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ABSTRACT
Background: Height-for-age z-scores (HAZ) are associated with
month of birth (MOB) in many nutrition surveys, but that link could
be an artifactual result of measurement error in child birthdates.
Objective: We corrected estimates of the associations between HAZ
and MOB for a common type of age misreporting, to measure the
remaining seasonality in HAZ and identify country characteristics
associated with vulnerability to seasonal changes in early life.
Design: We used nationally representative repeated cross-sections
from all available Demographic and Health Surveys (DHS), totaling
1,363,806 children from 218 surveys in 72 countries over 1986–
2016, to estimate the seasonal patterns in HAZ by MOB within
each survey. Then, we corrected these estimates for each survey’s
random errors in recorded birth month implied by differences in
attained height between children reported as born in December
of one year versus January of the next. Indicators of seasonal
variation between other months were modeled as functions of
national-level incomes using linear regression, and visualizations
were constructed using nonparametric local polynomial smoothing
regressions.
Results: Over all surveys, misreporting MOB accounted for about
one-eighth of the gap in attained height between the worst and
best months to be born, which averaged 0.41 HAZ in the raw
data and 0.34 HAZ after correction for age misreporting. A linear
correction reduced apparent seasonality of HAZ by MOB in 49 of
72 countries, and the remaining nonartifactual differences by season
of birth were larger in countries with lower average income per
capita.
Conclusions: Measurement error in child MOB helps to explain
the association between attained height and seasonal variation in
early life environments, but significant seasonality in HAZ by
MOB remains in many poor countries. Higher national income is
associated with smoother outcomes across birth months, and birth
registration efforts would improve nutrition research. Am J Clin
Nutr 2019;110:485–497.
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Introduction
Measuring the nutritional consequences of seasonal changes

in disease exposure and the food environment can improve
understanding of how poorer families cope with risk, avoid
vulnerability, and gain resilience to the many nutritional risk
factors they face (1, 2). Nutrition smoothing is the ability of
an individual or a group of people to maintain stability in their
nutritional status and health despite changes in their household
and community environment, including seasonal fluctuations in
weather as well as sudden shocks such as natural disasters or pest
infestations (3).

Whether a population is able to smooth its nutritional outcomes
can often be measured using associations between attained height
and birth circumstances, due to the sensitivity of linear growth to
different risk factors (4). Whatever a population’s average level of
stunting over the year, seasonal fluctuations can adversely affect
children’s human capital development (5) and linear growth (6–
8). Direct measurement of relevant climate and weather variables
might not be feasible, and in any case researchers can be
interested primarily in whether attained heights are affected by
all of the many factors that vary by season (9, 10). Seasonality
in height and other nutrition indicators by month of birth (MOB)
has been observed in several populations and varies depending
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on region (11). The mechanisms for these patterns might be
related to the endocrine system (12), energy intake (13), dietary
quality (14), poverty (15), birth- or conception-related factors
(16), pregnancy-related factors (17), or the disease environment
(18).

Analyses of seasonality in child heights depend on the accurate
measurement of child birthdates (19, 20). This is a difficult
task, especially because globally only ∼65% of children aged
<5 y have had their births registered (21). Larsen et al. (20)
recently discovered artifacts that cause an apparent seasonal
pattern in child heights by MOB in the Demographic and Health
Surveys (DHS). One of these artifacts is a gradient in height-for-
age z-scores (HAZ), observed as an implausibly smooth linear
increase in average HAZ monthly from January to December,
and an implausibly large step change in mean HAZ from those
reportedly born in December of one year to January of the next
(19, 20). HAZs indicate linear growth for individual children
compared with healthy children of the same age and sex. This
implausible monthly gradient and December–January gap can be
explained by random error in reported birth months.

Random measurement errors in exposure variables cause
imprecise coefficient estimates, attenuation bias, and a loss of
statistical power, but in this case random misreporting of birth
months within calendar years interacts with linear growth to
create artifactual seasonality in observed HAZ. The objective
of this study was to correct for the implausible gradient
in the relation between HAZ and MOB, and thereby reveal
nonartifactual seasonality in attained heights by MOB across
countries.

Methods
We used a collection of nationally representative repeat cross-

sections of data from the DHS to estimate patterns in child heights
by MOB (22). The DHS are the largest collection of comparable
health and nutrition microdata in the world, and are typically
conducted at 5-y intervals in many low- and middle-income
countries in collaboration with national statistics offices. Women
of childbearing age (age 15–49 y) are the primary subjects of
DHS data along with their children aged <5 y. Our focus was
these children’s height-for-age, for which we have about 1.4
million observations (Supplemental Figure 1). To build this
dataset we appended 218 of the Standard DHS together in Stata
15/MP (23). This collection spanned 72 countries and 31 y. Then,
we generated binary variables indicating reported MOB. Next,
we estimated HAZ as a function of MOB, controlling for age-
in-months and sex, by survey with mother fixed-effects using
the ordinary least squares (OLS) estimator. Age and sex controls
were used to improve the precision of estimated coefficients on
MOB, reducing errors attributable to differences in the ages,
sexes, or other attributes of children with each reported birth
month in any given survey, or among siblings with the same
mother in estimates that use maternal fixed-effects.

In Equation 1, i indexes mothers, j indexes children, and m
indexes months. MoBm denotes 11 binary indicators for reported
MOB estimated with January as the omitted reference group, Age
is measured as number of months in linear and quadratic terms,
Male is a binary indicator which equals 1 if the child is male and
0 if the child is female, δi are mother fixed-effects, and μi j is

an independent and identically distributed error term. To account
for correlation in omitted influences on HAZ in each survey site,
robust SEs for each coefficient were estimated with clustering
by enumeration area. Coefficient estimates from these models
were used to construct indicators of seasonality in heights, using
separate regressions for each survey.

