Other algorithms showed the following
AUPRC values: RF model, 0.7, 95% CI: 0.65–0.77; LR model,
0.65, 95% CI: 0.62–0.71; SVM model, 0.53, 95% CI: 0.41–0.60;
and MLP model, 0.53, 95% CI: 0.47–0.61. Additionally, the
confusion matrix showed that the accuracy and specificity of
the XGBoost model were 73% and 84%, respectively (Figure 3C).

3.4 Model Interpretation
The feature importance matrix plot sorted the most important
variables, revealing the contribution of each variable to MVI
versus NMVI. The top six factors associated with MVI were the
TABLE 1 | The participant baseline characteristics data.

Variables Total (N=2160) NMVI (N=1585) MVI (N=575) P Value

Age (years) 53.2 (11.6) 53.6 (11.4) 52.0 (12.0) 0.004
Gender, n (%) 0.239
Male 1813 (83.9) 1321 (83.3) 492 (85.6)
Female 347 (16.1) 264 (16.7) 83 (14.4)
Height, mean (SD) 165.1 (7.0) 165.1 (7.0) 165.2 (7.0) 0.857
Weight, mean (SD) 63.2 (10.2) 63.5 (10.40) 62.5 (9.6) 0.051
BMI, mean (SD) 23.2 (3.1) 23.3 (3.2) 22.9 (2.9) 0.008

Nation, n (%) 0.313
Tibetan 76 (3.5) 50 (3.2) 26 (4.5)
Han 2046 (94.7) 1507 (95.1) 539 (93.7)
Others 38 (1.8) 28 (1.8) 10 (1.7)

HBV, n (%) 0.113
Yes 1773 (82) 1314 (82.9) 459 (79.8)
No 387 (18) 271 (17.1) 116 (20.2)

HCV, n (%) 0.768
Yes 23 (1.1) 18 (1.1) 5 (0.9)
No 2137 (98.9) 1567 (98.9) 570 (99.1)

cirrhosis, n (%) 0.114
Yes 911 (42.2) 685 (43.2) 226 (39.3)
No 1249 (57.8) 900 (56.8) 349 (60.7)
March 2022 | Volume 12 | Article
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maximum image diameter, PIVKA-II level, AFP level, satellite
nodules, AST/ALT ratio, and AST level (Figure 4A). To illustrate
the influence of each feature on model prediction, we drafted the
SHAP value summary chart, and only the top 15 variables of the
model are shown (Figure 4B). The chart shows the correlation
between the high or low SHAP values and the prediction model.
Frontiers in Oncology | www.frontiersin.org 6
We observed that the red dots, which represent the high values of
the maximum image diameter, AFP level, satellite nodules, AST/
ALT ratio, and AST level, appeared more on the side of the
higher probability risk of MVI. This indicates that the SHAP
values of these indicators were positively correlated with the
possibility of the occurrence of MVI. The red dots representing
A B

FIGURE 2 | Development and validation of MVI-prediction model (A) The training process of XGBoost model. Train-log-loss-mean value for the training datasets is
shown in the vertical axis. The horizontal axis represents the number of times iterative cross-validation. (B) The learning curve of the score of training cohort and
testing cohort. The score for training and test cohorts is shown in the vertical axis. The horizontal axis represents the number of samples trained.
TABLE 2 | The clinical characteristic differences between MVI and NMVI group.

Variables Total (N=2160) NMVI (N=1585) MVI (N=575) P Value

Imaging result
Satellite nodules, n (%) <0.001
Yes 230 (10.6) 118 (7.4) 112 (19.5)
No 1930 (89.4) 1467 (92.6) 463 (80.5)

Maximum image diameter, mean (SD) 5.5 (3.4) 4.9 (3.1) 7.1 (3.7) <0.001
Intratumorally artery, n (%) <0.001
Yes 343 (18.3) 198 (14.4) 145 (29.1)
No 1527 (81.7) 1173 (85.6) 354 (70.9)

