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Abstract Towards the goal of malaria elimination on Hispaniola, the National Malaria Control

Program of Haiti and its international partner organisations are conducting a campaign of

interventions targeted to high-risk communities prioritised through evidence-based planning. Here

we present a key piece of this planning: an up-to-date, fine-scale endemicity map and seasonality

profile for Haiti informed by monthly case counts from 771 health facilities reporting from across

the country throughout the 6-year period from January 2014 to December 2019. To this end, a

novel hierarchical Bayesian modelling framework was developed in which a latent, pixel-level

incidence surface with spatio-temporal innovations is linked to the observed case data via a flexible

catchment sub-model designed to account for the absence of data on case household locations.

These maps have focussed the delivery of indoor residual spraying and focal mass drug

administration in the Grand’Anse Department in South-Western Haiti.

Introduction
Malaria transmission in Haiti is endemic and poses a significant public health problem with a total of

8828 cases (presumed and confirmed) reported in 2019 (World Health Organization, 2019). How-

ever, in relative terms, transmission rates are low: blood stage prevalence of Plasmodium falciparum

(Pf) is in many areas below 1% (Lucchi et al., 2014) and the dominant local vector (Anopheles albi-

manus) is inefficient (being primarily zoophilic and exophagic [Frederick et al., 2016]). Malaria elimi-

nation is a national priority and an ambition of the National Malaria Control Program of Haiti (or

PNCM; abbreviated from its official name in French: Programme National de Contrôle de la Malaria).

To this end, the PNCM has built a working strategy around improvements to the surveillance and
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management system operating nationally through the health facility and community health worker

(CHW) network, and the delivery of information and interventions targeted at sub-national adminis-

trative regions hosting identified transmission foci (Boncy et al., 2015; Druetz et al., 2018). To pre-

cisely geo-locate transmission foci and develop an evidence-based risk stratification, the PNCM has

collaborated with the Malaria Atlas Project (MAP) and partners. In this study, we describe an impor-

tant component of this collaboration: the construction of a national-level endemicity map and sea-

sonality profile informed by routine case reports from health facilities.

Recent years have seen great progress in the adoption of Bayesian methods for probabilistic

map-making (known as model-based geostatistics; Diggle et al., 1998) among the infectious disease

and global health research community (Bhatt et al., 2015; Osgood-Zimmerman et al., 2018;

Zouré et al., 2014; Karagiannis-Voules et al., 2015). The standard form of this technique is an

extension to the generalised linear model whereby geographic covariates based on high-resolution

satellite imaging (e.g., land surface temperature; digital elevation; nighttime lights) are combined

additively with a Gaussian process representing spatially correlated residuals. A suitable link function

then provides a non-linear transformation to the mean of the presumed sampling distribution for the

geo-located, point response data (e.g., prevalence; incidence; presence/absence), often geographi-

cally precise to the scale of individual villages and sometimes even households. In the case of

malaria, these methods provide benchmark estimates of transmission intensity (World Health Orga-

nization, 2019; Weiss et al., 2019; Battle et al., 2019) for much of sub-Saharan Africa where (1)

routine case reporting data have historically been highly incomplete and/or subject to problematic

sources of bias (Rowe et al., 2009; Alegana et al., 2020) and (2) the prevalence of malaria is suffi-

ciently high that national-level parasite surveys can readily be powered to resolve spatial variation

(Alegana et al., 2017a). In low transmission settings such as Haiti, transmission typically becomes

increasingly focalised, and the low prevalence of patent parasitaemia forces community parasite sur-

veys towards very intensive (viz. expensive) sampling designs to achieve confident spatial stratifica-

tions. Spatio-temporal risk modelling from data deriving from a routine passive surveillance process,

such as the reporting of health facility case counts, may thus be a more effective means of describing

the heterogeneity of malaria in this setting.

There are many challenges to overcome to achieve accurate, fine-scale disease mapping from

health facility case data. Foremost of these is that the case count from a given facility represents the

aggregation of observable case incidence over all households over an area of unknown extent: the

health facility catchment. Extension of the MGB framework requires the development of a sophisti-

cated sub-model linking the fine-scale disease process with the aggregate data (Wilson and Wake-

field, 2020; Taylor et al., 2018; Sturrock et al., 2014), including a representation of health facility

choice and attendance (Duncan et al., 2016; Nelli et al., 2020). Further challenges include a lack of

information regarding spatio-temporal variations in treatment seeking propensities across the stud-

ied communities (Alegana et al., 2017b; Alegana et al., 2012; Battle et al., 2016; Karyana et al.,

2016) and in the diagnostic practices operating at each health facility (Bastiaens et al., 2014). Vali-

dation of model outputs from this class of ‘down-scaling’ models is also uniquely challenging; the

hold-out of aggregate response data is of limited utility for testing fine-scale accuracy, since only

ancillary point-level observations can overcome the potential for ‘ecological fallacy’ (Wakefield and

Smith, 2016). Complementary to research in this direction is the development of survey methodolo-

gies and analysis strategies for alternative diagnostic technologies. For example, serological tools

that quantify immune responses to particular malaria antigens can reveal whether or not an individ-

ual has ever carried a Pf parasite infection (Corran et al., 2007; Helb et al., 2015), effectively target-

ing a higher prevalence objective (i.e., lifetime exposure history instead of current infection status)

to gain statistical power from lower sampling variance at the expense of temporal precision. Data of

this nature have been gathered in Haiti and used in various ways to assist with malaria risk stratifica-

tion (Oviedo et al., 2020).

Here we present the results of a bespoke analysis designed to uncover the characteristic spatial

pattern of contemporary malaria endemicity in Haiti and its spatio-temporal seasonality profile using

a geostatistical model informed by routine case incidence reports at monthly cadence assembled

from across the country over a 6-year period (2014–2019 inclusive). The methodological framework

developed for this purpose is described in detail, and model validation against a school-based sero-

logical survey is also presented. Finally, we discuss the use of these maps to focus the delivery of
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indoor residual spraying (IRS) and mass drug administration in the Grand’Anse department in South-

Western Haiti.

