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ABSTRACT 22 
 23 
The degree to which translational control is specified by mRNA sequence is poorly understood in 24 
mammalian cells. Here, we constructed and leveraged a compendium of 3,819 ribosomal profiling 25 
datasets, distilling them into a transcriptome-wide atlas of translation efficiency (TE) 26 
measurements encompassing >140 human and mouse cell types. We subsequently developed 27 
RiboNN, a multitask deep convolutional neural network, and classic machine learning models to 28 
predict TEs in hundreds of cell types from sequence-encoded mRNA features, achieving state-of-29 
the-art performance (r=0.79 in human and r=0.78 in mouse for mean TE across cell types). While 30 
the majority of earlier models solely considered 5′ UTR sequence, RiboNN integrates 31 
contributions from the full-length mRNA sequence, learning that the 5′ UTR, CDS, and 3′ UTR 32 
respectively possess ~67%, 31%, and 2% per-nucleotide information density in the specification 33 
of mammalian TEs. Interpretation of RiboNN revealed that the spatial positioning of low-level di- 34 
and tri-nucleotide features (i.e., including codons) largely explain model performance, capturing 35 
mechanistic principles such as how ribosomal processivity and tRNA abundance control 36 
translational output. RiboNN is predictive of the translational behavior of base-modified 37 
therapeutic RNA, and can explain evolutionary selection pressures in human 5′ UTRs. Finally, it 38 
detects a common language governing mRNA regulatory control and highlights the 39 
interconnectedness of mRNA translation, stability, and localization in mammalian organisms. 40 
 41 
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INTRODUCTION 47 
 48 
Protein abundances are determined by the complex interplay of steady-state mRNA levels, mRNA 49 
translation rates, and protein turnover rates. Numerous machine learning models have been 50 
developed to model the sequence-encoded features that influence steady-state levels of mammalian 51 
mRNAs from both the perspectives of transcriptional regulation1–5 and mRNA turnover6. 52 
However, most attempts to model translational regulation from mRNA sequence have focused on 53 
bacteria and yeast7–11. Although such models do exist for mammals, most focus on the functional 54 
roles of specific regions such as the 5′ untranslated region (5′ UTR)12–14 or coding region sequence 55 
(CDS)15,16, despite the recognition that the full mRNA sequence (i.e., including 3′ UTRs) jointly 56 
influences translation17,18. Several models consider full-length mRNA, but have either only 57 
implicitly modeled translational regulation19,20, or have evaluated only a limited set of cell types 58 
while achieving modest performance (r2≈0.40)21,22. Modeling translational regulation more 59 
precisely among diverse cell types would elucidate the functional consequences of synonymous, 60 
missense, and non-coding mutations in mRNA. Consequently, this would advance the goals of 61 
identifying the mechanistic underpinnings of ribosome occupancy and protein abundance 62 
quantitative trait loci (rQTL and pQTL, respectively)23,24, diagnosing pathogenic genetic variants, 63 
and designing more translationally competent mRNA therapeutics and gene therapies. 64 
 65 
Global translation rates can be estimated through several strategies, including: i) fitting translation 66 
rate parameters from differential equations, using measurements of mRNA and protein abundances 67 
as well as mRNA half-life25,26; ii) computing protein-to-mRNA ratios (PTRs)19,20,27; iii) polysome 68 
profiling, in which ribosomal fractions are run on a sucrose gradient and mRNAs within each 69 
fraction are sequenced to estimate their approximate ribosomal loading12,13,18,28; and iv) ribosome 70 
profiling (i.e., Ribo-seq), normalizing ribosome density to RNA abundance as a metric for TE29. 71 
Of these techniques, the first two strategies are both indirect estimates of translation rate. 72 
Importantly, inferred translation rates from the differential equation modeling strategy were shown 73 
to be poorly related to experimentally measured rates30, limiting the accuracy of this approach. 74 
Moreover, PTRs are partially confounded by protein degradation rates and protein secretion19,20,27. 75 
Therefore, of these four methods, polysome and ribosome profiling are considered more direct 76 
methods of assessing translation rates30. 77 
 78 
In eukaryotes, translation is regulated at the initiation and elongation steps31,32, which can be 79 
modulated by cis-acting sequences. In particular, cis-regulation of translation initiation has 80 
historically been the focus due to its recognition as the rate-limiting step of translation33. The 81 
propensity for secondary structure near the 5′ mRNA cap, the sequence context of the translation 82 
initiation codon, presence of upstream short open reading frames (ORFs), and binding sites for 83 
various RNA-binding proteins provide concrete mechanisms of translational regulation via cis-84 
acting elements predominantly in 5′ UTRs34. Importantly, the protein coding sequence is also a 85 
key determinant of TE. Relatively more is known in unicellular organisms; in particular, codon 86 
usage differs significantly across genes, with more abundant proteins utilizing a biased set of 87 
codons35,36. The most widely recognized mechanism for codon-specific influence on translation 88 
relates to differences in the active pool of corresponding tRNAs37–39. Coding sequence differences 89 
are also suggested to impact protein expression through secondary structure-mediated mechanisms 90 
that do not correlate with tRNA abundance40. Moreover, non-synonymous coding variants can 91 
alter translation independently from tRNA abundance, translation initiation efficiency, or overall 92 
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mRNA structure via the interaction of the encoded peptide with the ribosome exit tunnel41. Parallel 93 
work in vertebrate organisms established a link between translation and RNA stability; for 94 
instance, certain codons that slow down translation are associated with unstable mRNA15,42–46. 95 
Taken together, these studies reveal that the entire mRNA sequence can potentially modulate 96 
translation through a variety of mechanisms. However, the contribution of specific functional 97 
regions in determining translation of endogenous mRNAs has yet to be described quantitatively. 98 
A precise measurement of translation rate would enable a clear-eyed examination of how different 99 
sequence properties and functional regions modulate translation rates relative to one another. 100 
 101 
Despite the widespread abundance of ribosomal profiling datasets, attempts to examine the relative 102 
contribution of sequence and structural features to the specification of translation rate have been 103 
hampered by their inaccessibility in a unified resource. In this study, we systematically assembled 104 
a compendium of 1,282 human and 995 mouse ribosome profiling datasets, matched to 105 
corresponding RNA-seq data, to derive more precise TE measurements in mammalian cells. This 106 
effort reflects the synthesis of the largest and most comprehensive compendium of TE 107 
measurements ever assembled to date. Using enhanced measurements of TE, we derived improved 108 
sequence-based models towards the goal of improving the predictability of TE from RNA 109 
sequence. Our state-of-the-art model RiboNN, a deep convolutional neural network, is capable of 110 
predicting the effects of RNA sequences (e.g., including base-modified, therapeutically delivered 111 
mRNA) on translational regulation, in agreement with functional measurements derived from 112 
massively parallel reporter assays and population genetic data demarcating regions of evolutionary 113 
constraint. RiboNN reconciles several limitations of existing models, possessing the following 114 
properties: i) it models the impact of the full-length mRNA sequence on TE in numerous cell types, 115 
ii) it exhibits superior performance in predicting TE from mRNA sequence, iii) it identifies the 116 
location-dependent effects of short, di- and tri-nucleotide features (i.e., including codons) as the 117 
key sequence features explaining model performance, and iv) it helps to quantify the relative 118 
contributions of different functional regions on TE, a feat which has largely been evaluated 119 
qualitatively in the past. Finally, it postulates the existence of a common language underpinning 120 
mRNA translation, stability, and localization in mammalian organisms.  121 
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RESULTS 122 

Preparation of a compendium of human and mouse TE datasets from ribosome profiling 123 
data 124 