Laboratory result
PLT, mean (SD) 142.2 (71.2) 136.2 (67.6) 158.9 (77.9) <0.001
NEUT%, mean (SD) 60.2 (10.0) 59.6 (10.1) 61.7 (9.7) <0.001
LYMPH%, mean (SD) 28.9 (8.8) 29.4 (8.8) 27.5 (8.7) <0.001
NLR, mean (SD) 2.5 (1.5) 2.4 (1.4) 2.7 (1.7) <0.001
FIB, mean (SD) 2.7 (1.0) 2.6 (0.9) 2.9 (1.0) <0.001
AST, mean (SD) 46.8 (41.8) 43.7 (38.3) 55.3 (49.1) <0.001
A/A, mean (SD) 1.2 (0.7) 1.1 (0.5) 1.3 (0.9) <0.001
ALP, mean (SD) 103.9 (62.2) 100.4 (61.1) 113.7 (64.3) <0.001
GGT, mean (SD) 93.9 (124.8) 85.6 (122.8) 116.7 (127.2) <0.001
LDL-C, mean (SD) 2.4 (0.8) 2.4 (0.7) 2.5 (0.9) <0.001
LDH, mean (SD) 194.4 (86.4) 186.8 (69.5) 215.2 (118.9) <0.001
HBDH, mean (SD) 150.0 (63.8) 146.1 (54.7) 160.6 (83.1) <0.001

HBV DNA, n (%) <0.001
Negative 616 (38.2) 484 (41.8) 132 (29.2)
Positive 995 (61.8) 675 (58.2) 320 (70.8)
HBV DNA Log, mean (SD) 3.2 (2.1) 3.0 (2.1) 3.5 (2.0) <0.001

AFP, n (%) <0.001
<400 1404 (65.5) 1118 (71.1) 286 (50.0)
>400 740 (34.5) 454 (28.9) 286 (50.0)

CA-125, n (%) <0.001
<35 1270 (78.1) 969 (81.4) 301 (69.0)
>35 357 (21.9) 222 (18.6) 135 (31.0)

PIVKA-II, n (%) 5597.0 (14822.6) 3009.1 (9716.8) 11905.3 (21680.9) <0.001
<2000 628 (29.1) 524 (33.1) 104 (18.1)
>2000 503 (23.3) 278 (17.5) 225 (39.1)
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the high values of the PIVKA-II level were covered by blue dots,
indicating lower values of the PIVKA-II level. This indicated that
predication was affected by the extreme values, and even if the
PIVKA-II values were high, some points were still blue and
tended to predict the occurrence of NMVI. Furthermore, the
SHAP values of the above features are displayed, which show a
clear distinction between MVI and NMVI. The cutoff values of
the maximum image diameter, PIVKA-II level, AFP level,
satellite nodules, AST/ALT ratio, and AST level were 5 cm, 500
mAU/mL, 200 ng/mL, one nodule, 1, and 50 U/L, respectively
(Figure 4C). By integrating the SHAP value summary chart and
the SHAP scatter plot, the sensitivity of PIVKA-II was found to
be good, while the specificity of PIVKA-II was not. Other
indicators showed good specificity and sensitivity.

3.5 Online Calculator Based on the
Extreme Gradient Boosting Microvascular
Invasion Prediction Model
We established a website based on the XGBoost model to predict
the risk of MVI (https://260147169.github.io/MVI-calculator/
MVI-calculator.html). We only needed to fill in the
corresponding parameters of each indicator, including the
maximum image diameter, PIVKA-II level, AFP level, satellite
nodules, AST/ALT ratio, AST levels, HBV, total bile acid level,
PLT count, GGT level, APTT, HBDH level, mean red blood cell
volume, and white blood cell count. The online calculator
Frontiers in Oncology | www.frontiersin.org 7
automatically and promptly converted the MVI risk score
(Supplemental Figure 1).
4 DISCUSSION

In this study, we developed an XGBoost model for the
preoperative prediction of MVI based on the EHR information
of 2160 patients with HCC at the West China Hospital, and it
exhibited the best AUC in the validation set compared with the
other ML algorithms and showed good interpretability, as well as
the importance of MVI-related factors. Furthermore, we built an
online calculator based on this model to make prediction of MVI
more practical. Overall, we provide a valuable and reliable
preoperative MVI prediction model, which may be effective in
optimizing surgical treatment and further improving the survival
of patients with HCC.