HAZi j = αm MoBmi j + β1Agei j + β2Age2
i j

+γ Malei j + δi + μi j (1)

To calculate and visualize gradients for worst-to-best months
to be born, the matrix of estimated coefficients for the model
in Equation 1, by survey, was exported into a new database.
Therefore, the set of results across surveys resulted in a matrix of
estimated coefficients with 218 rows and 15 columns. The rows
of the new matrix contained the sets of coefficient estimates by
survey. The columns of the new matrix contained the coefficients
estimated on the following variables: 11 month-of-birth binary
variables, age, age2, sex, and a constant term. Also included
were the following scalars in subsequent columns, by survey: F
statistics, R2, and total number of observations from each OLS
regression.

To correct the estimated coefficients on MOB for the mea-
surement errors, we followed Larsen et al. (20) in assuming that
the implausibly large gaps between December and January births
and the implausibly smooth gradients observed in estimated
coefficients over each successive month within the year were due
to random misreporting of MOB. For children who were actually
born in midyear (July), if their MOB is misreported earlier in the
year (between January and June), then they are in fact younger
than they are reported to be, and therefore their height-for-age
would be calculated as lower than it should be, leading to lower
average HAZs in the earlier months of the year. The reverse is
true if their MOB is misreported as occurring later in the year
(between August and December).

With equal probability that births in each month will be
misreported as occurring in earlier or later months, the only
children whose recorded birthdate is an unbiased estimate of their
true age are those born at the midpoint of each year between June
and July. To correct for the artifactual gradient in HAZ effects
associated with each successive reported MOB, we subtracted
one-twelfth of the estimated coefficient on December births
from the estimate for each successive month, with one-half of
the total added back so the gradient was rotated around the
midpoint of each year and July 1 births became the reference
category. Denoting the estimated coefficient on each recorded
MOB as α̂s

m, where m is 1 for January and 12 for December, the
corrected estimate of true seasonal effects in each month net of
measurement error was:

Adjα̂s
m = α̂s

m −
(

1

12
× m × α̂s

12

)
+ 0.5

(
α̂s

12

)
(2)

This correction could be visualized as a linear rotation of
each MOB coefficient around the midpoint of the year between
June and July, allowing a comparison of true seasonality in
HAZ with other indicators of health. For surveys with a larger
estimated gap between December and January births (α̂s

12),
the slope of this linear correction was steeper. Without the
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TABLE 1 Descriptive statistics for HAZ by region for the collection of 218 DHS1

Middle East and
North Africa

Sub-Saharan
Africa

Latin America and
Caribbean Central Asia

South and Southeast
Asia Total

Count 146,244 574,690 212,033 11,765 419,074 1,363,806
Mean − 0.84 − 1.39 − 1.08 − 0.84 − 1.48 − 1.31
Median − 0.86 − 1.41 − 1.05 − 0.84 − 1.52 − 1.32
SD 1.61 1.62 1.36 1.46 1.59 1.58
Minimum − 6.00 − 6.00 − 6.00 − 5.97 − 6.00 − 6.00
Maximum 6.00 6.00 6.00 5.70 6.00 6.00

1DHS, Demographic and Health Surveys; HAZ, height-for-age z-score.

adjustment, seasonality in these other health outcomes and HAZ
were not comparable, due to the systematic bias in estimated
HAZ caused by random measurement error in birthdates. After
we corrected the estimated coefficients for measurement error
in child birthdates, we calculated 2 primary outcome variables
to indicate seasonality in HAZ by survey, using the estimated
coefficients on the MOB binary variables. Both seasonality
indicators were calculated with the original raw coefficients and
the corrected coefficients, to compare in visualizations. The first
indicator of seasonality was the gap in HAZ between the worst-
to-best months to be born in a given country and year (denoted
Gap). This was calculated as the absolute value of the minimum
of the estimated coefficients on MOB minus the maximum of
the estimated coefficients on MOB (Equation 3). This indicator
reflected the potential disparity in HAZ between the worst and
best months to be born for the participants of each given survey.
The larger the estimated gap, the more substantial the presence
of seasonality in heights.

Gaps = ∣∣Min
{
Adjα̂s

m

} − Max
{
Adjα̂s

m

} ∣∣ (3)

SDs = SDm
{
Adjα̂s

m

}
(4)

The second indicator of seasonality (Equation 4) was the stan-
dard deviation of the corrected coefficients on MoBm (denoted
SD). This indicator captured variation in vulnerability within the
calendar year. The larger the estimated SD of coefficients on
MoBm, the more substantial the presence of seasonality in HAZ.
January was the reference month in estimated coefficients for
each of these models, and July 1 was the corrected reference for
the HAZ coefficients, so each coefficient could be interpreted as
the mean difference in HAZ associated with each MOB, relative
to others in their survey with the same age and sex, and relative to
siblings with the same mother in regressions with maternal fixed-
effects.

After the 2 seasonality indicators were constructed using the
reduced 218-row matrix, the datasets of estimated coefficients
were merged by DHS survey year with data on gross domestic
product (GDP) per person, measured at purchasing power parity
(PPP) prices, from the Penn World Tables (24). Missing values
of GDP were linearly interpolated by year when possible. Then,
we used OLS to estimate the relations between the 2 measures
of seasonality, either Gap or SD, and GDP per person in that
country at the time of the survey, as well as the survey year and

year squared to capture any global trends over time (Equation 5).