To construct a comprehensive, high-quality dataset of TE measurements, we systematically 125 
compiled 3,819 human and mouse ribosome profiling datasets from the GEO database. We filtered 126 
these into 1,282 human and 995 mouse samples representing matched ribosome profiling and 127 
RNA-seq data from numerous tissues and cell types. We then uniformly processed the datasets 128 
using an open-source bioinformatics pipeline47. We required each sample to pass the following 129 
quality control filters: i) ≥70% of ribosome-protected fragments (RPFs) mapped to the CDS, and 130 
ii) transcripts globally had a minimum average read coverage of 0.1x (detailed in companion 131 
manuscript114). This yielded 1,076 human and 835 mouse ribosome profiling datasets. We then 132 
calculated TE using a compositional regression approach that overcomes the mathematical biases 133 
associated with the commonly used log-ratio approach48,114 (Fig. 1a; Methods). We summarized 134 
the datasets by averaging TEs across samples belonging to the same cell types, yielding matrices 135 
of 10,348 genes x 78 cell types for the human and 10,870 genes x 68 cell types for the mouse (Fig. 136 
1a, Supplementary Table 1). This resource enabled us to assess the degree to which TEs are 137 
similar among different mRNAs across cell types. We calculated the Spearman’s correlation 138 
coefficient (rho) between the TEs of transcripts across all possible pairs of human cell types (Fig. 139 
1b). We observed that most of the cell types were highly correlated to each other, with a small 140 
subset possessing low correlation to most other cell types (Fig. 1b). This subset appeared to have 141 
lower data quality, as measured by a low median read coverage, leading to a large proportion of 142 
missing values (Fig. 1b). The high correlation between most cell types is suggestive of common 143 
translational regulation mechanisms across most cell types. Parallel results were observed for the 144 
inter-cell-type comparisons in the mouse (Supplementary Fig. 2a). 145 

To validate the biological relevance of TEs relative to other methods to measure translational 146 
regulation, we compared the TE across cell types with previously reported PTR ratios20,27,49 and 147 
ribosome load (number of ribosomes per transcript), as measured by polysome sequencing in 148 
HEK293T cells18. We normalized the ribosome load to CDS length because longer CDSs can 149 
accommodate more translating ribosomes. Given the strong correlation based upon dataset of 150 
origin (Supplementary Fig. 3), we evaluated the relationship between the means of each dataset. 151 
The ribosome load and mean PTR across tissues20 were positively correlated with our mean TE 152 
(r=0.42, rho=0.4 and r=0.52, rho=0.51, respectively; Fig. 1c). However, the mean PTR reported 153 
from a recent study27 was weakly negatively correlated with our mean TE (r=−0.36, rho=−0.41; 154 
Fig. 1c). These PTR measurements were highly discordant with other datasets as well, suggesting 155 
that the most parsimonious explanation to be the relatively lower reliability of this PTR dataset27. 156 
Even stronger correlations were observed between mouse mean TE and ribosome load in mouse 157 
3T3 cells28 (r=0.61, rho=0.64; Supplementary Fig. 2b). Together, these results suggest that our 158 
TE scores are informative of protein synthesis rates in both organisms. 159 
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 160 

Fig. 1. Integrative analysis of thousands of human and mouse ribosomal profiling datasets measuring 161 
TE. a) Schematic showing the workflow of transcriptome-wide TE calculations for the human and mouse, 162 
using paired RNA-seq and ribosome profiling datasets. b) Heatmap of Spearman correlation coefficients 163 
comparing TEs derived from each pair of 78 human cell types. Cell types are clustered using hierarchical 164 
clustering. Right panel barplots show quality control data for the human cell type shown in each row. c) 165 
Comparison of mean TEs (i.e., averaged across human cell types) for mRNAs derived from this study relative 166 
to alternative measurements of translational output measured in prior studies18,20,27. The Pearson (r) and 167 
Spearman (rho) correlation coefficients between each pair of measurements is also shown.  168 
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Classical machine learning models to predict TE 169 

To evaluate the predictability of our TE measurements, we trained regression models on pre-170 
computed sets of sequence-encoded features derived from the mRNA. The feature sets considered 171 
include: i) the lengths of the 5′ UTR, CDS, 3′ UTR, and entire transcript; ii) nucleotide frequencies 172 
of all regions; iii) codon frequencies; iv) amino acid frequencies; v) k-mer frequencies of length 2 173 
to 6 in the 5′ UTR, CDS, and 3′ UTR regions; vi) the frequency of each nucleotide found in the 174 
wobble position; vii) the nucleotide identity at the −3, −2, −1, +4, and +5 Kozak positions; viii) 175 
dicodon counts found to affect TE in yeast39; and ix) multiple secondary structure features 176 
(Methods). 177 
 178 
To identify which feature sets usefully contributed to prediction of mean TE across all human cell 179 
types, we used an iterative method that compared the cross-validated (CV) performance of a light 180 
gradient-boosting machine (LGBM) model trained with a specific feature set to one trained without 181 
it. If the model including the feature set performed statistically significantly better on ten held-out 182 
data folds than the model without it, that feature set was deemed useful (Methods). The feature 183 
sets found to be useful include: i) regional and total sequence lengths; ii) UTR nucleotide 184 
frequencies; iii) codon frequencies; iv) amino acid frequencies; and v) the 3-mer frequencies of 185 
the 5′ UTR (Fig. 2a). All remaining feature sets did not further contribute to TE prediction (“Other” 186 
in Fig. 2a), including secondary structure features, in contrast to prior findings40. 187 
 188 
Given this set of selected features, we compared three additional machine learning approaches to 189 
assess their relative performance: lasso, elastic net, and random forest. We confirmed that LGBM 190 
performed the best (Supplementary Fig. 4). We then trained LGBM models on all 78 human and 191 
68 mouse cell types. The correlation between the mean TE and average over the predictions of 192 
each cell type was r=0.78 for human and r=0.74 for mouse (Fig. 2b-c). The R2 (averaged across 193 
the held-out folds) for predicting the mean TE across cell types was 0.60 and 0.53 for the human 194 
and mouse, respectively (Supplementary Fig. 5). Cell types with poorer data quality, such as a 195 
lower fraction of detectable genes, generally led to models with inferior performance 196 
(Supplementary Fig. 5). Although the hand-crafted feature sets could not easily include positional 197 
information, the regression models were still able to achieve impressive performance. 198 
 199 
Next, we sought to identify the relative importance of individual features for our optimal LGBM 200 
model. Several of the top-ranked features were consistent with those reported in the literature (Fig. 201 
2d-e). For instance, both the human and mouse models capture: i) the known negative correlation 202 
between TE and both total mRNA sequence length and CDS length19,50–53; ii) the importance of 203 
AUG [often associated with upstream ORFs (uORFs)] and GGC trinucleotides in the 5′ UTR54–56; 204 
and iii) the positive correlation of A/U-richness in the third position of codons with high 205 
importance for prediction accuracy. An exception to this trend was AAG (lysine), which showed 206 
a positive correlation despite a G in the third position. Taken together, these results demonstrate 207 
the robust predictive power of specific sequence-encoded features on mammalian TE, 208 
underscoring the influence of nucleotide composition and sequence length across different cell 209 
types. 210 
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 211 
 212 
Fig. 2. A classical machine learning approach to predict mammalian TEs from mRNA sequence. a) 213 
UpSet plot showing the R2 metric measured on ten held-out CV folds of LGBM models which predict the 214 
mean TE across human cell types using various feature sets. Colored feature sets are indicative of those that 215 
contributed to the optimal sequence-only model. Median R2 and statistically significant differences in 216 
performance between pairs of models are indicated. P-values were calculated using one-sided, paired t-tests 217 
adjusted with a Bonferroni correction. All additional feature sets considered, but that did not have a 218 
significant improvement on performance, are labeled as “Other”. b-c) Importance of the features used by the 219 
optimal sequence-only model (shown as a red bar in panel a) for both the human (b) and mouse (c). For a 220 
given feature, importance was measured as the sum total information gain across all splits using the feature, 221 
averaged across all folds. The colors of the bars correspond to the mean Spearman rho, averaging rho values 222 
between the features and TE values from each cell type. Feature names are colored according to the feature 223 
set to which they belong. d-e) Scatter plots comparing the predicted and observed mean TEs, averaged across 224 
cell types, for both the human (d) and mouse (e). The Pearson (r) and Spearman (rho) correlation coefficients, 225 
integrating the results across ten CV folds, are also shown.  226 
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A deep neural network to predict TE from mRNA sequence 227 