Results

Fine-scale endemicity surface
Our geostatistical model-based estimate for the contemporary spatial pattern of annual malaria

endemicity in Haiti is displayed at 1 � 1 km resolution in Figure 1. Figure 1A shows our posterior

geometric mean estimate of the clinical incidence rate in units of cases per 1000 person-years-

observed (PYO), with the fitted data (representative case totals) illustrated by the scaled circles over-

laid for those facilities with non-zero case counts. The corresponding clinical incidence surface (i.e.,

incidence rate multiplied by population) is shown in Figure 1B, and a summary of the model-based

uncertainties (namely, the pixel-wise standard deviation in our predictions in the logarithm of the

clinical incidence rate) is shown in Figure 1C. As described in the Materials and methods section

below, the representative case totals against which the model was fitted were constructed algorith-

mically by a procedure designed to (1) clean the data of epidemic fluctuations, (2) impute missing

months of data for facilities with reporting gaps, (3) standardise reports towards a diagnostic bench-

mark of diagnosis by rapid diagnostic test (RDT), and (4) de-trend earlier years of data towards 2019

transmission levels. Details of the spatial and spatio-temporal covariates, treatment seeking surface,

Figure 1. The contemporary spatial pattern of malaria endemicity in Haiti (2019) based on reported health facility case counts from 2014 to 2019. (A)

The (pointwise) posterior (geometric) mean of the clinical incidence rate of malaria in Haiti at 1 � 1 km resolution based on our model fit to

‘representative’ annual case totals constructed from the health facility dataset. The grey-shaded regions have zero mapped population density, so we

do not predict malaria risk in those areas. The boundaries and names (in light capital letters) of the 10 administrative departments of Haiti are marked

for reference, as is the location of the capital city, Port-au-Prince. (B) The (pointwise) posterior (geometric) mean of the clinical incidence count (total

annual cases): this is the product of the risk surface in (A) with the population surface. (C) A visualisation of the model-based uncertainty in these fine-

scale predictions, shown here in terms of the (pointwise) standard deviation in the logarithm of the predicted case incidence rate.
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and population map, which are leveraged towards resolution of the endemicity surface below the

health facility catchment scale, are also provided in the Materials and methods section.

Two additional visualisations of the inferred clinical incidence distribution in Haiti are provided in

Figures 2 and 3. In Figure 2, we present exceedance and non-exceedance maps at the thresholds

of 1 case per 1000 PYO and 1 case per 10,000 PYO, respectively; these illustrations summarise the

posterior probability that the incidence rate in each pixel lies above (or, conversely, below) each

threshold, and have been identified in previous work on disease mapping as useful summaries for

policy-makers (Giorgi et al., 2018). In Figure 3, we illustrate the aggregate counts of the popula-

tion-at-risk by department and commune using the same threshold as in our exceedance map; that

is, the total number of individuals in each administrative unit estimated to live in areas subject to a

case incidence rate above 1 case per 1000 PYO. The first administrative division of Haiti is comprised

of 10 departments, and for reference, the names of these are marked (in light capital letters) in

Figure 1A.

These probabilistic maps of clinical incidence reveal a high degree of heterogeneity in the disease

burden due to malaria in Haiti. Large areas of the country – in particular, in the northern depart-

ments of Nord-Ouest, Nord, and Nord-Est, and along the Chaı̂ne de la Selle mountain range tracing

the border of the Ouest and Sud-Est departments – are essentially malaria free with fewer than one

in 10,000 individuals expected to experience clinical malarial each year. Yet there remain a number

of high burden communities with clinical incidence rates 500 times greater than this benchmark.

These high burden communities are located primarily along the coastline and rivers of the Tiburon

peninsula containing the Grand’Anse, Sud, and Nippes departments, with populations-at-risk

(defined as those living in an area of malaria incidence greater than one case per 1000 PYO) of

322,693 (95% CI: 280,707–372,057), 322,956 (95% CI: 202,462–392,047), and 108,077

(95% CI: 61,620–147,288), respectively. An additional area of lower but still substantial burden lies

within the central river valley joining the Artibonite and Centre departments, with populations-at-risk

of 174,766 (95% CI: 97,196–313,169) and 166,938 (95% CI: 95,070–281,816).

The broad credible intervals around the estimation of these populations-at-risk reflect in large

part the systematic uncertainties of the de-trending, RDT-standardising, and imputation component

of our model, which contribute a substantial variance to inference of the absolute clinical incidence

rate, but less so to its relative spatial distribution. Inspection of the uncertainty summary in

Figure 2. Exceedance and non-exceedance maps for clinical malaria incidence in Haiti (2019) at policy-relevant thresholds. (A) The posterior probability

that the clinical incidence rate exceeds 1 case per 1000 PYO in each pixel under our geostatistical model. (B) The posterior probability that the clinical

incidence rate does not exceed 1 case per 10,000 PYO in each pixel under our geostatistical model.
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Figure 1C indicates regions of particularly high variance corresponding to (1) the Chaı̂ne de la Selle

mountain range and (2) patches along the borders of the Artibonite department and in Nord and

Nord-Ouest departments. The explanation for the former is simply population sparsity (i.e., sampling

noise) combined with the extreme elevation (i.e., covariate slope uncertainty); however, since this

terrain is believed to be an unlikely habitat for the local Anopheles species (principally A. albimanus)

(Frederick et al., 2016), it is probably well-classified as low risk. The explanation for the latter is the

ongoing use of microscopic diagnosis at similar frequency to RDT diagnosis at a minority of health

facilities in these areas (most used RDT diagnosis near-exclusively in 2019), which leads to a higher

contribution here from uncertainty in our standardisation procedure. The accuracy of microscopic

diagnosis in Haiti has previously been characterised as inadequate (Landman et al., 2015;

Weppelmann et al., 2018), hence the importance of attempting to adjust statistically for diagnostic

type.

The estimation of fine-scale spatial patterns below the extent of health facility catchments is

driven within our model by the suite of ancillary environmental covariates. The adopted model struc-

ture treats these as linear predictors having slopes that vary spatially with a certain degree of

smoothness (as described in detail in the Materials and methods section). The most important cova-

riates under the fitted model for the annual malaria incidence rate are highlighted in Figure 4, which

shows the dominant positive and negative covariate in each pixel. It is interesting to note that of the

four most important covariates over the entire country, three are ‘topological’ in nature – elevation,

accessibility, and road presence/absence – and only one is climatic (potential evapotranspiration).