Notably, the lack of specific and effective preoperative
indicators is one of the bottlenecks in the diagnosis of MVI. In
this retrospective cohort study, we developed an XGBoost model
using 88 objective preoperative demographic, imaging, and
laboratory indicators to predict the possibility of MVI. AUC
analysis alone is often insufficient for comparing predictive
models, particularly in an imbalanced dataset. Therefore, we
used both the AUC and AUPRC to evaluate the performance of
the five MLmethods. Compared with other models, the XGBoost
A B

C

FIGURE 3 | Performance of the predictive models. (A) The ROC curve analysis of various prediction model. (B) The PRC curve of different models. The confusion
matrix of XGBoost model in the validation cohort. (C) The confusion matrix of XGBoost model. The confusion matrix was composed of the True negative in the first
quadrant, the false negative samples in the second quadrant, the true positive example in the third quadrant and the false positive example in the fourth quadrant.
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model exhibited a better performance with an AUC of 0.8 and an
AUPRC of 0.71.

Several ML methods have been developed to predict the risk
of MVI. Some methods were based on radiomics or included
only a few vital tumor biomarkers to build ML algorithms to
predict MVI (36). Dong et al. (37) established a radiomic
algorithm to make preoperative predictions of MVI based on
grayscale ultrasonograms. The radiomic signatures based on the
features of the gross tumor region (GTR), peri-tumoral region,
and gross peritumoral region (GPTR) showed AUCs of 0.708,
0.710, and 0.726, respectively. After incorporating some
important tumor biomarkers, the AUC of the GPTR radiomic
signature was 0.744, and the AUC of the GTR radiomic signature
was 0.806. This might ignore useful information, especially some
serum biomarkers. It is worth noting that our model was built
based on three multidimensional preoperative indicators,
including patient clinical characteristics, imaging examination
features, and laboratory examination results, without invasive
examination. Compared with the MVI prediction models using
Frontiers in Oncology | www.frontiersin.org 8
radiomics as the only predictor (25, 38), the potential
significance of this model with multivariable predictors was
that we could predict the possibility of MVI using routine
clinical information before surgery.

Our work also has the advantages of convenient data
collection, ready availability, and objectivity, which are suitable
for use in the evaluation of MVI in most clinical situations.
Remarkably, all the variables in our model have a short detection
time, which can help clinicians quickly obtain reference
diagnostic information for patients with no immediate access
to pathological diagnosis. Additionally, previous studies
constructed an MVI prediction model based on a small sample
size (25). Studies have shown that the models with a large sample
size have higher robustness than those with a small sample size
(26); the sample size of our study was much bigger than that of
previous studies as far as we know. Furthermore, our model
showed consistent performance between the observed and
predicted MVI risks by SHAP values, implying the
interpretation and robustness of the model.
A

C

B

FIGURE 4 | Model interpretation. (A) Feature importance matrix plot derived from XGBoost model. (B) SHAP summary plot of the XGBoost model. The higher the
SHAP value for each feature, the higher risk of MVI development. A dot represents each feature contribution for each patient in the model. Red indicates a high
SHAP value, blue indicates a low SHAP value. (C) SHAP dependance plot of XGBoost model. The SHAP dependance plot represents the contribution of each
feature that we care about to the output of the XGBoost model. If the SHAP value of the feature we care about is exceeds zero, the higher the risk of MVI will be.
March 2022 | Volume 12 | Article 852736

