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A B S T R A C T

Background: Approximately 1 in 33 newborns is affected by congenital anomalies worldwide. We aimed to
develop a practical model for identifying infants with a high risk of congenital cataracts (CCs), which is the
leading cause of avoidable childhood blindness.
Methods: This case-control study was performed in the Zhongshan Ophthalmic Center and involved 2005
subjects, including 1274 children with CCs and 731 healthy controls. The CC identification models were
established based on birth conditions, family medical history, and family environmental factors using the
random forest (RF) and adaptive boosting methods (trained by 1129 CC cases and 609 healthy controls),
which were tested by internal 4-fold cross-validation and external validation (145 CC cases and 122 healthy
controls). The models were also tested using 4 datasets with gradually reduced proportions of CC patients
(bilateral cases) to validate their performance in an approximate simulation of a clinical environment with a
relatively low disease prevalence.
Findings: The CC identification models showed high discrimination in both the 4-fold cross validation (area
under the curve (AUC)=0.91 [95% confidence interval: 0.88�0.94] in bilateral cases; 0.82 [0.77�0.89] in uni-
lateral cases) and external validation (AUC=0.93§0.05 in bilateral cases; 0.86§0.01 in unilateral cases), and
achieved stable performance in the clinical tests (AUC=0.94�0.96 in the four subgroups by RF). Furthermore,
family history of CC, low parental education level, and comorbidity were identified as the top three most rel-
evant factors to both bilateral and unilateral CC diagnosis.
Interpretation: Our CC identification models can accurately discriminate CC patients from healthy children
and have the potential to serve as a complementary screening procedure, especially in undeveloped and
remote areas.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

According to the World Health Organization, approximately 1 in
33 newborns is affected by congenital anomalies worldwide [1]. This
global health issue has become one of the main causes of long-term
illness, disability and even death in infants, resulting in economic and
emotional burdens on individuals, families, healthcare systems and
society. Congenital/infantile cataracts (CCs), with a global prevalence
ranging from 2.2 to 13.6 per 10,000 children [2], are a typical congen-
ital anomaly that occurs before or during the critical stage of visual
development and has become one of the leading causes of avoidable
childhood blindness worldwide [3].

Due to the difficulties associated with treatment and the poor
prognosis, as well as the time limitation imposed by visual develop-
ment among patients with CCs, prevention and early detection are
the best disease management strategies [4,5]. In underdeveloped
regions where medical resources are in short supply, CCs, an anomaly
with a low prevalence but long-term effects, may not be included in
routine congenital disease screening programmes or may be missed
due to poor screening coverage. Although most infants in developed
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Research in context

Evidence before this study

Approximately 1 in 33 newborns are affected by congenital
anomalies worldwide according to the World Health Organiza-
tion. Congenital cataracts (CCs) are a typical congenital anomaly
that occurs before or during the critical stage of visual develop-
ment and has become one of the leading causes of avoidable
childhood blindness worldwide. We searched PubMed, Web of
Science, and Wanfang Database for published articles with the
keywords “congenital anomaly”, “congenital disease”, “congen-
ital cataract”, “peadiatric cataract”, “prediction model”, “screen-
ing”, and “machine learning” (published between Jan 1, 2001,
and Sept 30, 2019) with no language restrictions, but identified
no known studies established the practical identification model
for timely screening infants with high risk of developing CC
based on nonimaging data, which is of great clinical signifi-
cance. While studies have identified a few of risk factors for CC,
but they were mostly studied independently in a relatively
small number of patients and have not established the CC pre-
diction models.

Added value of this study

This national study compared eleven potential risk factors of CC
between CC patients and healthy controls, who exhibited dis-
tinct characteristics. Additionally, to our knowledge, we estab-
lished a practical identification model, with high discrimination,
for identifying infants with a high risk of CCs based on 11 easily
obtainable predictive factors. This study assessed the most com-
prehensive collection of nonimaging-based risk/relevant factors
and their predictive value in the early detection of CCs using a
novel AI model based on the largest number of nationally repre-
sentative subjects to date.

Implications of all the available evidence

The identification model has the potential to serve as a comple-
mentary screening procedure for the early detection or predic-
tion of CC development, which could be especially useful in
underdeveloped and remote areas. More broadly, our study
may provide a reference for the development of AI-based pre-
ventive strategies for other congenital diseases.
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regions undergo neonatal screening shortly after birth, many with
late-onset CC [6] are not diagnosed at the time of screening. The
delayed presentation of CC patients at hospitals remains very com-
mon, especially among those living in remote and undeveloped areas
with poor medical resources [7,8]. A practical identification model
that can screen infants at high risk for future CCs would be of great
clinical significance.