Seasonalitys = αs + β1ln(GDPs) + β2Years

+β3Year2
s + εs (5)

In addition to the regression analyses, we constructed
visualizations of nutrition smoothing across months of birth
before and after the adjustment for measurement errors and
with respect to the national-level covariates. These visualizations
were Epanechnikov-kernel weighted local polynomial smoothing
regressions of degree zero. Using nonparametric methods is a
flexible way to see differences across groups without having to
assign a functional form. Nonparametric regressions estimated
the means and CIs for each outcome as continuous functions
of the variables on the x-axis: MOB, and the natural logarithm
of GDP as an indicator of national-level incomes per person.
We did not bring other data to the study for causal inference
methods such as instrumental variables, or for replication and
validation, because our aim was specifically to correct for the
implausible gradient in HAZ over the calendar year that is
observed on average globally. With additional data such as
an instrumental variable that is correlated with true MOB and
unrelated to HAZ, further research could identify causes of
seasonality and modifiable factors to smooth nutrition outcomes
at specific locations.

Results
Table 1 presents descriptive statistics for DHS by global

region for Middle East/North Africa/West Asia/Europe, sub-
Saharan Africa, South and Southeast Asia, Latin America and
the Caribbean, Central Asia, and for the sample as a whole. The
largest number of observations comes from sub-Saharan Africa,
and HAZs were lowest in South and Southeast Asia with a mean
of −1.48 SDs below the median.

Table 2 presents descriptive statistics for the collapsed matrix
of estimated coefficients across the 218 included surveys, and
summarizes data on real GDP. The outcome variables are listed
in order of how they were constructed, first correcting for
measurement error in birthdates, then controlling for mother
fixed-effects, and finally for measurement error in birthdates
and mother fixed-effects. Across all surveys, there was a mean
0.23 HAZ points (0.17 SD) gap between reported December-
born and reported January-born children. Before correcting for
measurement error in child birthdates, the mean gap between the
worst-to-best months to be born for HAZ was 0.41 HAZ, and after
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TABLE 2 Descriptive statistics for the collapsed dataset of estimated coefficients: outcome variables and GDPPC1

Variable Description Count Mean Median Minimum Maximum SD

Gap_Raw Gap between worst-to-best months to be born for
child heights

218 0.41 0.38 0.09 1.04 0.15

SD_Raw SD of estimated coefficients on months of birth as
determinants of child HAZ

218 0.13 0.12 0.03 0.35 0.05

Dec-Jan Gap_Raw Gap in HAZ between recorded December and
January births

218 0.23 0.21 − 0.14 0.91 0.17

Gap_Adj Gap between worst-to-best months to be born for
child heights, corrected for measurement error in
birthdates

218 0.34 0.33 0.09 0.79 0.14

SD_Adj SD of estimated coefficients on months of birth as
determinants of child HAZ, corrected for
measurement error in birthdates

218 0.10 0.10 0.03 0.24 0.04

Gap_FE Gap between worst-to-best months to be born for
child HAZ, with mother fixed-effects

218 0.65 0.56 — 2.39 0.37

SD_FE SD of estimated coefficients on months of birth as
determinants of child HAZ, with mother fixed-effects

217 0.20 0.18 0.04 0.67 0.11

Gap_Adj_FE Gap between worst-to-best months to be born for
child HAZ, corrected for measurement error in
birthdates and mother fixed-effects

218 0.62 0.54 — 2.37 0.38

SD_Adj_FE SD of estimated coefficients on months of birth as
determinants of child HAZ, with mother
fixed-effects, corrected for measurement error in
birthdates

218 0.19 0.16 — 0.77 0.11

GDPPC Expenditure-side real GDP at chained PPPs (in
millions 2011US$), per capita

203 3187.96 2103.49 337.26 15,691.86 2840.05

1GDP, Gross Domestic Product; GDPPC, Gross Domestic Product Per Capita; HAZ, height-for-age z-score; PPP, Purchasing Power Parity.

the linear correction, this mean gap declined to 0.34 HAZ. There
were substantial country-level differences in these preadjustment
and postadjustment means (Tables 3 and 4). After controlling
for mother fixed-effects and clustering errors by community
in the original survey-level regressions, the mean gap in HAZ
decreased less, from 0.65 HAZ to 0.62 HAZ. Similarly, without
controlling for mother fixed-effects, the mean of the SDs declined
from 0.13 SD to 0.10 SD after accounting for measurement
error in birthdates. After controlling for mother fixed-effects, the
difference between premeasurement and postmeasurement error
correction declined slightly, from 0.20 SD to 0.19 SD.

Tables 3 and 4 summarize the changes by country in 2 sea-
sonality indicators before and after correcting for measurement
error in child months of birth: Gap (Table 3) and SD (Table 4).
Data in these tables were sorted by relative differences in each
indicator, with the largest changes in seasonality after the linear
correction at the top of the table and declining as the table
continues. Seasonality in child heights in 49 countries declined
by between −37.87% and −0.20% when measured by the gap
between the worst and best months to be born. All regions of
the world were represented in the 23 countries where seasonality
measured by Gap increased from between 0.17% and 68.78%. Of
the 10 countries in the DHS collection with the largest relative
decrease in HAZ seasonality after the linear correction, 7 were
located in sub-Saharan Africa (Table 3). When measured by the
SD of coefficient estimates on months of birth, seasonality in
child heights declined by between −0.55% and −45.41% in
50 of 72 countries after correcting for measurement error, and
increased by between 0.10% and 67.46% for 22 countries.

Figure 1 demonstrates the effects of the linear adjustment
for measurement error in child MOB across the whole sample.

The solid line shows the steady increase in estimated coefficients
of HAZ on child MOB across the year, an artifactual relation
that was the result of random measurement error in child MOB
(19, 20). The dotted line shows how these estimated coefficients
changed after correcting for the random measurement error, elim-
inating the implausibly large gap in HAZs between December-
born and January-born children. Figure 1 includes all countries
with available anthropometric data, and so a near-horizontal
relation would be expected because weather and climate across
the year vary greatly among the included countries (19, 20).
Country-level investigations are necessary to ascertain where,
if any, seasonality in child heights was still present after the
adjustment.