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Prediction Model for MVI
The importance ranking of the correlation between the top 15
conventional imaging and laboratory variables with the
occurrence of MVI was identified through XGBoost model
learning. Specifically, the maximum image diameter, PIVKA-II
level, AFP level, satellite nodules, AST/ALT ratio, and AST level
showed the top six significant contributions to the prediction of
MVI, whether using the importance matrix plot or SHAP
summary plot of the XGBoost model. Among them, the
maximum image diameter was ranked first. In addition,
satellite nodules, one of the imaging indicators, were in the top
six importance rankings. Roayaie et al. defined satellite nodules
as tumors ≤2 cm in size located ≤2 cm from the main tumor (39).
In our SHAP scatter plot of satellite nodules, most of the scatter
point values were 1. Our SHAP scatter plot of the maximum
image diameter showed that the cutoff value was 5 cm. Recently,
Zhang et al. (40) demonstrated that the maximum image
diameter and emergence of satellite nodules aggravated the
MVI of HCC. Their studies set the cutoff value of the
maximum image diameter to 5 cm by referring to different
guidelines. They also indicated that the presence of satellite
nodules might be a risk factor for predicting the occurrence of
MVI. This finding is consistent with our results.

In addition to imaging indicators, laboratory indicators, such
as the PIVKA-II level, AFP level, AST/ALT ratio, and AST level,
also appeared in the top six SHAP value rankings. This
observation was consistent with that of a previous report in
which high levels of AFP and PIVKA-II were found to be closely
related to MVI (41, 42). Meanwhile, in the SHAP scatter plot, the
cutoff of our PIVKA-II level was >500 mAU/L. There were some
patients with NMVI even though PIVKA-II values were high;
our data showed that the specificity of the PIVKA-II level was
relatively poor, and we thought that the cutoff value should be
improved. In previous studies, Fumitoshi et al. (43) performed a
univariate analysis of 167 patients, revealing that a PIVKA-II
level ≥150 mAU/mL on preoperative examination was a high
risk factor for MVI. In a study by Pote et al., a PIVKA-II level >90
mAU/mL was an independent predictor of MVI (10). However,
this finding is in line with the clinical expectation that a larger
PIVKA-II value is more strongly correlated with HCC.

In our research, a consistent tendency was found in that the
SHAP values with scattered points above 0 was almost always >200
ng/mL on the SHAP plot of the AFP level. You et al. (44) analyzed
215 patients who underwent liver resection using univariate and
multivariate analyses, and showed that an AFP cutoff level of 400
ng/mL was an independent risk factor associated with MVI. The
cutoff value of the AFP level in the present study was slightly smaller
than that reported in previous studies.

As indicators of impaired liver function, the AST/ALT ratio
and AST level were also ranked in importance. In our study,
patients with a higher AST/alkaline phosphatase (ALP) ratio and
AST level were more likely to develop MVI than those with a
lower AST/ALP ratio and AST level, and the cutoff value of the
AST/ALT ratio was almost higher than 1 on the SHAP scatter
plot. The SHAP-scattered points of serum AST levels were
almost greater than 50 U/L. A previous study reported that
ALT is mainly present in the cytoplasm of hepatocytes; whereas,
Frontiers in Oncology | www.frontiersin.org 9
AST mainly exists in the mitochondria of hepatocytes, and an
increase in its level indicates that hepatocytes have damaged
organelles. Therefore, an increased AST/ALT ratio could
generally be considered indicative of the deterioration of liver
cell damage in patients with cirrhosis and HCC (45). Yang et al.
(46). reported that the AST/ALT ratio is often >1 due to the
invasion of hepatic carcinoma cells. Dong et al. revealed that an
AST level >40 U/L was an independent factor for overall survival
in HCC (47). Our SHAP scatter plot confirmed this. Overall, the
variables selected for our prediction model were the most
clinically common, readily available, and short-duration
imaging and laboratory indicators, and they showed good
interpretability and consistency with clinical experience,
further proving the reliability of the model. This also shows
the possibility that our model can be applied to countries and
regions with relatively limited medical resources.

The strengths of this study are as follows. First, we used a
large dataset to build an ML model for the preoperative
prediction of MVI. This could contribute to improving the
effective training and rational explanation of the prediction
model so that the model was closer to the real situation of the
prediction power. Second, we used multiple dimensional
indicators to build the prediction model, thus improving its
performance. All predictors have the advantages of convenient
data collection, ready availability, and objectivity. Third, we used
a variety of ML algorithms to select the optimal model that best
fits this dataset. Finally, we transformed the model into a visual
software based on the selected 15 common clinical indicators
that facilitate rapid detection. Thus, the prediction model can be
easily applied to countries and regions with relatively limited
medical resources.