Nongenetic factors account for approximately 2/3 of CC cases [9].
Disease screening basedmainly on nongenetic factors is clinically practi-
cal and affordable. Sporadic nongenetic risk factors for CCs have been
previously reported. An association between CCs and toxoplasmosis,
rubella, cytomegalovirus, and herpes simplex (TORCH) has been
reported based on the presence of specific IgM antibodies in developing
countries [10]. The British Congenital Cataract Interest Group (BCCIG)
reported that children with CC were overrepresented among those who
were born preterm or had low birth weight [11]. Furthermore, intra-
uterine infection [12], histories of disease and medication use during
pregnancy, toxin exposure, X-ray exposure [13], and poverty [1] are
also reportedly associated with CCs. However, these factors have mostly
been studied independently in relatively small samples of patients.
Recently, artificial intelligence (AI) has been applied in the diagno-
sis of ocular diseases. Ting et al. [14] developed a deep learning sys-
tem to screen for diabetic retinopathy and related ocular diseases
using retinal images. A review by Reid et al. [15] reported that
machine learning had been applied to the classification of pediatric
cataracts and the prediction of postoperative complications. We also
evaluated the diagnostic efficacy and therapeutic decision-making
capacity of an AI platform for childhood cataracts (CC��Cruser) in eye
clinics. [16] However, most of these AI models were trained using
image data collected with professional ophthalmological equipment,
meaning that they might be of limited use for disease screening in
the areas where there is inadequate access to medical resource.

Here, we assessed the most comprehensive collection of non-
imaging-based risk/relevant factors and their predictive value in the
early detection of CCs using a novel AI model based on the largest
number of nationally representative subjects to date.

2. Methods

2.1. Patient enrollment and ethics statement

The primary dataset for this case-control study included 1129
patients with CCs and 609 healthy controls examined between Febru-
ary 2012 and January 2017. All patients with CC were recruited from
the national center for CC prevention and treatment, the Childhood
Cataract Programme of the Chinese Ministry of Health (CCPMOH) [17],
which is located in the Zhongshan Ophthalmic Center (ZOC), Guangz-
hou, and receives transferred patients with CCs from 21 provinces or
regions in China (61.72%, 21/34) (Supplementary file 1, Table S1). Due
to the similar clinical management of both congenital and infantile cat-
aracts and the interchangeable use of these terms in practice [18], a
clinical definition of CCs was adopted for this study. CC patients aged
�18 years had their diagnoses confirmed by two experienced pediatric
ophthalmologists (WRC and HTL) based on slit-lamp (BX900; HAAG-
STREIT AG, Bern, Switzerland) and Pentacam (Pentacam HR; Oculus,
Inc., Wetzlar, Germany) examinations. Infants with newly or recently
diagnosed (< 2 weeks) vision-threatening congenital or infantile cata-
racts within the first year of life were included. Children in whom cata-
racts were diagnosed after the age of 1 year were eligible for inclusion
only if the cataracts were confirmed to be due to a congenital cause or
had specific ophthalmic features indicative of early onset, such as cata-
ract morphology, presence of nystagmus, or associated congenital ocu-
lar anomaly [19]. Eligibility was reconfirmed based on the patients’
ocular examinations, diagnosis, medical history, progress notes and
other detailed medical records. Drug-induced cataracts, metabolic cat-
aracts, secondary cataracts, traumatic cataracts, and developmental
cataracts were excluded. Patients who were unable to actively cooper-
ate were sedated with 10% chloral hydrate (0.8 ml/kg, oral or rectal
administration) [20]. Patients who came from welfare homes and
lacked clear information regarding heredity and gestation history
were also excluded. Healthy children without cataracts were randomly
recruited from kindergartens and communities located in different
regions and served as controls. The healthy children were selected so
that their ages and geographical distribution would be comparable to
those of the children with CCs. The healthy controls were examined by
the same ophthalmologists to verify the absence of CCs. Similarly,
healthy children with unclear family conditions or pregnancy-labor
history were excluded.

A total of 145 CC cases and 122 healthy controls collected from
March 2017 to January 2018 were included in the external validation
dataset. CC cases were obtained from the CCPMOH, which were
referred from 12 provinces of China (Supplementary file 1, Table S2).
Patients were eligible only if they had been diagnosed in other health
care institutes and transferred to the ZOC for further treatment.
Patients directly diagnosed in the ZOC were excluded from the exter-
nal validation dataset. The healthy controls were recruited from
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kindergartens and communities that differed from those of the pri-
mary dataset.