Given that deep-learning-based approaches can capture positionally aware contributions of 228 
sequence features and reveal degenerate motifs which are arduous to consider in classical machine 229 
learning models, we compared the performance of deep-learning models on the aforementioned 230 
tasks. Specifically, we trained multitask, deep convolutional neural networks to simultaneously 231 
predict TEs in all cell types examined. The input to our models consisted of a one-hot encoding of 232 
the mRNA sequence (up to a maximum of 13,318 nt), along with binary variables indicating the 233 
first reading frame of a codon for each nucleotide; the output layer consisted of multitask 234 
predictions for the TEs of either 78 human or 68 mouse cell types (Fig. 3a). 235 

We first repurposed a hybrid convolutional and recurrent deep neural network architecture (Saluki) 236 
designed to predict mRNA stability6, removing the splice site channel. In addition, we trained a 237 
new model named RiboNN, in which we removed the gated recurrent unit layer in Saluki but 238 
increased the number of convolution/max-pooling blocks from 6 to 10 to further compress mRNA 239 
sequence length by ~1000-fold (Fig. 3a, Supplementary Fig. 6). To facilitate the learning of 240 
important features (e.g., Kozak sequence) near the start codon, we fixed the start codon position 241 
in the input by aligning the mRNA sequences at the start codon. To accommodate the variability 242 
in mRNA sequence length, both the 5′ and 3′ ends of mRNAs shorter than 13,318 nt were padded 243 
with Ns (Fig. 3a). RiboNN achieved an R2 (averaged across held-out folds) of 0.62 for predicting 244 
the mean TE across the human cell types. As observed previously for LGBM models, the R2 245 
degraded for cell types with poorer data quality (Supplementary Fig. 7). The performance of the 246 
modified Saluki and RiboNN models were similar across cell types, with RiboNN slightly 247 
outperforming the modified Saluki (p=2.9e−10, paired Wilcoxon signed-rank test; 248 
Supplementary Fig. 7). Moreover, deleting the codon labels or fixing the mRNA sequences at 249 
the 5′ end (i.e., rather than the start codon) each resulted in significantly lower R2 in most cell types 250 
(p<2.2e−16 for both paired Wilcoxon signed-rank tests; Supplementary Fig. 7). 251 

We independently trained RiboNN to predict TEs in 68 mouse cell types. Like the human models, 252 
the mouse model exhibited variable performance among cell types, in a manner dependent on data 253 
quality. Overall, RiboNN achieved an R2 (averaged across held-out folds) of 0.60 for predicting 254 
the mean TE across mouse cell types (Supplementary Fig. 8a). The mouse and human RiboNN 255 
models worked almost as well when generating predictions across species as within species, 256 
suggesting an evolutionary conservation of the principles learned (Supplementary Fig. 8b-c). The 257 
final human and mouse models displayed correlations of 0.79 and 0.78, respectively, in predicting 258 
mean TEs averaged across cell types (Fig. 3b-c), suggesting that RiboNN learned principles of 259 
translational regulation for endogenous mRNAs. 260 
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 261 

Fig. 3. Performance and interpretation of deep learning models predicting mammalian TEs from 262 
mRNA sequence. a) Architecture of RiboNN, a deep multitask convolutional neural network trained to 263 
predict TEs of mRNAs in numerous cell types from an input of the mRNA sequence and an encoding of the 264 
first frame of each codon. b-c) Performance of RiboNN in predicting human (b) and mouse (c) mean TEs, 265 
averaged across cell types. The Pearson (r) and Spearman (rho) correlation coefficients, integrating the results 266 
across ten CV folds, are also shown. d) Comparison of different model training strategies for predicting TEs 267 
in individual cell types. The following approaches were examined: LGBM trained on a single task, RiboNN 268 
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trained in either a multitask or single task setting, and RiboNN trained in a multitask setting but then fine-269 
tuned on a single task (i.e., a “transfer learning” approach). e) Metagene plot summarizing the absolute value 270 
of attribution scores, averaging across all mRNAs, for percentiles along the 5′ UTR, CDS, and 3′ UTR. 271 
mRNAs were grouped into one of 4 equally sized bins according to their mean TE. f) Insertional analysis of 272 
16 dinucleotides and the AUG motif. Motifs were inserted into each of 100 equally spaced positional bins 273 
along the 5′ UTR, CDS, and 3′ UTRs of each mRNA. Indicated is the average predicted change in TE for 274 
each bin plotted along a metagene. g) This panel is the same as panel f), except it performs analysis for 61 275 
codons (excluding the 3 stop codons) inserted into the first reading frame along the length of the CDS. h-k) 276 
Scatter plots showing the relationship between the codon influence (i.e., the predicted effect size of each 277 
inserted codon, averaged across all positional bins) from the human RiboNN model with that of the mouse 278 
model (h), mean codon stability coefficients44 (i), A-site ribosome occupancy scores57 (j), and tRNA 279 
abundances58 (k). Pearson (r) and Spearman (rho) correlation coefficients are also shown. 280 

 281 

The availability of TEs measured in various cell types provided the possibility of testing multiple 282 
modeling strategies to improve TE prediction for specific cell types. To further improve model 283 
performance, we compared single-task models and multitask models fine-tuned to a single task 284 
(e.g., a transfer learning approach) on 12 randomly selected cell types exhibiting a wide 285 
distribution of R2 values (Supplementary Table 2). Interestingly, single-task RiboNN models 286 
outperformed the multitask model for most of the cell types, but were in turn outperformed by 287 
multitask models fine-tuned to a single task (Fig. 3d). These results highlight the power of transfer 288 
learning as an effective strategy to enable information sharing between models. Although RiboNN 289 
and LGBM displayed comparable prediction performance, RiboNN nevertheless has distinct 290 
advantages with respect to its convenient application for transcriptome-wide TE prediction, 291 
circumventing the need to pre-compute features and enabling a more computationally efficient 292 
path towards the inference of genetic variant effects. Furthermore, evaluating the features that 293 
contribute to RiboNN’s success in predicting TE may uncover novel principles of translational 294 
control that may have otherwise been overlooked. 295 