However, it is essential not to interpret these results as indicative of importance in a causal sense;

Figure 4 is presented purely to provide insight into the structure of the fitted regression model. A

method for ranking variables in a causal framework has recently been applied to the modelling of

malaria case count data from health facilities in Madagascar and the results were shown to be very

different to a regression-based variable selection method (Arambepola et al., 2020). Note also that

the spatially varying slope parameter fitted to each covariate may even change sign in different parts

of the country under our modelling framework. For instance, a positive slope is assigned to penalise

high elevations in the Chaı̂ne de la Selle mountain range of the Ouest and Sud-Est departments,

while in Grand’Anse, a negative slope is assigned to boost the predicted incidence along the (low-

lying) coastal fringe.

Figure 3. Predicted population-at-risk of clinical malaria for Haiti (2019) by commune and department. (A) The posterior median estimate of the

number of individuals in each commune (the third largest sub-national administrative level in Haiti) living in areas subjected to a clinical incidence rate

above 1 case per 1000 PYO. (B) The same but aggregated at the level of departments (the largest sub-national administrative level in Haiti).
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Health facility catchments
The structure of the catchment model used here (see the Materials and methods section for details)

allows for patients in any given location to split their attendance between multiple neighbouring

facilities according to the relative travel time to each (fixed input) and a relative attractiveness weight

(free parameter learnt during fitting). The resulting catchments may thus have overlapping bound-

aries, which avoids unrealistic structural effects – such as a systematic under-estimation of city health

facility patient populations when commuters may otherwise be erroneously assigned to exclusively

visit suburban facilities – but can be a challenge for visualisation. In Figure 5, we present one type of

visualisation of the fitted catchment model: a flow diagram indicating the inferred movement paths

connecting the latent (unobserved) case household locations to the reported case counts at health

facilities. The accumulated number of cases on each path is represented by a varying line thickness;

facilities for which no malaria cases are reported are also indicated without attached flows, for refer-

ence. Aside from illustrating the degree of overlap between catchments inherent to our chosen

model structure, the visualisations in Figure 5 highlight the role of the travel-time distances (based

on the human movement friction surface of Weiss et al., 2018) in shaping these catchments – the

connections between inferred case locations and their attended health facilities directly reflect the

network of roads linking the settlements of this region.

Seasonality profile
Our model-based estimates of the fine-scale spatial pattern of month-specific variations in the inci-

dence rate of clinical malaria in Haiti are illustrated in Figure 6. For each calendar month, we present

the offset (from the annual mean) in the logarithm of the clinical incidence rate surface at 1 � 1 km

resolution, as fit to the monthly case counts at each health facility in our representative dataset. The

dominant signal is a uniphasic seasonal profile evident across most of the country, and most notably

the central valley, with cases rising during October–November to a peak in December–January and

then declining rapidly from February to a low during April–May. A small number of locations –

Figure 4. The dominant covariates in fine-scale prediction of the case incidence rate for Haiti (2019). The colour of each pixel corresponds to the

covariate with (A) greatest positive impact (in terms of increasing the local estimate of malaria risk) and (B) greatest negative impact (in terms of

decreasing the local estimate of malaria risk), upon the predicted incidence rate in accordance with the legend. Of the 12 total spatial covariates

offered to the model, only the eight shown here appear among the most dominant in at least one pixel.
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notably one hotspot on the northern coast of Grand’Anse near the town of Jeremie – show a tenta-

tive suggestion of a biphasic character with a smaller, second peak in June. However, it is possible

that this is an artefact of the recent epidemic outbreak in this area that has not been entirely

resolved by our cleaning and imputation procedure for constructing a dataset of representative

(endemic character) case counts.

The role of the spatio-temporal covariates that help to shape the estimated seasonality patterns

in our geospatial regression model (see the Materials and methods section for details) is explored in

Figure 7, in which the covariate having the greatest positive influence on the monthly offset in any

month is indicated in Figure 7A, while the covariate having the greatest negative influence is indi-

cated in Figure 7B. In the high incidence areas of the central valley and the Grand’Anse, the most

important positive covariate in a predictive sense is the enhanced vegetation index (EVI) lagged by 2

months, while the most important negative covariate is the land surface temperature (LST) lagged

by 1 month in the former, and the EVI unlagged in the latter. Again, note that although these covari-

ates may plausibly reflect physical drivers of malaria incidence in Haiti, we caution against this direct

interpretation as the fitted model is designed from a predictive framework rather than one of causal

inference. Moreover, all of these climatic and vegetation cover covariates are themselves highly co-

linear, so upon exclusion of one there is typically another able to be identified as providing an

explanatory contribution of similar magnitude within the regression model.

Validation against a serology dataset
The empirical spatial pattern of malaria exposure history amongst children in the Integrated Trans-

mission Assessment Surveys (TAS) for lymphatic filariasis and malaria [Knipes et al., 2017] is illus-

trated in Figure 8A. The TAS program used serological markers of long-term malaria exposure –

apical membrane antigen (AMA) and merozoite surface protein (MSP) antigenic responses – to char-

acterise malaria endemicity in school-aged children. The symbols plotting the TAS results in Figure 8

are colour-coded with respect to a (non-geospatial) Bayesian estimate of the median underlying

sero-prevalence (positivity by either antigenic response, or both) at the location of each school

Figure 5. Flow paths from predicted malaria case household locations to health facilities based on our catchment model for treatment seeking in Haiti

(2019). Each health facility is assigned a random colour and the flow of patients from households to health facilities predicted under our posterior mean

catchment model and case incidence surface are illustrated by the colour-matched (semi-transparent) lines of logarithmically proportional thickness, for

regions of interest: (A) in Grand’Anse (tip of the Tiburon peninsula); (B) along the Artibonite River in the central valley; and (C) in Port-au-Prince and its

surrounding settlements. Note that the flows shown here are modelled at a discretise 1 � 1 km resolution, far coarser than that of the hill-shading relief

and coastline shapefiles used in plotting; no journeys by sea are allowed in our least cost path model.
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surveyed. These estimates may be compared visually in a geographic context against our predicted

clinical incidence rate surface in Figure 1A. In Panel B, we present an alternative graphical compari-

son via a scatter plot (magenta ‘crosses’) with the uncertainties in each metric shown as error bars.

The median-to-median correlation between these two metrics of transmission intensity has a Pearson

coefficient of 0.426 (95% CI: 0.353–0.499), reflecting a positive but noisy relationship. Of course,

since the TAS sample size per school is generally small (<30), the credible intervals around these

point estimates of sero-prevalence are correspondingly broad. When considered in addition to the

uncertainties surrounding the fine-scale predictions from our health facility-based model, it is likely

that much of the width in this scatter plot derives from random (sampling) noise. Aggregating the

TAS sites in bins of similar predicted clinical incidence rate reveals a much tighter relationship, for

which a simple linear regression of the logit of sero-prevalence against the (natural) logarithm of inci-

dence yields a slope of 0.34 (i.e., log it pAMA or MSP / 0:34� log I).