This study was registered with ClinicalTrials.gov (NCT03215186)
and approved by the institutional review board of the ZOC at Sun
Yat-sen University (IRB-ZOC-SYSU). All procedures followed the ten-
ets of the Declaration of Helsinki. Written informed consent was
obtained from at least one parent of each participant.
2.2. Collection of data on potential predictive factors

Questionnaire investigations were performed by experienced inter-
viewers (ZLL and JL) in private conversation rooms at the ZOC (CC
group) or kindergartens and neighborhood committees (control
group). According to previous reports and clinical experience regard-
ing the possible predictive factors of CCs, the following three classes of
information were collected for each participant and confirmed inde-
pendently by two other researchers (XYL and JJC): (1) demographic
variables: age at recruitment, sex, and laterality; (2) birth conditions:
illness during pregnancy, birth parity, preterm or term, eutocia or cae-
sarian, history of supplemental oxygen inspiration/infant incubator
use, and comorbidity; (3) family medical history and environmental
factors: family history of CC (information on family history was
included because this factor is readily obtainable and is important to
the establishment of disease prediction model), radiation/pollution
exposure, parental smoking, parental education level, and annual
household income. The age and sex of the respondents were acquired
by their identity cards or residence booklets. Comprehensive informa-
tion regarding the family and pregnancy-labor histories, comorbidity,
and living environment of all children was obtained based on medical
records, physical examinations, abnormal appearances, and parent
statements. All data were collected through a structured questionnaire
designed and revised by the members of the CCPMOH (Supplementary
file 2). Returned questionnaires were considered invalid and excluded
from further analysis if they met the following criteria: more than
one-third of the items were unclear, or left blank, or all items were
regularly marked. Each item related to the relevant factors was care-
fully rechecked, sorted, and presented. The researchers who conducted
the analysis were blinded to the data collection. All collected data was
kept strictly confidential and deidentified before the analysis.
2.3. Data processing and construction of CC identification model

Fig. 1 shows an overview of the experimental strategy of the
research performed in this study. First, we analyzed the potential
Fig. 1. Flowchart of the research performed in th
predictive factors of CC and compared these factors between patients
with CCs and healthy controls. Next, we established CC identification
models, and the importance ranking of the factors in each identifica-
tion model was assessed.

The abovementioned information regarding the CC patients and
healthy controls, collected between February 2012 and January 2017,
was used as the training dataset for the CC identification models.
Missing data (fewer than one-third of questions answered, other
than the annual household income) were imputed using the missFor-
est algorithm [21]. The CC identification models were established in
bilateral and unilateral cases using two common AI analysis algo-
rithms: random forest (RF) [22] and adaptive boosting (Ada) [23].
Four-fold cross validation was performed: the training data were ran-
domly and equally divided into four sub-samples, three of which
were used to train the prediction models, and the remaining one
served as the validation dataset. This procedure was repeated until
each sub-sample had been used as the validation set. Four-fold cross
validation may reduce the risk of overfitting and bias (Supplementary
file 1, Fig. S1). In addition to this internal cross validation, the CC
identification models were also externally validated using data from
patients who were diagnosed in hospitals other than the ZOC. Assess-
ments of accuracy, sensitivity, specificity, false positive rate, false
negative rate, receiver operating characteristic (ROC) curve, and area
under the curve (AUC) were performed to evaluate the discrimina-
tory ability of the identification models. ROC and AUC, two important
evaluation indexes for classifier performance in machine learning,
were calculated according to previous reports [24,25] using R and
Python. To test the identification models in a real-world clinical envi-
ronment with a relatively low prevalence of CC, we applied the mod-
els to four clinical datasets with gradually decreasing proportions of
CC patients. In addition, the importance of the variables among all
investigated factors was scored by RF in both bilateral and unilateral
cases.
2.4. Statistical analysis

The statistical analysis was performed using SPSS (version 19.0,
IBM SPSS Inc., Chicago, Illinois, USA), R (version 3.4.2), and Python
(version 3.5.2). The sample size was determined by PASS (version
15.05) with the following parameters setting: confidence interval
(CI) formula, Score (Wilson); Interval type, Two-Sided; Confidence
level (1-alpha), 0.95; CI width (two-sided), 0.1; Proportion, 0.8. The
Shapiro�Wilk test and Levene’s test were used to test the normal dis-
tribution and equality of variance of continuous variables. The
is study. CC: congenital/infantile cataracts.