Figure 2 shows how seasonality in HAZ, measured by the gap
between worst and best months to be born, was related to GDP per
capita during the year of the survey in each country. A wider gap
between the dotted and solid lines in these charts indicates more
measurement error in MOB in the original DHS data. The solid
line was not corrected for measurement error in birthdates, and
showed a negative association between seasonality in HAZ and
GDP per capita. This negative association was less pronounced
but still present after correcting for measurement error in child
birthdates, as indicated with the dotted line. The difference
between preadjustment and postadjustment for measurement
error in birthdates was nonexistent for the highest income
countries, perhaps because the original measurement error was
not especially pervasive for those surveys. For countries in the
low-to-middle income range, the measurement error accounted
for about 10% of the gap in HAZ between the worst and best
months to be born. Figure 3 shows a similar pattern for when
seasonality was measured by the SD of MOB coefficients, where
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TABLE 3 Summary of the change in seasonality seen in child heights across MOBs by the gap between the worst and best months to be born in each
country1

Region2 Country Unadjusted gap Corrected gap Difference Relative difference

S/SEA India 0.357 0.222 0.136 − 37.87
SSA DR Congo 0.720 0.463 0.257 − 35.65
S/SEA Timor-Leste 0.672 0.433 0.239 − 35.59
SSA Chad 0.767 0.543 0.224 − 29.24
S/SEA Myanmar 0.491 0.361 0.130 − 26.48
SSA Angola 0.957 0.706 0.251 − 26.23
SSA Tanzania 0.492 0.368 0.124 − 25.19
SSA Gabon 0.626 0.473 0.153 − 24.46
SSA Zambia 0.545 0.423 0.122 − 22.37
SSA Comoros 1.325 1.115 0.211 − 15.89
SSA Mali 0.976 0.840 0.136 − 13.94
MENA Egypt 0.646 0.557 0.089 − 13.76
SSA Cameroon 0.659 0.571 0.088 − 13.35
LAC Haiti 0.619 0.541 0.077 − 12.53
S/SEA Pakistan 0.580 0.508 0.072 − 12.34
LAC Peru 0.268 0.235 0.033 − 12.33
SSA Madagascar 0.716 0.631 0.085 − 11.87
SSA Morocco 0.404 0.357 0.047 − 11.56
SSA Nigeria 0.505 0.449 0.056 − 11.00
SSA Liberia 0.650 0.579 0.071 − 10.85
SSA Swaziland 0.515 0.460 0.055 − 10.68
SSA Sierra Leone 0.826 0.743 0.084 − 10.11
SSA Togo 1.306 1.175 0.131 − 10.06
SSA Mozambique 0.516 0.466 0.049 − 9.57
MENA Yemen 0.520 0.473 0.047 − 9.05
SSA Guinea 0.786 0.720 0.065 − 8.32
SSA Burkina Faso 0.577 0.532 0.045 − 7.76
SSA Kenya 0.526 0.488 0.038 − 7.23
SSA Uganda 0.466 0.433 0.032 − 6.95
S/SEA Nepal 0.492 0.458 0.034 − 6.87
SSA Lesotho 1.036 0.965 0.071 − 6.85
S/SEA Sri Lanka 0.906 0.844 0.062 − 6.84
S/SEA Rwanda 0.449 0.422 0.026 − 5.84
LAC Brazil 0.439 0.415 0.024 − 5.47
SSA Malawi 0.480 0.454 0.026 − 5.42
CA Kyrgyz Republic 0.737 0.708 0.030 − 4.00
S/SEA Maldives 0.881 0.847 0.034 − 3.86
CA Tajikistan 0.585 0.567 0.018 − 3.08
SSA Senegal 0.994 0.964 0.030 − 2.99
MENA Armenia 0.887 0.862 0.025 − 2.82
SSA Benin 0.762 0.741 0.021 − 2.79
SSA Zimbabwe 0.730 0.711 0.019 − 2.62
SSA Niger 0.904 0.890 0.013 − 1.49
SSA Burundi 0.745 0.734 0.011 − 1.48
SSA Namibia 0.668 0.660 0.008 − 1.24
LAC Paraguay 0.454 0.449 0.005 − 1.10
SSA Central African Republic 0.734 0.731 0.002 − 0.41
SSA Republic of Congo 0.621 0.619 0.002 − 0.32
SSA Tunisia 0.982 0.980 0.002 − 0.20
S/SEA Bangladesh 0.578 0.579 − 0.001 0.17
SSA Gambia 0.738 0.741 − 0.003 0.41
MENA Turkey 0.545 0.559 − 0.015 2.63
MENA Albania 1.636 1.686 − 0.050 3.06
LAC Nicaragua 0.395 0.408 − 0.014 3.42
S/SEA Cambodia 0.524 0.546 − 0.022 4.10
SSA Ghana 1.065 1.126 − 0.062 5.79
CA Uzbekistan 1.473 1.559 − 0.087 5.84
LAC Colombia 0.519 0.551 − 0.032 6.07
LAC Trinidad and Tobago 0.507 0.539 − 0.032 6.31
LAC Dominican Republic 0.388 0.416 − 0.028 7.22
MENA Moldova 1.071 1.151 − 0.080 7.47
SSA Côte d’Ivoire 0.930 1.015 − 0.086 9.21
LAC Guatemala 0.367 0.403 − 0.036 9.82

(Continued)
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TABLE 3 (Continued)

Region2 Country Unadjusted gap Corrected gap Difference Relative difference

LAC Bolivia 0.439 0.484 − 0.045 10.34
S/SEA Thailand 1.207 1.406 − 0.199 16.49
SSA Ethiopia 0.532 0.620 − 0.088 16.55
LAC Guyana 0.659 0.779 − 0.120 18.21
MENA Jordan 0.391 0.465 − 0.075 19.10
SSA São Tomé and Príncipe 0.452 0.553 − 0.101 22.35
CA Kazakhstan 0.948 1.161 − 0.213 22.42
LAC Honduras 0.204 0.299 − 0.095 46.32
MENA Azerbaijan 0.551 0.930 − 0.379 68.78

1Data shown are means of the Gap indicator of seasonality by included country (see text), before and after correcting for measurement error in child
MOB. MOB, month of birth.