Where visual comparison of Figure 8A to Figure 1A indicates the most interesting discrepancy is

with regard to the presence of some moderate (and in one case, high) sero-prevalence schools in

the Nord department for which our predicted clinical incidence rate from the health facility dataset

is everywhere rather low. We suspect that this is a reflection of a strong decline in transmission inten-

sity in this region over the period 2014–2016, seen in the rapid decline in cases reported and hence

the strong de-trending in our model towards the 2019 case counts – although it is not possible to

unambiguously distinguish changes to the health reporting system from genuine transmission inten-

sity trends from the available data. An important point raised by this comparison is that the inci-

dence surfaces presented here should be understood as reflecting the current state of transmission

Figure 6. The typical fine-scale spatial pattern of month-specific variations in the incidence of clinical malaria in Haiti based on reported health facility

case counts from 2014 to 2019. The (pointwise) posterior mean of the seasonal effect on the logarithm of the predicted case incidence rate is illustrated

for each calendar month based on the third stage of our inference procedure: the spatio-temporal geostatistical model with fixed catchment sub-

model fitted to the representative monthly case counts constructed at health facility level.
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Figure 7. The dominant covariates in fine-scale prediction of month-specific variations in the incidence of clinical malaria in Haiti (2014–2019). In each

pixel, the colour key indicates the covariate having the greatest (A) positive or (B) negative influence on the monthly incidence offset in any month. The

lags denoted here are in units of months prior.

Figure 8. Model validation against the estimated proportion of school children testing positive to serological markers of past malaria exposure in the

TAS dataset (2014–2016). (A) The spatial location of each school sampled in the TAS study is illustrated here with the colour of the plotting symbol

(filled circle), indicating the estimated sero-prevalence at that site. In this case, sero-positivity is defined as being classified positive for either the MSP

antigenic response, the AMA antigenic response, or both. (B) Comparison of the estimated sero-prevalence (using a simple Bayesian beta-binomial

model) from the TAS schools data against the predicted case incidence rate from our full geospatial model fit to the representative health facility-level

data. The 95% credible interval in each metric for each school location is illustrated by the purple lines. The median estimated sero-prevalence for sites

grouped in a series of bins by predicted case incidence is overlaid in blue, along with the associated line of best fit.
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subject to the recent history of anti-malarial interventions, rather than as a reflection of the inherent

environmental receptivity under a zero intervention scenario.

Comparison against models with naı̈ve imputation and naı̈ve catchment
structure
A minimal alternative approach to risk mapping from routine case data that has been explored in

the past was to impute missing case reports using the empirical mean over non-missing months (on

a per-facility basis) and to attribute cases from each facility to the households for which that facility

is the nearest treatment option, ignoring differences in the diagnostic method (microscopy vs RDT).

Following this procedure for the case data from 2019, we recover the risk map shown in Figure 9A.

The effective ‘resolution’ of this map is to the size of each naı̈ve catchment area, which tends to be

smaller in towns and cities and larger in remote, rural areas. Compared with our preferred model-

based risk map (Figure 1), the result here would suggest that transmission in the Grand’Anse is

dominated by hotspots sharply concentrated on the townships of Abricots, Bonbon, Anse-d’Hai-

nault, and Les Irois, with transmission intensity above 100 cases per 1000 PYO in each, rather than

being spread more evenly throughout the coastal settlements and rural communities of this penin-

sula. The correlation coefficient of this risk map against the TAS sero-prevalence data is just 0.301

(95% CI: 0.215–0.369), compared against 0.426 (95% CI: 0.353–0.499) for our preferred model. A

second version of the naı̈ve catchment risk map is shown in Figure 9B, this time after using our Step

one and Step two models (see Materials and methods) for de-trending, imputing, and diagnostic

correcting the raw case data. Overall, this adjustment improves the correlation against the TAS sero-

prevalences to 0.331 (95% CI: 0.257–0.398).

Discussion
The fine-scale mapping of malaria incidence and its seasonality profile in Haiti achieved through our

fitting of a Bayesian geospatial regression framework with catchment sub-model to the 2014–2019

health facility case reports brings a greatly refined understanding of the elimination challenge on

this side of Hispaniola. We see that the communities suffering from the highest annual average rates

of clinical malaria (above 50 cases per 1000 PYO) in 2019 are those along the coastline and valleys of

Figure 9. Risk stratification maps for 2019 produced under a naı̈ve catchment model in which patients attend only their nearest facility. (A) The raw

case data is used with a crude imputation by way of per-facility empirical means excluding missing months; (B) the case data has now been imputed,

de-trended, and microscopy-to-RDT converted.

Cameron et al. eLife 2021;10:e62122. DOI: https://doi.org/10.7554/eLife.62122 10 of 21

Research article Epidemiology and Global Health Medicine

https://doi.org/10.7554/eLife.62122


the Grand’Anse and Sud departments. Additional pockets of low-to-moderate endemicity (1–10

cases per 1000 PYO) are located in the central valley spanning the Artibonite and Centre depart-

ments, in some coastal communities of the Nippes, Sud-Est, and Nord-Est departments, and sur-

rounding Port-au-Prince in the Ouest department; the latter accounting for a substantial proportion

of the total cases each year owing to the size of the population in this area. The Nord and Nord-Est

departments have lower incidence rates (below 1 case per 1000 PYO), and some areas can yet be

confidently predicted as extremely low (below 1 case per 10,000 PYO). Against these broad varia-

tions between departments, there exists substantial heterogeneity in the clinical incidence rate of

malaria at rather small scales within departments, which in a predictive sense can be explained within

our modelling approach by differences in accessibility, elevation, road presence/absence, and poten-

tial evapotranspiration. The clinical incidence of malaria in Haiti is also highly seasonal with a strong

uniphasic seasonality pattern at maximum during December–January and minimum during April–

May.