To interpret the principles learned by RiboNN, we tested its predictive behavior in different 296 
contexts. Saliency maps are commonly utilized to explain deep learning model predictions by 297 
highlighting the input variables that contribute most towards the predicted label59,60. First, for each 298 
nucleotide of every human mRNA, we calculated attribution scores contributing to the prediction 299 
of mean TE across all the cell types, multiplying these with the one-hot encoding of each mRNA 300 
sequence to evaluate the predicted contribution of the input nucleotides. Averaging across all 301 
mRNAs, we generated a metagene plot using these scores, evaluating the attributed effect size 302 
(i.e., absolute value) of each position along the length of each functional region of mRNA (Fig. 303 
3e, Supplementary Fig. 9a). mRNAs were grouped into one of four equally sized bins according 304 
to their measured mean TE (High, Medium, Low, and Very low). This analysis revealed that 5′ 305 
UTR sequences and CDS incorporate the greatest per-nucleotide information density (~67% and 306 
31%, respectively) in predicting translational output, followed by the 3′ UTR having the least 307 
contribution (2%). Taking into consideration the average length of each functional region, our 308 
model predicted a total global contribution of 22%, 73%, and 5% for the 5′ UTR, CDS, and 3′ 309 
UTR, respectively. In addition, RiboNN learned position-specific contributions to TE prediction. 310 
Specifically, the identity of the first 10 codons demonstrated a ~2-fold greater impact compared to 311 
codons positioned towards the middle of the ORF (amino acids 70 to 80) in both human and mouse 312 
(Supplementary Fig. 9a). These general observations were consistent for the mouse, which 313 
exhibited a 67%, 31%, and 2% per-nucleotide information density and 23%, 73%, and 4% total 314 
global contribution for the 5′ UTR, CDS, and 3′ UTR, respectively (Supplementary Fig. 9b). The 315 
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positional importance of the early coding region was similarly greater in mice (Supplementary 316 
Fig. 9c), suggestive of an evolutionarily conserved principle among mammalian species. 317 

We further examined our attribution scores using TF-MoDISco-lite61 to identify the most 318 
significant motifs associated with TE prediction for both human and mouse RiboNN models. Our 319 
analysis revealed that short, degenerate motifs; including CC, GG, CG, and AUGs upstream and 320 
downstream of the main ORF; are predictive of translation output (Supplementary Fig. 9d-e). 321 
Inspired by this finding, we performed an insertional analysis of all 16 dinucleotides and AUG to 322 
evaluate the model’s behavior upon inserting each of these short motifs along the full length of 323 
each mRNA. We observed varying influences on TE among different motifs and across different 324 
functional regions of mRNA for the same motif. Insertion of AUG and GG in the 5′ UTR 325 
demonstrated the strongest negative effect on TE prediction for both human and mouse models, 326 
while UU, AA, and UA exhibited the strongest positive effect (Fig. 3f, Supplementary Fig. 9f). 327 
Notably, the impact of upstream AUG (uAUG) on TE became increasingly negative as it 328 
approached the start codon, whereas CG showed a progressively positive effect. Albeit smaller in 329 
magnitude, most of the effects seemed to be maintained in the 3′ UTR, especially for regions 330 
proximal to the stop codon, suggestive of a position-dependent modulatory role for downstream 331 
AUGs and other dinucleotides. Taken together, these results establish that RiboNN captures the 332 
positional effects of nucleotide compositions along the entirety of the mRNA. 333 

mRNAs with high TE are typically enriched for optimal codons16. To ascertain whether RiboNN 334 
has also learned this property, we reiterated our insertional analysis using 61 codons (excluding 335 
the 3 stop codons) inserted into the first reading frame along the length of each ORF. Similar to 336 
our previous findings, the model attributed substantially different effect sizes to codons depending 337 
on their position along the ORF, with the greatest predicted effects occurring near the start codon 338 
(Fig. 3g, Supplementary Fig. 9g). GCU (alanine), GGU (glycine), GAU (aspartic acid), and AAC 339 
(asparagine) exhibited the strongest positive effects on TE; conversely, AGG , AGA (arginine), 340 
UCA (serine), and UUA (leucine) showed the most negative impact39. 341 

Based on the insertional analysis, we calculated the mean codon influence (i.e., across the ORF) 342 
on TE for each of the 61 non-stop codons and observed a strong correlation between the scores 343 
derived from human and mouse RiboNN models (r=0.95, rho=0.95; Fig. 3h), indicating 344 
evolutionary conservation of predicted codon function on TE and the models’ ability to learn these 345 
reproducibly from completely independent datasets. Given the close link between codon usage and 346 
other aspects of RNA metabolism, we compared the correlation of RiboNN-based codon influence 347 
scores with several other metrics. We observed a strong positive correlation with mean codon 348 
stability coefficients44, which measure the association between codons and mRNA stability (Fig. 349 
3i); a moderate negative correlation to propensity of ribosomes to have open A-sites57, which is 350 
indicative of ribosomes in the pre-accommodation state and hence slower elongation (Fig. 3j); and 351 
a moderate positive correlation with tRNA abundance58, which measures the availability of the 352 
cognate tRNA in the cellular pool (Fig. 3k). The correlations persisted when the scores of codons 353 
encoding the same amino acid were averaged, although no obvious trend existed with respect to 354 
hydropathy or charge of the amino acid (Supplementary Fig. 10). These findings underscore the 355 
complex interplay of multiple mechanisms that determine the fate of mRNAs in protein 356 
production. 357 
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Predicting translational outcomes for therapeutically delivered mRNA sequences and 358 
genetic variants 359 

Given RiboNN’s strong performance in predicting TE for endogenous mRNAs, we assessed its 360 
ability to generalize to orthogonal measures of TE and predict the impact of mRNA sequence 361 
variants on TE. Mean ribosome load, measured via polysome profiling, serves as an alternative 362 
metric of the translation rate of specific mRNAs, whether endogenous or therapeutic. Unlike 363 
ribosome profiling, mean ribosome load can differentiate translation differences between multiple 364 
RNA transcript isoforms of a given gene18,62. RiboNN, which was modeled on the full length of 365 
mRNAs, can be easily adapted to predict such isoform-specific TEs. The HEK293T RiboNN 366 
model demonstrated r=0.58 and r=0.83 between predicted TEs and mean ribosome loads measured 367 
for endogenous transcripts, which is within the realm of the reproducibility of measurement 368 
between labs (r=0.73; Fig. 4a). These results indicate that our model effectively captured the 369 
relationships between isoform diversity and translational regulation. 370 

In addition to endogenous mRNAs, polysome profiling has been used to measure translation from 371 
reporter constructs and base-modified mRNAs, as these can significantly influence protein 372 
output63. We next tested RiboNN’s ability to predict mean ribosome load in a massively parallel 373 
reporter assay dataset12. Although RiboNN was never trained on polysome profiling or reporter 374 
data, its predicted TEs were still correlated with mean ribosome load, with rho between 0.41-0.44 375 
for reporter mRNAs without modified bases and 0.30-0.31 for reporter mRNAs with either Ψ-376 
modifi-ed or N1-methylpseudouridine (m1Ψ)-modified nucleotides (Supplementary Fig. S11). 377 
Reporter assays enable assessment of how specific sequences within targeted regions affect 378 
expression. We further evaluated the performance of RiboNN in predicting ribosome recruitment 379 
scores for mRNAs with m1Ψ-modified 5′ UTRs linked to EGFP55, observing moderate agreement 380 
(rho=0.40; Fig. 4b). This correlation was slightly lower than that of predictions for endogenous 381 
CDSs sharing the same modified 5′ UTRs (rho=0.58; Fig. 4c), indicating the broad applicability 382 
of RiboNN for therapeutic mRNAs. Leveraging the paired measurement of endogenous ORF and 383 
EGFP, we observed rho=0.39 between changes in TE and changes in ribosome recruitment scores 384 
resulting from swapping the ORFs (Fig. 4d). This finding underscores RiboNN’s ability to 385 
integrate information from both 5′ UTR and ORF regions in predicting the translational regulation 386 
of mRNAs. 387 