2CA, Central Asia; LAC, Latin America and Caribbean; MENA, Middle East and North Africa; SSA, Sub-Saharan Africa; S/SEA, South/Southeast Asia.

measurement error accounted for about 10% of the observed
seasonality before the linear correction, but only for countries
in the bottom and middle of the income distribution. For higher
income countries, there were no differences preadjustment and
postadjustment in the relation between HAZ seasonality and GDP
per capita.

Figures 4 and 5 are examples of country-level changes in the
appearance of seasonality in HAZs before and after correcting
for measurement error in child MOB. For illustration, we chose 2
countries, Zambia and Bangladesh, located in 2 different regions
of the world, which had very different appearances of seasonality
in child heights after the linear adjustment for measurement
error in child MOB. First, directly comparing Figure 4 with
Figure 5, seasonality in HAZs was still present in Bangladesh
after correcting for measurement error in child MOB, but not
in Zambia. In Zambia, any seasonality in HAZs was erased
by the linear adjustment for measurement error in child MOB.
Before correcting for the artifactual relation between HAZ and
MOB, there was a gap of about 0.25 HAZ between December-
born and January-born children in Zambia. After the adjustment,
no gap was apparent between December- and January-reported
births. In Bangladesh, there was still a gap of about 0.05 HAZ
between the best month to be born (August) and the worst
month to be born (March), even after correcting for measurement
error in the MOBs. The comparison between Bangladesh and
Zambia indicates that misreporting in MOB was more prevalent
in Zambia than Bangladesh, perhaps reflecting the difference in
birth registration systems between the countries.

The associations between seasonality in child HAZ and
national income are presented Table 5. For illustration, an
example of these regressions and the calculations for the Gap
and SD seasonality indicators is presented in Table 6 for Zambia,
which had 5 Standard DHS surveys included in the full collection,
implemented between 1992 and 2013. All models in Table 5
were estimated using the HAZ coefficients, corrected to account
for measurement error in child birthdates, and the original
regressions from which the coefficients came were estimated
using mother fixed-effects. Seasonality in HAZs as measured by
both indicators, Gap and SD, was negatively associated with GDP
per capita. Given that the GDP covariate was log-transformed,
the coefficients can be interpreted as semielasticities of HAZ
seasonality with respect to GDP. Thus, a 1% increase in GDP
at 2011 PPP prices was associated with a 0.065 reduction in the

HAZ gap between the worst and best months to be born, and a
0.019 reduction in the SD across all estimated coefficients on
months of birth. These estimated associations are meaningful
because GDP typically grows over time and because seasonality
indicators are measured at the population level. Although 0.065
HAZ points might not be clinically significant to an individual
child, shifts in the seasonal distribution of HAZ of that magnitude
are substantial. Seasonality in HAZ also declined over time,
as indicated by the estimated coefficients on the time trend in
columns 3 and 4 of Table 5. Each additional year reduced the
HAZ gap between the worst and best months to be born by 0.01
HAZ points on average, and reduced the SD across all estimated
coefficients on months of birth by 0.003 on average. Income
and time are colinear due to economic development during this
period, and the closest correlation between seasonality in HAZ
and income is shown in the models in columns 5 and 6. In
summary, seasonality in HAZ decreased slowly over time and
has a small negative association with GDP, after correcting all
estimates for measurement error in MOB. Low R2 values for
the models in Table 5 are likely due to the relatively coarse
measurement of population well-being in the GDP indicator.
Several other household- and individual-specific factors also
affect seasonality in HAZ, such as care practices, food intake,
disease status, and livelihoods. By design, the models presented
in Table 5 were not intended to account for most of the seasonality
in HAZ, only to assess the associations between GDP and
seasonality in HAZ. We would not expect GDP and time to
be the sole determinants of seasonality in HAZ at the national
level, but data limitations and the potential for measurement error
precluded the use of other possibly relevant variables.

Discussion
Even after accounting for random measurement error of birth-

dates that leads to spurious patterns in child heights throughout
the year, seasonality in HAZ by MOB was still present in many
of the poorest countries. This indicates that season of birth is
still a determinant of linear growth in many but not all contexts,
threatening long-term human capital development. Many of the
countries with remaining nonartifactual seasonality in HAZ are
in sub-Saharan Africa. In 9 countries—Côte d’Ivoire, Comoros,
Ghana, Moldova, Kazakhstan, Togo, Thailand, Uzbekistan, and
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TABLE 4 Summary of the change in seasonality seen in child heights across MOBs by the SD of coefficient estimates on MOBs in a multivariate
regression1