These results have already proven useful for planning a number of the public health interventions

that will be required to achieve malaria elimination in Haiti. These maps have been used to derive

epidemiologically relevant operational units for targeting packages of interventions in five priority

communes in Grand’Anse. Operational units were ranked by the strength of transmission (quantified

after further post-processing in terms of the reproduction number under control, Rc) to help deter-

mine those that would receive targeted mass drug administration (tMDA) and with IRS in 2018, and

are again being used in planning this year (2020). Serological data were subsequently used to refine

this ordering, and an eventual re-definition of operational unit boundaries was made to follow natu-

ral logistical divisions such as rivers and major roads. For planning purposes such as these, it is clear

that these fine-scale probabilistic maps offer a more nuanced stratification than the categorical risk

maps at the commune level produced, e.g., for the World Malaria Report (World Health Organiza-

tion, 2019), by direct summary of the available case counts divided by areal population totals – and

one that is far superior to the dichotomous risk maps based solely on elevation (at a threshold of

500 m) that have, anecdotally, been used in past decision making.

In this context, it is important to again emphasise certain caveats of our analysis, which point

towards topics for future research and data gathering. Of particular concern is the lack of informa-

tion regarding potential spatial variations in treatment seeking behaviour across the country. A

recent study of community attitudes towards malaria treatment (Druetz et al., 2018) confirmed that

some Haitians will seek care for febrile illness outside the national health care system, such as at a

traditional healer or at a private health care provider not reporting to the national network. At pres-

ent, we have attempted only to adjust for the possible effect of travel-time distance on the absolute

treatment seeking propensity, using a model calibrated to an African setting (Alegana et al., 2012);

clearly, this deserves refinement if local data can be gathered through a dedicated survey

questionnaire.

It is known that seasonal migrations of agricultural workers or other large itinerant groups have a

potential to introduce spurious effects into modelled case incidence rates unless explicitly accounted

for via a dynamic population denominator (Zu Erbach-Schoenberg et al., 2016). As high-fidelity

human movement data is not currently available for Haiti, we cannot yet model this aspect directly

and can only hope that a substantial proportion of any such unmodelled variation is absorbed implic-

itly within the random effects terms of our statistical model. Interestingly, an earlier study in which a

regression model was built to predict short-term human movement from internal migration data

(Sorichetta et al., 2016) has indicated that in relative terms the Ouest department containing Port-

au-Prince is more strongly connected to all other departments than any of those departments are

connected with each other independently, although the magnitude of this connectivity in absolute

terms remains unknown. It is worth emphasising here that our model aims only to map where people

at risk of malaria illness reside, which may not necessarily be the same as where they contracted their

infection. The higher risk communities identified in our modelling are primarily in remote and rural

areas, in which people are unlikely to regularly commute long distances from their place of residence

for work or leisure. However, in terms of absolute case numbers it was shown in Figure 1B that there

are a substantial number of people in the vicinity of Port-au-Prince presenting to health facilities with

clinical malaria. Whether these infections were contracted locally or elsewhere – and what role sea-

sonal migration and/or travel plays in sustaining transmission wherever it occurs – is not informed by

the present dataset.
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A final caveat on our analysis concerns the limitations of the catchment sub-model. Our introduc-

tion of a gravity-style representation with overlapping catchments based on travel-time distances

constitutes a substantial effort towards constructing a realistic representation of patient behaviours,

especially in comparison with the vanilla alternatives of Euclidean (‘as-the-crow-flies’) distances and/

or hard (tessellation-style) boundaries – yet there is no doubt that our model is still a profound sim-

plification. It remains for future research to establish how much of a limitation this is in terms of our

ability to accurately downscale health facility data to pixel level – though at least our comparison

against the TAS serological data suggests we are on the right track – and whether there are any sim-

ple improvements to the model structure that should be made (such as a refinement of the coeffi-

cient of preference decay on travel-time distance, currently fixed at �2; i.e., inverse-square decay).

Already we have begun work (van den Hoogen et al., in prep.) to explore risk mapping under more

complex catchment sub-models in a focus region of the Artibonite department where partial case

tracing of febrile patients (from health facility to patient household location) has been performed.

The catchments we have begun to reconstruct in the Artibonite case tracing study do confirm a gen-

eral dependence on travel time, but they also reveal instances in which clusters of patients travel far

beyond their nearest facility to seek care. We do not have data on specific factors, which might help

to explain this behaviour, though anecdotal examples that appear in the literature suggest possible

explanations, e.g., lower income patients may be avoiding a facility that illegally charges for anti-

malarial medication (Druetz et al., 2018).

Another direction we are exploring to further refine our risk maps is the inclusion of information

from alternative malaria metrics such as the sero-positvity rate, used here only for model validation.

Important to note is that, although our current validation model treats the underlying sero-preva-

lence at each site as an independent random variable, one can readily apply the same principles of

model-based geostatistics to refine sero-prevalence estimates via spatial covariates and

spatially correlated noise models (Ashton et al., 2015). While we have not taken this step here to

avoid any artificial shrinkage of our validation set towards the health facility dataset through a com-

mon model structure with the same covariates, it is easily done. More challenging is to develop

appropriate methods for the simultaneous modelling of multiple data types. Indeed this is an active

topic of research within geospatial statistics – both in regard to linking point data with areal data

(Richardson and Best, 2003; Moraga et al., 2017) and in regard to sharing information between

multiple disease metrics (for the same disease or even different diseases [Held et al., 2005]) – and is

a direction we are pursuing for further refinement of our incidence maps in the Grand’Anse depart-

ment (Amratia et al., in prep.).

In conclusion, the analyses and results of this paper demonstrate that point of care case counts

can be used to generate programmatically useful maps of clinical incidence rates providing fine-scale

risk stratifications. A spatio-temporal seasonality profile can also be determined when data are avail-

able at monthly intervals. This information can be used to refine the spatial and/or temporal target-

ing of high-burden areas for anti-malarial interventions such as tMDA, IRS, and long-lasting

insecticidal net delivery. These outputs are readily updatable as additional facility data are made

available and will be valuable in defining residual transmission foci as the final stages of elimination

near.