Utilizing the entire mRNA sequence enables the examination of how differences in sequence, 388 
including disease-associated variants, influence TE at single-nucleotide resolution. Given that 5′-389 
UTR variants that generate or disrupt uORFs can lead to disease and are key cis-regulators of 390 
tissue-specific translation64, we first assessed RiboNN’s ability to predict the impact of uAUG-391 
associated point mutations. The RiboNN-predicted effect size had a strong association with the 392 
strength of negative selection, as indicated by the mutability-adjusted proportion of singletons 393 
score64 (Fig. 4e). Variants creating uAUGs that result in overlapping open reading frames (oORFs) 394 
or elongated CDSs exhibited a significantly higher impact on the TE of downstream protein-coding 395 
genes; moreover, uAUGs generated within 50 nt of the CDS had a greater effect size than those 396 
created further upstream (Fig. 4e). The effect size is slightly elevated if uAUG-creating variants 397 
arise in the context of strong Kozak consensus sequences relative to moderate or weak ones (Fig. 398 
4e). These findings reveal that RiboNN learned positional and contextual features of uAUGs, both 399 
in function and evolutionary constraint. 400 
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 401 

Fig. 4. RiboNN predicts the impact of RNA modifications, genetic variants, and reporter constructs on 402 
translation. a) Comparison of HEK293T-predicted TEs relative to mean ribosome load (MRL) as measured 403 
by polysome profiling18,62. b-d) Performance of RiboNN in predicting the ribosomal recruitment score (i.e., 404 
association of the 80S ribosomal subunit) to a panel of m1Ψ-modified 5′ UTRs linked to EGFP (b), their 405 
corresponding endogenous ORFs (c), or the paired difference between the endogenous and EGFP ORF (d)55. 406 
The Pearson (r) and Spearman (rho) correlation coefficients between each pair of measurements is also 407 
shown. e) Relationship between the observed strength of negative selection of uAUG-associated point 408 
mutations, as measured by the mutability adjusted proportion of singletons score64, and the RiboNN-predicted 409 
effect size. uAUG mutations were binned into categories based on the type of ORF created, distance to CDS 410 
start position, and association to Kozak consensus sequences of varying strength64. Error bars represent 411 
confidence intervals calculated using bootstrapping64. f-g) In silico mutagenesis results of two 5′ UTR regions 412 
of MORC2 (f) and CDKN2A (g). “Gain” alludes to a predicted increase in TE for the mutation, while “Loss” 413 
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refers to the opposite. Positions of wild type uAUG are highlighted in purple at the top. The known disease 414 
associated variant is boxed. Single point mutations resulting in severe change of TE are shown alongside 415 
annotations reflecting the corresponding gain or loss of TE. 416 

 417 

Next, we conducted in silico mutagenesis on the 5′ UTR regions of several disease-associated 418 
genes. MORC2, a gene implicated in Charcot-Marie-Tooth disease65, has a long 5′ UTR region 419 
with a large number of uAUGs. Reinforcing earlier results (Fig. 4e), RiboNN predicted that loss-420 
of-function mutations in CDS-proximal uAUGs would have a greater effect size relative to distal 421 
uAUGs (Fig. 4f). For the gene RDH12, associated with inherited retinal disease, RiboNN 422 
successfully predicted the negative impact of a uAUG-creating SNP (−123C>T), which had been 423 
experimentally validated to reduce translation66 (Supplementary Fig. 12a). Additionally, the gene 424 
CDKN2A has a reported G>T mutation at base −34 in its 5′ UTR that creates a uAUG reported to 425 
decrease translation, leading to predisposition to melanoma67. RiboNN consistently predicted 426 
decreased TE for this variant (Fig. 4g). The ability of RiboNN to correctly predict the impact of 427 
TE of variants extended beyond those associated with uAUGs. For example, the SNPs −127C>T 428 
and −9G>A in the 5′ UTR of the ENG gene, associated with hereditary hemorrhagic telangiectasia, 429 
have been reported to reduce the expression levels of ENG68, consistent with the decreased TE 430 
predicted by RiboNN (Supplementary Fig. 12b). For FGF13, a gene associated with congenital 431 
intellectual disability, the −32C>G mutation reduces translation69. RiboNN also predicted a 432 
negative effect of this SNP on TE, and indicated that a C>A mutation at the same position might 433 
have an even greater impact on TE (Supplementary Fig. 12c). However, for SNP −94G>A in 434 
BCL2L13, RiboNN predicted an increase in TE, contrary to the reported decrease in protein 435 
expression70 (Supplementary Fig. 12d). These results suggest that RiboNN could offer an 436 
additional form of evidence to infer the regulatory impact of SNPs on disease-associated genes. 437 

RiboNN learns a common language governing mRNA stability, translational regulation, and 438 
localization 439 

Given the strong positive correlation between the RiboNN’s mean codon influence on TE and the 440 
previously estimated codon influence on mRNA stability (Fig. 3i), we further assessed the 441 
relationship between TE and mRNA stability. Indeed, both the predicted and experimentally 442 
measured mean TE as well as mRNA stability from a previous study6 were positively correlated 443 
in humans and mice (r>0.31, rho>0.32; Fig. 5a, Supplementary Fig. 13). Similar patterns were 444 
also observed between mRNA stability, polysome profiling, and PTR data, with the exception of 445 
the PTR dataset27 previously observed to be an outlier (Supplementary Fig. 13a, Fig. 1c). 446 
Consistent with the predicted underlying role of codons influencing both TE and stability, mean 447 
TE (as predicted by RiboNN) was positively correlated with mRNA stability (r=0.38, rho=0.36; 448 
Fig. 5b); conversely, mRNA stability (as predicted by Saluki6 was positively correlated with TE 449 
(r=0.40, rho=0.40; Fig. 5c). Taken together, these results suggest an interconnectedness between 450 
mRNA stability and translational regulation that can be learned by sequence-based machine 451 
learning models from diverse and independent datasets. 452 
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 453 

Fig. 5. Interrelationships between mRNA translation, turnover, and subcellular localization. a-c) 454 
Scatter plots showing the relationship between mean TE and mRNA stability6 (a), predicted mean TE and 455 
mRNA stability (b), and predicted stability and mean TE (c). Pearson (r) and Spearman (rho) correlation 456 
coefficients are also indicated. d-f) Boxplots of TE (left panel) and residual TE (i.e., representing the 457 
difference between TE and the predicted TE, right panel) for mRNAs binned according to their subcellular 458 
localization. Shown are the distributions for mRNAs encoding non-membrane proteins that are enriched in 459 
TIS granules (TG+), rough endoplasmic reticulum (ER+), or cytosol (CY+)71 (d); mRNAs encoding 460 
membrane or secreted proteins, with or without predicted signal peptides (SP+/–)72 (e); or mRNAs enriched 461 
in cytosolic processing bodies (P-bodies)73 (f). p-values were computed by comparing the behavior of 462 
mRNAs localized to the specified compartment relative to those not localized (i.e., labeled “None”) using a 463 
two-sided Mann-Whitney test adjusted with a Bonferroni correction. 464 