Region2 Country Unadjusted SD Corrected SD Difference Relative difference

S/SEA Myanmar 0.196 0.107 0.089 − 45.41
S/SEA Timor-Leste 0.213 0.133 0.080 − 37.41
S/SEA India 0.116 0.075 0.041 − 35.34
SSA Angola 0.280 0.187 0.093 − 33.21
SSA DR Congo 0.231 0.155 0.076 − 32.90
SSA Chad 0.243 0.169 0.074 − 30.32
SSA Tanzania 0.148 0.106 0.042 − 28.42
SSA Zambia 0.171 0.126 0.045 − 26.46
SSA Gabon 0.204 0.161 0.042 − 20.88
SSA Republic of Congo 0.201 0.160 0.042 − 20.45
S/SEA Pakistan 0.206 0.164 0.043 − 20.44
MENA Egypt 0.212 0.170 0.043 − 20.01
LAC Peru 0.086 0.069 0.017 − 19.69
LAC Haiti 0.188 0.152 0.037 − 19.52
SSA Mali 0.314 0.256 0.058 − 18.54
SSA Madagascar 0.231 0.190 0.041 − 17.77
SSA Malawi 0.154 0.127 0.027 − 17.30
SSA Sierra Leone 0.281 0.235 0.046 − 16.22
SSA Mozambique 0.173 0.146 0.027 − 15.80
S/SEA Nepal 0.152 0.129 0.022 − 14.76
SSA Morocco 0.135 0.116 0.019 − 14.32
SSA Kenya 0.169 0.148 0.022 − 12.87
SSA Liberia 0.219 0.191 0.028 − 12.59
SSA Swaziland 0.186 0.163 0.023 − 12.37
SSA Burkina Faso 0.180 0.158 0.022 − 12.24
SSA Comoros 0.365 0.323 0.042 − 11.51
SSA Guinea 0.242 0.218 0.024 − 9.79
SSA Lesotho 0.311 0.282 0.030 − 9.42
SSA Nigeria 0.152 0.138 0.014 − 9.39
SSA Togo 0.383 0.348 0.035 − 9.13
CA Kyrgyz Republic 0.273 0.249 0.025 − 8.97
MENA Yemen 0.152 0.138 0.014 − 8.91
SSA Uganda 0.148 0.135 0.013 − 8.67
S/SEA Rwanda 0.144 0.132 0.012 − 8.46
S/SEA Maldives 0.328 0.303 0.026 − 7.62
MENA Albania 0.457 0.424 0.033 − 7.22
LAC Paraguay 0.141 0.132 0.008 − 6.38
S/SEA Bangladesh 0.186 0.175 0.012 − 6.26
S/SEA Sri Lanka 0.276 0.260 0.015 − 5.80
SSA Burundi 0.220 0.208 0.013 − 5.75
SSA Senegal 0.299 0.287 0.012 − 4.18
SSA Zimbabwe 0.225 0.217 0.008 − 3.56
LAC Bolivia 0.138 0.133 0.004 − 3.49
LAC Nicaragua 0.134 0.131 0.003 − 1.87
SSA São Tomé and Príncipe 0.165 0.162 0.003 − 1.82
CA Tajikistan 0.166 0.163 0.003 − 1.81
MENA Moldova 0.303 0.299 0.003 − 1.32
SSA Benin 0.228 0.225 0.003 − 1.21
LAC Dominican Republic 0.116 0.115 0.002 − 1.20
S/SEA Thailand 0.363 0.361 0.002 − 0.55
LAC Colombia 0.160 0.160 0.000 0.10
SSA Gambia 0.210 0.211 − 0.001 0.48
LAC Brazil 0.143 0.144 − 0.001 0.70
MENA Armenia 0.254 0.256 − 0.002 0.79
LAC Trinidad and Tobago 0.167 0.170 − 0.003 1.80
SSA Niger 0.249 0.256 − 0.007 2.71
SSA Central African Republic 0.241 0.249 − 0.008 3.32
LAC Guatemala 0.126 0.131 − 0.004 3.70
MENA Turkey 0.161 0.167 − 0.007 3.93
SSA Namibia 0.202 0.212 − 0.010 4.70
SSA Tunisia 0.292 0.306 − 0.014 4.79
SSA Cameroon 0.181 0.192 − 0.011 5.89
S/SEA Cambodia 0.155 0.166 − 0.011 7.26
SSA Ethiopia 0.167 0.182 − 0.015 8.67
LAC Guyana 0.233 0.254 − 0.021 9.01

(Continued)
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TABLE 4 (Continued)

Region2 Country Unadjusted SD Corrected SD Difference Relative difference

SSA Côte d’Ivoire 0.281 0.308 − 0.027 9.49
SSA Ghana 0.330 0.361 − 0.032 9.56
CA Uzbekistan 0.405 0.451 − 0.045 11.36
MENA Jordan 0.119 0.135 − 0.016 13.59
LAC Honduras 0.075 0.087 − 0.012 16.11
CA Kazakhstan 0.306 0.385 − 0.080 25.86
MENA Azerbaijan 0.169 0.283 − 0.114 67.46

1Data shown are means of the SD indicator of seasonality by included country (see text), before and after correcting for measurement error in child
MOB. MOB, month of birth.

2CA, Central Asia; LAC, Latin America and Caribbean; MENA, Middle East and North Africa; SSA, Sub-Saharan Africa; S/SEA, South/Southeast Asia.

Albania—the remaining nonartifactual gap in HAZ between the
worst and best months to be born was still >1.0 HAZ.

Country-specific seasonal patterns can be helpful for interpret-
ing these results, for example, in Bangladesh. The main lean
season in Bangladesh occurs during October–November (13,
25). Given the patterns seen in HAZ by MOB in Bangladesh
after correcting for measurement error in child MOB, it appears
that being born during the rice harvest season in February–
March is worse for future height attainment than being born 2
months before the lean season in October–November. Therefore,
having the complementary feeding stage begin in August, right
before the lean season, is worse for subsequent linear growth
compared with being born just before the lean season when
newborn infants would be protected from food shortages by
breastfeeding, and then be able to start their complementary

feeding stage as the harvest season begins. Further location-
specific analyses are important to understand specific issues
related to birth registration systems and other constraints on
national health survey accuracy.