Materials and methods

Response data and covariates
Our primary dataset consisted of monthly counts of confirmed malaria cases – i.e., patients seeking

care for febrile illness with patent parasitaemia detected via RDT or microscopy – for each of 771

geo-located health facilities reporting at least once in 2019. These 771 facilities are a sub-set of the

1191 facilities in a master reporting file compiled by the PNCM of Haiti with assistance from the Clin-

ton Health Access Initiative (CHAI); those that did not report on malaria cases or testing at least

once in 2019 were assumed here either to have closed or to no longer offer malaria test and treat

services to febrile outpatients. Since 2016, CHWs attached to certain health facilities have been pro-

actively seeking cases in the local community, and we add these cases to the reported totals of ordi-

nary patient visits for those facilities. The reporting period covered by this dataset begins with

January 2014 and finishes with December 2019 and the overall completeness of reporting among
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the sub-set of 771 facilities is 77.5%, with 537 facilities reporting in at least 61 of the 72 months

(69.6%). It is believed that all health facilities operating in Haiti through 2019 are included in the

master reporting file, although it is not certain that all facilities excluded from the sub-set studied in

the present analysis represent genuine closures as opposed to circumstances of sudden, sustained

reporting failure, or conversely that all included facilities were indeed open through all of 2019. A

number of the health facilities in our dataset lie within the same city or village, being separated by a

distance comparable to, or less than, the target resolution (1 � 1 km) of our mapping. After imput-

ing missing monthly case reports for all 771 facilities reporting in 2019 (as described in stage one of

our inference procedure below), we reduce the subsequent model complexity by aggregating nearly

co-located facilities using a hierarchical clustering algorithm. In this way, a total of 450 ‘aggregate

pseudo-facilities’ are formed which we will simply continue to refer to as ‘health facilities’.

A suite of high-resolution satellite imaging products were introduced as covariates within our sta-

tistical modelling. Namely, accessibility to cities (Weiss et al., 2018), aridity index (Trabucco and

Zomer, 2009), distance to water (bespoke), elevation (Farr et al., 2007), EVI (Huete et al., 1999),

land cover classification (forest, grass savannah, urban/barren, and woody savannah; Friedl et al.,

2010), LST(day and day–night difference; Wan et al., 2002), open street map (2016 road presence/

absence; Haklay and Weber, 2008), potential evapotranspiration (Trabucco and Zomer, 2009),

slope (Farr et al., 2007), tasselled-cap brightness (TCB; Kauth and Thomas, 1976), tasselled-cap

wetness (TCW; Kauth and Thomas, 1976), and topographic wetness index (Farr et al., 2007). All

products were downloaded from their respective online repositories, gap-filled (where necessary),

and registered to a common grid. The EVI, LST, TCB, and TCW products were summarised to 2014–

2019 annual averages and average monthly offsets, while the remainder were used as static covari-

ates. The High Resolution Settlement Layer from the Connectivity Lab at Facebook (URL: https://

www.ciesin.columbia.edu/data/hrsl/) provides the population denominator for our model, and the

Weiss et al., 2018 friction surface is used to build travel-time maps from each 1 � 1 km pixel to

each health facility with assistance from the malariaAtlas R package (Pfeffer et al., 2018). Serologi-

cal prevalence observations (AMA and MSP antigens) for 24,514 children aged 6 and 7 years old in

820 schools from the Integrated TAD datasets (Knipes et al., 2017) sampled from across Haiti

between November 2014 and August 2016 were used for validation of the spatial trends revealed in

the annual incidence outputs.

Stepwise modelling approach designed for robustness against
unmodelled sources of noise
Case counts of clinical malaria from health facilities in low-resource settings have traditionally been

considered an unreliable and challenging source of data with which to map risk and/or evaluate the

efficacy of interventions, owing to spatial and temporal variabilities in reporting completeness and

accuracy, testing rates and methods, access to care, and treatment seeking behaviours

(Alegana et al., 2020; Afrane et al., 2013; Oduro et al., 2016; Ohiri et al., 2016). In Haiti in partic-

ular, the specificity of local microscopy-based diagnosis has been shown to be sub-optimal

(Landman et al., 2015; Weppelmann et al., 2018) and increasing the proportion of diagnoses

made by RDT has been a key pillar of recent reforms to case management (Boncy et al., 2015) – the

impact of which is clearly seen in the reported health facility case counts (Weppelmann et al.,

2018). Fortunately, in this study, we have access to data on the relative rates of RDT and microscopy

testing by health facility and month, allowing for explicit modelling of this previously identified sys-

tematic effect. Spatial variation in access to care is another systematic effect that we attempt to

model given our access to a high-resolution travel-time covariate (Weiss et al., 2018). However, we

must acknowledge that there are likely many other important confounding factors about which we

have very little supporting data. Likewise, the spatio-temporal dynamics of epidemic fluctuations in

malaria incidence are challenging to separate from the signal of endemic transmission intensity via a

generative (forward-modelling) framework. The stepwise inference framework described below is

designed to limit the impact of such factors on our model-based estimates while negotiating a prag-

matic trade-off between the theoretical advantages of building an explicit representation of each

conceivable error term and the computational advantages of model parsimony.

Our inference of the fine-scale case incidence rate and seasonality profile of clinical malaria in

Haiti is thus modularised in three distinct stages. In the first stage, a pair of statistical models is used

to impute missing data and de-trend the reported monthly case counts from 2014 to 2019 at each
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facility towards an RDT-standardised 2019 level. These are then folded (over years) and median fil-

tered by month to produce a year of ‘representative’ case data designed to reflect endemic trans-

mission intensity. Model-based uncertainties from this procedure are propagated through to the

subsequent stages of our analysis by sampling multiple versions of this representative dataset from

its modular Bayesian posterior. In the second stage, a fine-scale, spatial-only geostatistical model

with a flexible catchment sub-model is fit to (each modular posterior draw of) the representative

dataset to estimate the annual average incidence rate at pixel-level and the attractiveness of each

health facility. Fine-scale mapping in this step is assisted by our suite of high-resolution covariates

and an over-dispersed sampling distribution is adopted to represent additional variation in the

reported counts beyond that accommodated naturally by our core model. Again the statistical

uncertainties are propagated forward via modular posterior sampling. In the third and final stage, a

fine-scale spatio-temporal geostatistical model is fit (conditional on the previously fitted catchment

sub-model) to explain the residual seasonal variation about (each modular posterior sample of) this

baseline risk surface in the (corresponding sample of) representative monthly case data.

Although the primary motivation for introducing these ‘cuts’ (Plummer, 2015) in our inferential

approach is, as noted above, to focus on endemic transmission, promote model parsimony, and

improve computational feasibility in model fitting, it is worth noting that such contained modularisa-

tion can also guard against the magnification of systematic errors between components due to a

misspecification in one of them (Jacob, 2017). The following sections give further details on each of

the three stages.