 465 

mRNAs localized to certain subcellular compartments, such as the endoplasmic reticulum (ER) 466 
membrane, tend to be differentially translated71,74. We sought to evaluate these findings in the 467 
context of our predictive model, assessing both TEs and their associated residuals (mean TE – 468 
predicted mean TE) for mRNAs localizing to different compartments. For mRNAs encoding non-469 
membrane proteins, we observed a significantly higher residual TE for ER-enriched mRNAs; 470 
additionally, cytosolically enriched mRNAs exhibited a higher TE, although this signal was largely 471 
explained by the model (Fig. 5d). When considering mRNAs encoding both non-membrane and 472 
membrane or secretory proteins, a higher TE was observed for ER-enriched mRNAs (p<0.01, data 473 
not shown). This is consistent with the result that mRNAs encoding membrane or secreted proteins 474 
tended to have higher TE, even for those lacking a signal peptide sequence (Fig. 5e). Nevertheless, 475 
membrane/secreted proteins harboring a signal peptide possessed a strongly positive residual on 476 
average (Fig. 5e), indicating that RiboNN was unable to model the association between signal 477 
peptides and TE. This was unsurprising as the model was blind to amino acid sequence; 478 
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furthermore, it was trained on ~10K mRNA sequences and the number of sequences encoding 479 
signal peptides is combinatorially explosive. 480 

Given past work finding a relationship between mRNA stability and localization16, we evaluated 481 
whether unexplained variation in TE from RiboNN’s predictions could also be linked to mRNA 482 
localization. Since less stable mRNAs tend to be translationally repressed and enriched in mRNA 483 
processing bodies73 (P-bodies), we expected that mRNAs enriched in P-bodies to have lower mean 484 
TE compared to other mRNAs. This indeed appeared to be the case (Fig. 5f); however, there was 485 
no difference in the residual between mRNAs enriched in P-bodies (“PB+”) and others (“None”), 486 
indicating that the model already learned that mRNAs enriched for localization to P-bodies was 487 
associated with differential TE (Fig. 5f). Collectively, our results thereby establish a common 488 
language governing mRNA decay, translational regulation, and subcellular localization.  489 
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DISCUSSION 490 
 491 
In this study, we developed deep learning models that utilize entire mRNA sequences to predict 492 
TE. These models were trained using data synthesized from thousands of ribosome profiling and 493 
matched RNA-seq experiments across >140 human and mouse cell types. Our models explain over 494 
70% of the variation in TE in specific cell lines, achieving a mean R2 across cell types of 0.62. 495 
This represents a 1.3 to 4.4-fold performance improvement relative to previously developed 496 
models in mammals, which achieved a maximum R2 of 0.46 (range from 0.14 to 0.46)14,21,22,75. 497 
Furthermore, unlike earlier efforts which were limited to a few cell types, our approach enabled 498 
the development of models for a substantially larger and more diverse set of cell types. 499 
 500 
Recent research has primarily relied on reporter constructs to dissect regulatory elements of 501 
translation12,13,54,76 . Due largely to technological limitations, such experiments employ easily 502 
detectable and fixed coding regions, such as GFP, attached to variably engineered 5′ UTRs, and 503 
are typically limited to one or few cell types. Critically, these reporter constructs lack the full 504 
complement of proteins that normally accompany endogenous mRNAs throughout their 505 
lifecycle77, which influences RNA metabolism78. Consequently, predictive models based on 506 
reporter assays offer limited insights into the translation of endogenous mRNAs, explaining less 507 
than 25% of variation in their TE14,22. In contrast, our model demonstrates vastly superior 508 
performance in predicting the translation of endogenous mRNAs and also appears to predict the 509 
behavior of therapeutic RNAs55. 510 
 511 
Our predictive modeling approaches are particularly valuable as they provide a quantitative 512 
assessment of factors determining TE. By analyzing the position and identity of sequence 513 
elements, we were able to ascertain their relative importance in making accurate predictions. Our 514 
model highlights the dominant influence of 5′ UTRs and coding sequences in determining TE. The 515 
nucleotide compositions of 5′ UTRs heavily influenced the prediction of TE. Short, AU-rich 516 
sequences were generally associated with higher TE, whereas the impact of GC-rich sequences 517 
was negative but position-dependent. Intriguingly, recent massively parallel reporter assays 518 
conducted in both zebrafish and human cells, utilizing different readouts to measure translation, 519 
have identified a similar pattern54,55. This concordance suggests that these particular regulatory 520 
features observed in reporter constructs are reflective of those in endogenous transcripts. 521 
 522 
RiboNN also learned the well-established role of uAUGs in repressing the translation of the main 523 
coding sequence12,56,70,79. Specifically, a shorter distance between the uAUG and the start codon 524 
was associated with a reduced TE of the main coding sequence, consistent with the depletion of 525 
uAUGs near CDS start sites75. Furthermore, uAUGs closer to the start codon are more likely to 526 
produce overlapping ORFs. Such overlapping ORFs, which are under more stringent selective 527 
pressure in human populations64, tend to inhibit the TE of the main CDS more than uORFs entirely 528 
contained within the 5′ UTR, which may allow for reinitiation following uORF translation 529 
termination56.  530 
 531 
In addition to learning the well-established role of uAUGs, our model unexpectedly predicts that 532 
downstream AUGs in 3′ UTRs reduce TE, particularly when close to the stop codon. Readthrough 533 
of stop codons can lead to C-terminal extensions, which decrease protein abundance80. The 534 
underlying mechanisms likely involve both proteasomal degradation80,81 and reduced translation 535 
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due to ribosome stalling82,83. Alternatively, downstream AUGs can be translated due to inefficient 536 
recycling of terminating ribosomes that subsequently reinitiate84. Although the impact of such 537 
events on the TE of the main ORF remains incompletely understood, a recent study suggested that 538 
translation of downstream ORFs can act as translational activators85. While our findings might 539 
appear to contradict this finding, it is conceivable that there is a distance-dependent relationship, 540 
where AUGs near stop codons are inhibitory due to their effects on recycling efficiency or 541 
readthrough, whereas ORFs positioned further downstream could have activating effects. 542 
Although our models detect specific signals in 3′ UTRs, particularly near the stop codon, overall, 543 
RiboNN predicts that 3′ UTRs generally have a minimal impact on TE. Our results do not imply 544 
that 3′ UTR-dependent regulation is unimportant for specific genes86 or particular contexts such 545 
as in early vertebrate development87,88. However, the overall contribution of 3′ UTRs to translation 546 
control is likely limited, consistent with several transcriptome-wide analyses 28,89. 547 
 548 
A major finding from our study is the dominant influence of the coding sequence on TE 549 
predictions. Particularly, sequences proximal to the N-termini were found to be about twice as 550 
important in determining TE, a feature learned by RiboNN independently from both mouse and 551 
human datasets. Interestingly, recent work using reporter constructs and single-molecule analyses 552 
suggested that the identity of amino acids in early coding regions can affect protein synthesis 553 
efficiency, potentially through mechanisms related to translation elongation41. While the N-554 
terminus-proximal codons were more important at a per-residue level, the identity of codons across 555 
the entire CDS contributed to TE predictions. Factors such as the charge of the nascent polypeptide 556 
in the exit tunnel of the ribosome90,91, the pairs of codons in the decoding center39,92, and 557 
availability of charged tRNAs corresponding to specific codons93 have all been linked to altered 558 
translation elongation. Despite these mechanisms that can alter decoding rates, there is debate over 559 
whether the average elongation rate across different mRNAs varies significantly94,95. Critically, 560 
recent studies implicate codon usage in modulating initiation efficiency through differences in 561 
ribosome decoding rates96,97. Given the importance of the entire CDS for the accuracy of RiboNN, 562 
our results suggest that both codon and amino acid compositions are critical for determining the 563 
TE of endogenous mRNAs. 564 
 565 
Translation elongation dynamics have emerged as an important contributor to mRNA stability as 566 
well15,16,42–46. Intriguingly, the codon-specific effects identified by RiboNN in predicting TE 567 
closely mirror their impact on mRNA stability. For instance, the codons AGA and AGG, which 568 
were found to exert significant mRNA-destabilizing effects6,98, also negatively impact TE, as 569 
inferred by RiboNN. Additionally, during the maternal-to-zygotic transition, mRNAs enriched 570 
with codons that enhance mRNA stability also show higher TE15. However, the relationship 571 
between translation and mRNA decay remains debated99, as increased TE and ribosome flux can 572 
also facilitate mRNA decay, which would predict a negative correlation between the two62. 573 
Specifically, slower elongation rates may result in mRNA degradation through either transiently 574 
slowed ribosomes100,101 or ribosome collisions, which can activate the ribosome quality control 575 
pathway102. While these mechanisms have been primarily explored using reporter constructs, 576 
recent studies have also demonstrated its relevance to endogenous transcripts103. Detailed 577 
investigation into the translation-dependent and independent contributions to mRNA decay 578 
remains an active area of research104. Future studies are likely to uncover condition-specific effects 579 
on mRNA stability that vary with TE. 580 
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A potential limitation of our work is that it solely considers the primary sequence to predict TE. 581 
In our analyses using LGBM, the inclusion of several secondary structure-related features did not 582 
enhance performance. This might be explained by several possibilities: i) the primary sequence 583 
itself is highly predictive of secondary structure, potentially capturing these influences implicitly, 584 
ii) prior results may have overstated the importance of RNA structure because they did not 585 
appropriately account for nucleotide composition40, or iii) the features we computed, based on 586 
predicted free energy, do not accurately reflect the true secondary structures of these RNAs. 587 
Considering this last point, developing more precise secondary structure features could lead to 588 
further improvements in prediction accuracy. 589 
 590 
Another avenue for improvement could involve providing RiboNN with explicit knowledge of 591 
protein sequences. Including amino acid composition information improved the performance of 592 
the LGBM model, and our analyses revealed systematic bias in predicted TE for proteins harboring 593 
signal peptides. Thus, a deep learning model that accesses both nucleotide and amino acid 594 
sequence (i.e., or summarized protein-based information), may further enhance TE prediction. 595 
Nevertheless, since our models currently explain 62% of the variability in mean TE across a wide 596 
array of cell types, we can establish an upper bound on the impact of such features. This estimate 597 
is likely conservative, as some portion of the unexplained variance in these measurements is 598 
attributable to measurement error. 599 
 600 
We would also like to note that TE, as defined in our study and typically used in the literature, 601 
does not equate to the rate of protein synthesis; rather, it reflects differences in ribosome occupancy 602 
relative to mRNA abundance. While recent work with reporter constructs suggested that increased 603 
ribosome load may not linearly relate to protein output, both our work and previous studies29,105 604 
indicate that TE is positively associated with protein abundance and synthesis rates for endogenous 605 
transcripts. Theoretical models of translation also support the general positive relationship between 606 
protein synthesis and TE51,106.  607 
 608 
Overall, RiboNN achieves state-of-the-art prediction of TE in humans and mice, elucidating key 609 
principles that underpin accurate predictions, including the relative importance of various 610 
molecular aspects. These predictive models distill our knowledge into a coherent framework and 611 
have the potential to advance bioengineering applications. Significantly, RiboNN has the ability 612 
to generate functional predictions on genetic variants in the human population, giving insight into 613 
the mechanisms constraining molecular evolution and underpinning genetic diseases. Overall, 614 
these advancements have far-reaching implications for both genetic diagnostics as well as the 615 
design and optimization of mRNA and gene therapies, positioning our model at the forefront of 616 
these rapidly evolving domains. Looking ahead, we anticipate that future work will employ multi-617 
modal approaches to simultaneously predict all facets of gene expression—RNA abundance, 618 
stability, and translation—from primary mRNA sequence, given the interconnectedness of these 619 
phenomena.  620 
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SUPPLEMENTARY TABLES 650 
 651 
Supplementary Table 1. Feature sizes, sequences, CV folds, and TEs of human and mouse 652 
genes. The principal splice isoforms for human and mouse genes were downloaded from APPRIS 653 
v2107. The CV folds reported were used to split training and test sets. The TEs of transcripts with 654 
an average coverage <0.1x were set to NA. The mean TEs were calculated across the cell types 655 
for each transcript while ignoring NA values. 656 
 657 
Supplementary Table 2. Feature sizes, sequences, CV folds, and TEs predicted by the human 658 
and mouse RiboNN models. The principal isoforms for human and mouse genes were 659 
downloaded from APPRIS v2107. Predicted results are reported for the multitask and single-task 660 
RiboNN models (described in Fig. 3d). For transcript/cell type combinations in which the TE is 661 
NA in the training data, the predicted TEs were set to NA.  662 
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METHODS 663 
 664 
Generation of human and mouse TE compendia 665 
 666 
To calculate cell-type-specific TEs, we initially selected 1,282 human and 995 mouse ribosome 667 
profiling datasets with matched RNA-seq data. These were screened for a series of quality control 668 
steps to retain high-quality samples. Quality control criteria included ensuring average transcript 669 
coverage exceeded 0.1X and reads mapping to CDS constituted more than 70% of the total. The 670 
remaining 1,076 human and 835 mouse ribosome profiling samples were further processed using 671 
the winsorization method to minimize the impact of PCR bias (detailed in the companion 672 
manuscript114). Genes with sufficient counts per million (CPM > 1 in more than 70% samples) of 673 
RPFs were retained, and transcripts without poly(A) tails were removed. Experimental variables, 674 
such as the inclusion of elongation inhibitors, can lead to technical artifacts, manifesting as 675 
increased RPF density around start and stop codons108. To mitigate such biases, we only considered 676 
RPFs whose 5′ end mapped either after the first 10 nts or before the last 35 nts of the CDS. These 677 
RPFs were summed to determine the CDS count for each transcript47. An identical counting 678 
method was used for RNA-seq data. Total CDS counts for both RNA-seq and ribosome profiling 679 
were normalized using a centered log-ratio. TE was defined as the residual obtained from a 680 
compositional linear regression, for each transcript in each sample (detailed in the companion 681 
manuscript114). For each transcript, if either the RNA-seq or ribosome profiling read count was 0 682 
in all samples from a specific cell line, we assigned NA to its TE in the corresponding cell line. 683 
Finally, we calculated the average TE for each transcript in each cell line across all samples. 684 
 685 
Features considered in classical machine learning models 686 