The negative association between overall seasonality in child
heights (after correcting for misreported MOB) and national-level
incomes reflects height as a cumulative, intergenerational indica-
tor of well-being. The negative association between seasonality
in heights and GDP also speaks to the broad range of policies and
conditions needed to promote resilience and protect families from
adverse conditions throughout the calendar year. Further work is
necessary to understand the determinants of nutrition smoothing
in specific contexts, including the strategic use of longitudinal
data, the concurrent measurement of agriculture, nutrition, and
health variables, and incorporating more nutritional information

FIGURE 1 Estimated coefficients on child HAZ across 218 surveys. Lines are local polynomial smoothing regressions of degree zero with 95% CIs and
an Epanechnikov kernel. Solid line is estimates before the linear correction for misreported MOB. Dotted line is after the linear correction for misreported
MOB. HAZ, height-for-age z-score; MOB, month of birth.
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FIGURE 2 GDP and seasonality in HAZ across 218 DHS surveys: SD of estimated coefficients. Lines are local polynomial smoothing regressions of
degree zero with 95% CIs and an Epanechnikov kernel. Solid line is estimates before the linear correction for misreported MOB. Dotted line is after the linear
correction for misreported MOB. DHS, Demographic and Health Surveys; GDP, Gross Domestic Product; HAZ, height-for-age z-score; MOB, month of birth;
PPP, Purchasing Power Parity.

on older children, adolescents, and adults into national-level
surveys.

Study limitations

There were 3 main limitations of this study. First, we analyzed
matrices of regression results from 218 individual surveys,

merged with other data at country- and year-levels. Whereas the
geographic and temporal coverage was substantial, the countries
and years for which data were available depended on where
surveys could be implemented, and did not include many of the
world’s most vulnerable populations. Second, additional subna-
tional analyses would be valuable, especially because climatic
and agricultural risks vary widely within countries. A third

FIGURE 3 GDP and seasonality in HAZ across 218 DHS surveys: Gap between worst and best months to be born. Lines are local polynomial smoothing
regressions of degree zero with 95% CIs and an Epanechnikov kernel. Solid line is estimates before the linear correction for misreported MOB. Dotted line is
after the linear correction for misreported MOB. DHS, Demographic and Health Surveys; GDP, Gross Domestic Product; HAZ, height-for-age z-score; MOB,
month of birth; PPP, Purchasing Power Parity.
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FIGURE 4 Estimated coefficients of child HAZ on MOB across 6 DHS in Bangladesh. Lines are local polynomial smoothing regressions of degree zero
with 95% CIs and an Epanechnikov kernel. Solid line is estimates before the linear correction for misreported MOB. Dotted line is after the linear correction
for misreported MOB. DHS, Demographic and Health Surveys; HAZ, height-for-age z-score; MOB, month of birth.

limitation was that not all components of the original regression
results were used for analysis, namely, the SEs of estimated
coefficients on MOB. Instead, we focused on the estimated
MOB coefficients themselves. In future work, we would aim to
incorporate additional information relating to hypothesis testing,
such as the SEs or CIs of estimated MOB coefficients, to gain a
deeper understanding of nutrition smoothing and its variability.

Finally, we assumed that the errors in mismeasurement of
birthdates were random and equally distributed across the year.
A more specific approach to dealing with this measurement error
might be possible, such as by analyzing recorded birthdates
by survey enumerator or calculating an individual child’s
risk of having a mismeasured birthdate based on observable
factors.

FIGURE 5 Estimated coefficients of child HAZ on MOB across 5 DHS in Zambia. Lines are local polynomial smoothing regressions of degree zero with
95% CIs and an Epanechnikov kernel. Solid line is estimates before the linear correction for misreported MOB. Dotted line is after the linear correction for
misreported MOB. DHS, Demographic and Health Surveys; HAZ, height-for-age z-score; MOB, month of birth.
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TABLE 5 Associations between seasonality in HAZ and GDP1

Variable (1) HAZ Gap (2) HAZ SD (3) HAZ Gap (4) HAZ SD (5) HAZ Gap (6) HAZ SD

Log(GDP) − 0.0646∗∗ − 0.0185∗∗∗ — — − 0.0655∗∗∗ − 0.0189∗∗∗
(P < 0.001) (P < 0.001) (P < 0.001) (P < 0.001)

Year — — − 0.0097∗∗ − 0.00273∗∗ − 2.489 − 0.862
(P = 0.001) (P = 0.002) (P = 0.122) (P = 0.072)

Year, quadratic — — — — 0.000619 0.000215
(P = 0.123) (P = 0.073)

Constant 1.292∗∗∗ 0.380∗∗∗ 20.01∗∗∗ 5.658∗∗ 2501.7 865.2
(P < 0.001) (P < 0.001) (P = 0.001) (P = 0.001) (P = 0.120) (P = 0.071)

n 203 203 218 218 203 203
R2 0.065 0.061 0.048 0.044 0.125 0.120

1Numbers in column headings are model numbers. Coefficients are OLS estimates of the associations between each given variable and an indicator of
seasonality: the absolute value of the gap between the worst and best months to be born (Gap) and the SD of estimate coefficients on months of birth (SD),
after correcting for measurement error in month of birth. Covariates are measured at national and annual levels. Original models were estimated by survey for
218 surveys using OLS for HAZ as a function of age, age2, sex, and mother fixed-effects. ∗∗P < 0.01, ∗∗∗P < 0.001. GDP, Real 2011 Gross Domestic
Product at Purchasing Power Parity; HAZ, height-for-age z-score; OLS, ordinary least squares

Future research on nutrition smoothing and resilience

Several important questions remain about seasonality in child
HAZ and nutrition smoothing. Estimating the amount of stunting
that could be eliminated by the smoothing of HAZ outcomes
throughout the year could be useful, as well as examining
what economic, environmental, and social factors facilitate
nutrition smoothing at the national and subnational levels. For
example, public health infrastructure and market access might

allow families to overcome seasonal environmental risks to their
children’s health (26). Building on work on gender bias in the
intrahousehold allocation of foods, researchers could estimate
differences between boys and girls in the smoothing of their HAZ
outcomes throughout the year.