Constructing a year of representative case data
The first step in this stage of analysis was to impute values for the fraction of tests performed by

microscopy (as opposed to RDT) in those health facilities missing these data in certain months. To

this end, we introduce a non-spatially structured model in which the expected proportion of tests

conducted by microscopy in each month for each facility is predicted as the inverse logit transforma-

tion of a three part temporal spline (covering January 2014 to December 2019) plus intercept. The

spline coefficients are assigned a Bayesian shrinkage structure in which the mean of each and the

between-facility variation are learned jointly across facilities. The precise structure of this model is

described in standard hierarchical Bayesian notation in the box for Model 1 below.

Nmic;jt : where mic and RDT case totals both non�missing ~Binom pmic;jt;Ntested;jt

� �

logit pmic;jt ¼ aj�bsplineð1ÞðtÞþ bj�bsplineð2ÞðtÞþ cj�bsplineð3ÞðtÞþ dj

aj ~Normal amean;s
2

shrinkage

� �

;bj ~Normal bmean;s
2

shrinkage

� �

cj ~Normal cmean;s
2

shrinkage

� �

; logsshrinkage ~Normalð�1;1
2Þ;

amean;bmean;cmean;dj ~ Improper Uniform

Model 1
Facility-level model with non-spatially-structured Bayesian shrinkage for the estimation of the month

and facility-specific propensity to conduct malaria diagnosis by microscopy rather than RDT.

Our de-trending model then takes the form of a point-indexed geostatistical regression on the

case counts, casesjt, at each facility in each month (where available), computed with respect to a

latent incidence surface using the associated populations under a naı̈ve catchment sub-model as a

base rate factor. For the latter, we propose that the population in a given pixel will split its atten-

dance between neighbouring health facilities in inverse proportion to the square of travel-time dis-

tance from pixel to facility. In mathematical notation, our naı̈ve catchment matrix, C�
i!j, which gives

the proportion of residents in pixel i who attend health facility j is constructed as C�
i!j /

1

T2

i!j

using

travel-time distances, Ti!j, computed from the Weiss et al. friction surface (Weiss et al., 2018). We

distinguish this formulation (the naı̈ve sub-model) from the more flexible version introduced in the

subsequent analysis stages in which an ‘attractiveness’ weight, Wj, is learnt for each facility during fit-

ting. This weight represents the impact of unknown factors that might influence attendance prefer-

ence, such as differences in the availability of staff, the cost of treatment, and perceptions about the
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quality of care offered. Multiplication of the naı̈ve catchment sub-model against the high-resolution

population map for Haiti (while assuming, for now, universal access to treatment) gives crude popu-

lation denominators for each facility, adequate for this temporally focussed inference step.

The statistical structure of our de-trending model comprised a five-part temporal spline across

the 72 months of data with spatially varying coefficients and a spatially varying intercept, as well as a

(cyclical) annual seasonality term, as described using hierarchical Bayesian notation in the box for

Model 2 below. The mean (log) incidence surface is composed of a spatial-only Gaussian process

term and a separable (Kronecker product) spatio-temporal Gaussian process with circularity (over

the calendar months) in the temporal dimension (an exponential kernel on the circle). Model fitting

was performed in the Template Model Builder (TMB) and Integrated Nested Laplace Approximation

(INLA) packages (Kristensen, 2015; Lindgren and Rue, 2015) for R using a Laplace approximation

over the random field components and over-dispersion terms, and with posterior approximation

over the remaining hyper-parameters represented by a Multivariate Normal matched to the curva-

ture at the empirical Bayes estimate. The suitability of this higher level approximation was confirmed

by comparing the (Laplace approximation based) marginal likelihoods at a series of draws from the

Multivariate Normal against their densities under this proposal distribution. As this is an expensive

operation, we did not calculate and use these factors for importance weighting of our full set of

approximate posterior samples, relying instead on the nested Normal formulation.

Finally, for each posterior draw, we impute the missing case reports with predicted case numbers

and divide from the completed case–month matrix the exponentiated f kð Þ locj
� �

� b
kð Þ
spline;t and

pmic;jt �miceffectt to de-trend these numbers towards an RDT-standardised 2019 benchmark. To

reduce the impact of any unmodelled factors contributing short-term temporal fluctuations to the

case reports, we then wrap our 4 years of imputed and de-trended data around the calendar year to

construct (from each posterior draw) a single year of representative data from the median in each

month.

casesjt : where case data non�missing ~NegBin
mean¼ Ijt � approx catchment popjt;

over dispersion factor¼ s

� �

log Ijt ¼ cþ finterceptðlocjÞþ fð1ÞðlocjÞ�bspline;tÞ
ð1Þþ fð2ÞðlocjÞ�b

ð2Þ
spline;t þ fð3ÞðlocjÞ�b

ð3Þ
spline;t

þfð4ÞðlocjÞ�b
ð4Þ
spline;t þ fð5ÞðlocjÞ�b

ð5Þ
spline;t þ fseasonalðlocj;modðt;12Þ

þpmic;jt �mic effectt

finterceptð�Þ~Gaussian Process rangeintercept; scaleintercept
� �

fð1Þð�Þ; fð2Þð�Þ; fð3Þð�Þ; fð4Þð�Þ; fð5Þð�Þ~Gaussian Processðrangespline; scalesplineÞ

fseasonalð�Þ~GaussianProcess rangeseasonal time; scaleseasonal timeð Þ˜Gaussian Process rangeseasonal; scaleseasonalð Þ

mic effectt ¼ �þ fmicðtÞ; fmicð�Þ~AR1ðscalemic;AR parmicÞ

lograngeintercept ~Normal �1;12
� �

; log rangespline; log rangeseasonal; log rangeseasonaltime ~ Normal 1;12
� �

logscaleintercept ~ Normal 2;12
� �

; log scalespline; log scaleseasonal; log scaleseasonaltime ~ Normal �1;12
� �

log scalemic ~ Normal �1;1
2

� �

; log it AR parmic ~ Normal 2;12
� �

logs ~ Normal �1;12
� �

; c ~ Improper Uniform

Model 2
Point-level geostatistical model for approximate case incidence rate at each health facility location

used for de-trending (and imputing) the raw monthly case counts towards the production of an RDT-

standardised 2019 benchmark.