The length features included the log10 of the 5′ UTR, CDS, 3′ UTR, and total transcript lengths. 687 
Nucleotide frequency included the percent composition of the 5′ UTR, CDS, 3′ UTR and full 688 
sequence. Codon and amino acid frequencies were calculated as the percentage within the CDS, 689 
and included annotated stop codons. K-mer frequencies (for k-mers of size two through six) were 690 
computed separately for each region and normalized by the total k-mer count. Additional feature 691 
classes included the frequency of each nucleotide in the wobble position of all codons, a one-hot 692 
encoding of the nucleotide identity surrounding the start codon (at the −3, −2, −1, +4, and +5 693 
positions), the counts of 20 dicodons found to affect TE in yeast39, and several secondary-structure-694 
related metrics. To capture secondary structure, sequences for the 5′-most 60 nt of the transcript 695 
and a 60 nt window centered on the start codon (i.e., last 30 nt of the 5′ UTR and first 30 nt of the 696 
CDS) were extracted from the APPRIS v2 primary transcript references107. If the 5′-UTR length 697 
was <30 nt, the first 60 nt of the transcript were used instead. Secondary structure features were 698 
enumerated in these regions using seqfold v0.7.17 (https://github.com/Lattice-699 
Automation/seqfold, https://zenodo.org/records/7986470) at a temperature of 37 ̊C. These features 700 
were the min ΔG, number of hairpins, number of loops, number of bifurcations, number of bulges, 701 
max stem length, max loop length, and position of the first stem. Hairpins with a stem length <3 702 
or loop length >10 were not enumerated. The biochemical features used previously6 were also 703 
tested separately and in combination with the sequence features. 704 
 705 
Classical machine learning model benchmarking 706 
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The lasso, elastic net, random forest (scikit-learn v1.0.2)109, and LGBM (lightgbm v3.2.1)110 707 
regression models were trained using 10-fold CV. Performance was measured as the mean of the 708 
R2 values across held-out test folds. For lasso and elastic net, the training data was further split into 709 
5 CV folds to find the optimal α (lasso and elastic net) and L1 ratio (elastic net) hyperparameters. 710 
The default hyperparameters given were used for LGBM, with the exception of the “gain” option 711 
for use with importance calculations. Random forest used the same number of trees and maximum 712 
leaf nodes as LGBM. Comparisons between model types (Supplementary Fig. 6) and feature sets 713 
(Fig. 2a) were deemed significant with one-sided, paired t-tests, adjusted by a Bonferroni 714 
correction. We measured feature importance as the sum total information gain across all LGBM 715 
tree splits using that feature, averaged across all folds. In Fig 2b-c, the importance was further 716 
averaged over all cell lines. To determine if a feature had a positive or negative effect on prediction, 717 
the Spearman correlation between the feature and cell-type-specific TE was used. 718 