Some research questions about nutrition smoothing can be an-
swered using existing data and literature or by developing merged
databases that combine different types of data, whereas others
could require specialized data collection. For example, including

TABLE 6 Example calculations correcting for measurement error in child birthdates: 5 DHS in Zambia1

Uncorrected estimates Corrected estimates

Survey year 1992 1996 2001 2007 2013 1992 1996 2001 2007 2013

Constructed indicators of seasonality
Gap between worst-and-best months
(Gap)

0.782 0.404 0.682 0.372 0.483 0.615 0.278 0.384 0.533 0.304

SD across month of birth coefficients
(SD)

0.221 0.131 0.200 0.121 0.181 0.174 0.083 0.118 0.140 0.113

December–January Gap 0.293 0.316 0.182 0.419 0.346 0.119 0.129 0.074 0.171 0.141
Estimated coefficients on original OLS regressions
February reported birth − 0.143 0.065 − 0.178 0.183 0.018 − 0.059 0.139 − 0.018 0.360 0.117
March reported birth − 0.112 − 0.038 − 0.004 0.341 − 0.171 − 0.052 0.015 0.111 0.467 − 0.100
April reported birth − 0.263 − 0.072 0.003 0.555 − 0.168 − 0.227 − 0.040 0.072 0.631 − 0.125
May reported birth − 0.519 0.181 − 0.122 0.260 − 0.086 − 0.507 0.192 − 0.099 0.285 − 0.072
June reported birth − 0.165 − 0.010 − 0.028 0.328 0.124 − 0.177 − 0.021 − 0.051 0.303 0.110
July reported birth − 0.169 0.109 0.165 0.406 0.158 − 0.205 0.078 0.096 0.330 0.115
August reported birth − 0.096 0.173 − 0.063 0.501 0.246 − 0.156 0.121 − 0.177 0.375 0.175
September reported birth 0.007 0.216 0.171 0.346 0.278 − 0.077 0.143 0.011 0.169 0.179
October reported birth 0.078 0.332 0.277 0.500 0.294 − 0.030 0.238 0.071 0.273 0.166
November reported birth 0.220 0.259 0.194 0.375 0.128 0.089 0.144 − 0.058 0.098 − 0.028
December reported birth 0.263 0.231 0.504 0.555 0.312 0.108 0.095 0.206 0.227 0.128
Age, mo − 0.086 − 0.101 − 0.114 − 0.095 − 0.084 — — — — —
Age in months, squared 0.001 0.001 0.002 0.001 0.001 — — — — —
Child is male − 0.175 − 0.036 − 0.137 − 0.136 − 0.146 — — — — —
Constant − 0.466 − 0.547 − 0.389 − 0.510 − 0.345 — — — — —
n 4905 5503 5430 5096 11,373 — — — — —
R2 0.266 0.241 0.295 0.173 0.142 — — — — —
F-statistic 34.110 29.040 40.800 18.210 30.990 — — — — —

1The lefthand 5 columns are uncorrected for the linear gradient in the relation between HAZ and MOB. The righthand 5 columns have had a linear
correction for this artifact. DHS, Demographic and Health Surveys; HAZ, height-for-age z-score; MOB, month of birth; OLS, ordinary least squares.
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more nutritional outcome data on older children and adolescents
would be valuable, especially given that their anthropometric
measurements would be less sensitive to artifactual measurement
error in MOB. Existing data, information, and knowledge are also
valuable. For example, systematic reviews of existing literature
on early-life shocks within local contexts would be valuable for
synthesizing what is already known about nutrition smoothing
in particular places. Making it easier for researchers, especially
those in low- and middle-income countries, to study the effects of
early-life shocks in their own communities would be productive
(27).

Investigating the mechanisms for how early-life shocks affect
later health is becoming more feasible due to advances in
measurement and in database management for climate and
nutrition variables. For example, remote-sensing data have
become particularly valuable for obtaining objective information
about climatic conditions at particular times (28, 29), or for
assessing the risk or severity of famine or drought. Using
remote-sensing data does not come without challenges. Remotely
sensed climate databases are subject to various biases depend-
ing on the particular data-generating processes, but judicious
care and various strategies can assess database quality for
particular research questions, or address shortcomings during
analysis.

Other relatively recent advances of interest to researchers
who primarily use publicly available data are the Living
Standard Measurement Study-Integrated Surveys on Agriculture,
which concurrently measure agricultural and health microdata
in nationally representative panels in close collaboration with
national government ministries (30). The Demographic and
Health Surveys, which collect data in nationally representative
repeat cross-sections about every 5 y in low- and middle-income
countries, are now including spatial covariate datasets with their
geocoded microdata (22). Improving survey enumeration and
birth registration efforts to increase the quality of data on MOB
would make true seasonal patterns more easily apparent. With the
use of these publicly available datasets, there are opportunities
for researchers to investigate nutrition smoothing and its local
determinants. Making it easier to merge national surveys
or censuses with environmental or climate data would also
be useful.

There is still no unified understanding of the consequences
of seasonal risks to child nutrition. The child health effects
of climate and other outside factors are often substantial, and
not often homogeneous within countries or across different
subgroups of the population in question. Research studies in this
area do not often investigate mechanisms directly, largely due
to challenges with needed data. Instead, the focus has generally
been on measuring the effects on nutrition of early-life shocks
or seasonal cycles within specific contexts. These are useful
exercises, especially given the heterogeneity in effects described
above, and future work should attempt to go deeper in examining
mechanisms and biological and social pathways.
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