Fine-scale prediction of annual incidence surface
The second stage of our inference procedure is to fit a pixel-level geostatistical model with full

catchment sub-model to the annual totals at facility level in (each modular posterior draw of) the

12 months of representative counts. On removing the temporal dimension from consideration, it
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becomes computationally feasible to allow flexible health facility attractiveness weights in the catch-

ment sub-model and to perform the aggregation of the latent cases from pixel level to facility via

this sub-model self-consistently during fitting. In this sense the adopted model structure is at least

one step more ambitious than other comparable, multi-scale geospatial models for fine-scale disease

mapping from areal-averaged data (Wilson and Wakefield, 2020; Taylor et al., 2018). Another

extension is that we have adopted a spatially varying coefficient (slope) model (Gelfand et al., 2003)

to describe the relationship between our static, environmental covariates and the log incidence rate.

The motivation for this is to limit our exposure to bias in this implicit ecological regression

(Wakefield and Smith, 2016) due to unmodelled factors, such as the potential role of human move-

ment between regions and spatial variations in the dominant anopheline species. Both of these

could lead to differences in the relationship between environmental variables and the case incidence

rate amongst the human populations resident in different areas of the country. A decision was made

not to attempt to learn a shrinkage hyper-parameter acting on the static covariate slopes in order to

avoid exposure to over-shrinkage given that the aggregate dataset may be thought of as inherently

under-powered for learning slopes relative to a comparable point-level dataset of similar design and

size. Previous applications of fine-scale modelling to aggregate malaria datasets (Sturrock et al.,

2014; Alegana et al., 2016) used aggressive covariate selection approaches, which retained far

fewer environmental variables than are typically found to be important for prediction at this scale

based on point prevalence surveys (Bhatt et al., 2015; Weiss et al., 2015).

A lack of data on treatment seeking behaviours for malaria patients in Haiti has previously been

identified as a core knowledge gap (Keating et al., 2008). As our primary interest here concerns the

recovery of accurate spatial patterns of malaria incidence, we are less worried about the overall rate

of treatment seeking (which studies in African settings suggest is rarely below 30% for acute febrile

illness [Alegana et al., 2017b]) than in the possibility of spatial variation. Studies of treatment seek-

ing behaviour in both low- and high-resource settings indicate a tendency for treatment seeking

rates to decline with increasing travel-time distance from the nearest point of care (Alegana et al.,

2017b; Ensor and Cooper, 2004). However, very little decline is seen until beyond 100 min travel

time in well-studied settings (such as Namibia [Alegana et al., 2012]), and at the 1 � 1 km resolution

of our map making almost 96.4% of pixels with non-zero population density lies within this distance

from their nearest health facility. For this reason, we do not anticipate a strong spatial variation in

treatment seeking rates across the country due to this effect, but we have nevertheless constructed

an access distance-dependent treatment seeking probability map (following the Namibian example,

with maximum treatment seeking probability of 65%) as a first-order approximation.

The complete Bayesian model used in this stage is described in hierarchical notation in the box

for Model 3 below. Once again a combination of the TMB and INLA packages are used to fit this

model with a Laplace approximation over the random field and the (logarithm of) catchment attrac-

tiveness weights, with a Multivariate Normal approximation in the remaining hyper-parameters cen-

tred on the empirical Bayes estimator.

annual representative casesj ~NegBin
mean¼ expectedcasesj;

over dispersion factor¼ s

� �

expected casesj ¼
X

i

Ci!j �populationi� Ii� treatment seeing probi

Ci!j /
Wj

T2
i!j

; logWj ~Normalð0;0:52Þ

log Ii ¼ cþX0
static bstaticþ fstaticðlociÞð Þþ finterceptðlociÞ

finterceptð�Þ~Gaussian Process rangeint; scaleintð Þ

bstatic;k ~Normalð0;12Þ; fstatic;kð�Þ~Gaussian Process rangecovs; scalecovsð Þ

log scalestatic; logscalecovs ~Normalð�1;12Þ; lograngestatic; lograngecovs ~Normalð1;12Þ

logs~Normalð�1;12Þ; c~ Improper Uniform

Cameron et al. eLife 2021;10:e62122. DOI: https://doi.org/10.7554/eLife.62122 16 of 21

Research article Epidemiology and Global Health Medicine

https://doi.org/10.7554/eLife.62122


Model 3
Catchment-based geostatistical model for annual case count at each health facility location used to

produce our baseline clinical incidence rate surface.

Spatio-temporal modelling of seasonal fluctuations in case incidence
In the third and final stage of our inference procedure, we hold fixed the health facility attractiveness

weights, baseline incidence surface, and annual (i.e., spatial) over-dispersion factors learnt in the pre-

vious step. This allows (at the limit of our computational resources; 128 GB RAM) to model the sea-

sonal variations in incidence at fine-scale in a spatio-temporal geostatistical regression against the

monthly case counts in (each modular posterior draw of) the representative dataset. The model

structure for the seasonality term is the same as that used in the first stage: a separable (Kronecker

product) spatio-temporal Gaussian process with circularity (over the calendar months) in the tempo-

ral dimension (an exponential kernel on the circle). Due to computational limitations, a

spatially varying slope model was infeasible for the dynamic covariates, hence an ordinary linear

regression structure was used instead; again with a fixed, limited amount of prior shrinkage in defer-

ence to the limited power provided by the aggregate data. Posterior sampling was conducted

exactly as described for stages one and two above with implementation in TMB and INLA. The full

Bayesian hierarchy is described in the box for Model 4 below.

monthly reduced casesjt ~NegBin
mean¼ expected casesjt;

over dispersion factor¼ s

� �

expected casesjt ¼
X

i

Ci!j�populationi � Iit � treatment seeking prob:i

Cði!jÞ /
Wj

T2
i!j

; logWj; log Ibaseline ¼ fixed from earlier fit

log Iit ¼ cþ log Ibaseline þX0
temporalbtemporal þ fseasonalðloci; tÞ

fseasonalð�Þ~Gaussian Process rangeseasonal time; scaleseasonaltimeð Þ
˜Gaussian Process rangeseasonal; scaleseasonalð Þ

btemporal ~Normalð0;12Þ; log s~Normalð�1;12Þ

log scaleseasonal; logscaleseasonal time ~Normalð�1;12Þ; log rangeseasonal; lograngeseasonal time ~Normalð1;12Þ

c~ Improper Uniform

Model 4
Catchment-based geostatistical model for representative monthly case count at each health facility

location used to produce our seasonality profile.

The R and TMB codes used for running this analysis are provided for reference as Supplementary

Information.
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