Despite these advantages, our study also has some limitations.
First, this was a retrospective study, and the findings need to be
validated in prospective studies. Second, our model was
developed based on a single center, so its generalizability needs
to be verified in multiple centers. Third, we only constructed a
preoperative MVI prediction model; therefore, the clinical
benefit of precise surgical choice based on the model needs to
be evaluated in the future.
5 CONCLUSION

In conclusion, our study constructed and validated different ML
algorithm models for the preoperative diagnosis of MVI by
utilizing preoperative readily available, short-duration, and
general noninvasive preoperative indicators. In the final model,
we chose the XGBoost algorithm because it had the best
performance in predicting MVI. The maximum image
diameter, PIVKA-II level, AFP level, satellite nodules, AST/
ALT ratio, and AST level were found to be important for
predicting the occurrence of MVI. Further, development of the
MVI risk-scoring web-calculator based on this model is
convenient for clinical application. Meanwhile, the developed
model is helpful in preoperatively predicting MVI and assists
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clinicians in conveniently determining the optimal therapeutic
remedy and ameliorating the prognosis of patients with HCC.
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AFP a-fetoprotein
AI artificial intelligence
ALB albumin
ALP alkaline phosphatase
ALP/GGT (A/G) alkaline phosphatase/g-glutamyl transferase
ALT alanine aminotransferase
APTT activated partial thromboplastin time
AST aspartate aminotransferase
AST/ALT (A/A) aspartate aminotransferase/alanine aminotransferase
AUC the area under the receiver operating characteristic curve
BASO% basophil percentage
BMI body mass index
CA-125 carbohydrate antigen 125
CA19-9 carbohydrate antigen
CEA carcinoembryonic antigen
CHOL cholesterol
CK creatine kinase
CREA creatinine
Cys-C cystatin C
DBIL Direct bilirubin
eGFR estimated glomerular filtration rate
EHR electronic health record
EO% Percentage of eosinophils
FIB fibrinogen
FN False Negative
FP False Positive
GGT g-glutamyl transferase
GGTP gamma glutamyl transpeptidase
GLB globulin
GLU glucose
Hb hemoglobin
HBcAb hepatitis B core antibody
HBDH hydroxybutyrate dehydrogenase
HBeAb hepatitis B e antibody
HBeAg hepatitis B e antigen
HBsAb hepatitis B s antibody
HBsAg hepatitis B s antigen
HBV hepatitis B virus
HBV DNA hepatitis B virus DNA
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HCV hepatitis C virus
HCC hepatocellular carcinoma
Hct hematocrit
HDL-C high-density lipoprotein cholesterol
IBIL indirect bilirubin
IG% Percentage of naive granulocytes
IG | absolute value of immature granulocytes
LDH lactate dehydrogenase
LDL-C low-density lipoprotein cholesterol
LYMPH% percentage of lymphocytes
MCH mean corpuscular hemoglobin
MCHC mean corpuscular hemoglobin concentration
MCV mean red blood cell volume
MONO% monocyte percentage
ML machine learning
MLP Multi-Layer Perception
MVI microvascular invasion
NEUT% neutral lobulated granulocyte percentage
NLR the neutrophilic lymphocyte ratio
PIVKA-II protein induced by vitamin K absence or antagonist-II
PLT platelets
PRC precision recall curve
PT prothrombin time
RBC red blood cells
RDW-CV RBC distribution width-coefficient of variation
RDW-SD RBC distribution width-standard deviation
RF random forest
RFA radiofrequency ablation
RFS relapse free survival
SHAP Shapley Addictive explanation
SVM support vector machine
TACE transcatheter arterial chemoembolization
TBA total bile acid
TBIL total bilirubin
TN Ture Negative
TP True Positive
TT thrombin time
UREA uric acid
WBCs white blood cells
XGBoost extreme gradient boosting
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