RiboNN model architecture, training, and interpretation 719 

The input mRNA sequences were aligned at the start codons, with the maximum 5′ UTR size set 720 
to 1,381 nt and the maximum combined CDS and 3′ UTR size to 11,937 nt. Sequences were padded 721 
at the 5′ and 3′ ends with “N”, and one-hot encoded (with ‘N’ encoded by a vector of four 0s). We 722 
added a fifth channel labeling the first nucleotide of each codon in the CDS6. 723 

The architecture of RiboNN consisted of a Conv1D input layer, a “tower” of ten convolution 724 
blocks, and a head of 2-linear layers (Supplementary Fig. 6), with each convolution block 725 
including the following operations: i) layer normalization sandwiched by transpose actions, ii) 726 
ReLU activation, iii) 1D convolution with kernel width 5, iv) dropout, and v) max pooling with 727 
width 2. Overall, the model consisted of 250,382 learnable parameters. The output layer had one 728 
or multiple neurons for single-task and multitask learning, respectively. 729 

Following Saluki’s training procedure6, we trained the RiboNN multitask model with the MSE 730 
loss function using the AdamW optimizer on batches of 64 examples, a gradually decreasing 731 
learning rate between 0.001 and 0.0000001, beta1 of 0.9, and beta2 of 0.998. We clipped gradients 732 
to a global norm of 0.5. We used a dropout probability of 0.3 throughout. We trained each model 733 
for 200 epochs, saving checkpoints along the way. After 200 epochs, the model parameters from 734 
the checkpoint with the highest validation R2 were saved as the final model parameters. We trained 735 
the mouse and human models independently using a nested CV strategy. Specifically, we trained 736 
9 models for each of the 10 held-out CV folds (using 9-fold CV on the inner folds), producing a 737 
total of 90 trained models. For each of the 9 models from the inner folds, we retained the top 5 738 
models ranked based upon their validation R2 performance. When running RiboNN in “prediction” 739 
mode, we computed the mean of these 50 models to represent the ensemble prediction. 740 

Transfer learning was implemented by replacing the linear head of our pre-trained multitask model 741 
with a new single-task 2-layer linear head. We froze all preceding layers and trained the new linear 742 
head for 50 epochs, followed by unfreezing all of the layers and training the entire network for 743 
another 150 epochs. 744 

We used the saliency method60 within the PyTorch Captum library (version 0.6.0)111 to compute 745 
the attribution scores for each nucleotide of the input sequence with respect to the predicted mean 746 
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TE. For each of the test sets from our 10-fold CV procedure, we averaged the attribution scores 747 
from the top 5 trained models. 748 

To generate the metagene plot of attribution scores, we followed the methods established in prior 749 
work6. 750 

Insertional motif analysis with RiboNN 751 

Using attribution scores as input, we ran TF-MoDISco-lite61 on each functional region (5′ UTR, 752 
ORF, and 3′ UTR) independently to identify the motifs most strongly influencing the predicted 753 
mean TE. Gradient correction was applied by subtracting the mean attribution score across four 754 
encoding channels60. The motifs were ranked based on the number of sequences (i.e., seqlets) 755 
supporting the enrichment of each motif. 756 

As performed in earlier work6, the insertional analysis was performed by dividing each functional 757 
region of a valid mRNA into 100 evenly spaced positional bins. Each k-mer examined (i.e., the 16 758 
dinucleotides and AUG) was inserted into one of these bins, replacing the reference sequence to 759 
maintain the mRNA’s original length. A valid mRNA was defined as one with a 5′ UTR length 760 
≥100 nt, an CDS length ≥500 nt, and a 3′ UTR length ≥500 nt6. For each insertion, the predicted 761 
change in mean TE relative to the corresponding wild-type mRNA was recorded. To quantify the 762 
impact of each motif across diverse sequence contexts, the predicted changes in mean TE across 763 
all valid mRNAs were averaged for each of the 300 positional bins. Identical insertional analysis 764 
was performed for the 61 non-stop codons, except that each codon was inserted into the first 765 
reading frame of the ORF. 766 

Impact of uAUG-creating variants with RiboNN 767 

As described in an earlier study64, we retrieved the list of variants that create uAUGs and selected 768 
the canonical transcript based on the gnomAD v2 annotation112 for each gene for further analysis. 769 
For each uAUG-creating variant considered, we verified that its gene name matched the list of 770 
canonical transcripts and that the distance from each uAUG variant to the start of its CDS was 771 
accurately annotated. This led to a set of 15,184 uAUG variants which were categorized into two 772 
groups based on their effects and contexts as previously annotated64. The effect group was 773 
comprised of variants that create out-of-frame oORFs (n=2,784), elongate the CDSs (n=1,350), or 774 
generate uORFs (n=9,263). The context group included variants located at a distance of ≥50 nt 775 
from the CDS (n=11,113), <50 nt from the CDS (n=2,284), or associated with a strong (n=2,237), 776 
moderate (n=6,559), or weak (n=4,601) Kozak consensus sequence. To assess the impact of each 777 
variant on TE, we recorded the change in predicted TE relative to the wild-type mRNA reference 778 
sequence. The confidence intervals were calculated using bootstrapping as described64. 779 

In silico mutagenesis analysis of disease genes with RiboNN 780 

We performed in silico mutagenesis analysis6 on the 5′ UTR regions of genes associated with 781 
various diseases to predict the impact of genetic variants on TE. For each nucleotide position, we 782 
substituted the reference nucleotide with each of the three possible alternative alleles, and 783 
computed the predicted ΔTE. 784 

Subcellular localization analysis 785 
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Based on prior results111, we categorized 5,884 non-membrane protein-encoding mRNAs as 786 
enriched in TIS granules (TG+, n=1,086), the rough ER (ER+, n=745), the cytosol (CY+, 787 
n=1,299), or exhibiting no apparent localization (2,754). For our analysis of P-body-enriched 788 
mRNAs, we examined a total of 1,636 mRNAs113, of which 93 exhibited P-body enrichment based 789 
on prior results113. P-values from Mann-Whitney-Wilcoxon test two-sided with Bonferroni 790 
correction were performed to show statistical significance.  791 
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