Fig. 2. Birth information of children with CCs. Notes: Only the patients with relevant data were included in the distribution analysis. GHG: gestational hyperglycaemia; GHT: gesta-
tional hypertension; CHD: congenital heart disease.
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distributions of the potential predictive factors were compared
between CC patients and healthy controls using Pearson’s chi-
squared test for categorical factors or Student’s t-test for continuous
factors. All tests were two tailed, and statistical significance was
defined as P< 0.05.
3. Results

Fourteen CC cases and 8 healthy controls were excluded in the
questionnaire quality control process. The primary dataset repre-
sented 1738 subjects, including 1129 patients with CC and 609
healthy controls. The mean age of these subjects was 37.95 § 29.81
months (95% CI 36.42�39.23), and the ratio of males to females was
1.36 (1001:737). A total of 11 factors were summed up from the
questionnaires for the distribution analysis and the establishment of
identification models: family history of CCs, birth parity, virus infec-
tion during gestation, preterm delivery, eutocia, supplemental oxy-
gen inspiration/infant incubator use, comorbidity, radiation/
pollution, parental smoking, parental education level, and annual
household income.
Fig. 3. Histories of family heredity and family conditions of children with CC. Notes: Only th
significant difference was found in education level between the fathers and mothers, the m
Yuan.
3.1. Analysis of relevant factors

Among the patients with CCs, bilateral cataract involvement rep-
resented most of the study population (71.48%, 807/1129), and the
remaining patients had unilateral cataracts (28.52%, 322/1129).The
birth conditions, family medical history and family environmental
conditions of CC patients are shown in Figs. 2 and 3.

To analyze the possible predictive factors, we compared the
eleven chosen factors between the CC patients and healthy controls
(Table 1). Other than radiation/pollution exposure, the proportions of
CC patients with all investigated factors were significantly higher
than those of the healthy controls.

3.2. Models to identify children at high risk for CCs

The numbers of bilateral and unilateral patient, and healthy
controls were 807:322:609 in the training dataset and 94:51:122
in the external validation dataset. Information on the training and
external validation datasets is presented in Table S3 (Supplemen-
tary file 1). A missing-data mechanism analysis was performed.
The most serious missing data were found in annual household
e patients with relevant data were included in the distribution analysis. *: Because no
others were used to represent the parental education level in this study. <: Chinese



Table 1
Comparisons of the pregnancy-labor history, living environment and family variables between the children with CCs
and the healthy controls.

Children with CCs Healthy controls x2/t P

Number 1129 (Bil=807; Unil=322) 609 � �
Age (months) 31.28§33.23 39.09§12.80 6.99 <0.001#

Male 59.9% 53.7% 6.194 0.015*
Family history 23.83% (269/1129) 0% (0/609) 171.67 <0.001*
�2nd foetus 48.89% (419/857) 23.06% (140/607) 142.74 <0.001*
Pregnant virus infection 27.83% (310/1114) 20.39% (124/608) 11.53 0.001*
Preterm delivery 9.97% (112/1123) 3.78% (23/608) 21.02 <0.001*
Eutocia 66.19% (742/1121) 56.58% (344/608) 15.59 <0.001*
Oxygen inspiration/

infant incubator
22.17% (237/1069) 6.74% (41/608) 66.70 <0.001*

Comorbidity 11.78% (133/1129) 1.65% (10/606) 53.51 <0.001*
Radiation/pollution 11.86% (114/961) 9.20% (55/598) 2.71 0.111
Parental smoking 51.05% (537/1052) 34.44% (208/604) 42.77 <0.001*
Low/medium parental education levely 77.69% (846/1089) 33.06% (200/605) 327.95 <0.001*
Low household income{ 60% (391/644) 22.89% (111/485) 253.01 <0.001*

Notes: y: junior, primary and below; {: an average family income less than 71.5 K (Chinese yuan) was defined as a low
household income; results are marked if statistically significant according to Pearson’s chi-squared test (*) or an inde-
pendent-sample t-test (#) (P<0.05); Bil: bilateral patients; Unil: unilateral patients.

Table 2
Performance of four-fold cross validation and external validation of the CC identification models.

Accuracy Sensitivity Specificity False negative rate False positive rate

4-fold cross validation Bilateral RF 0.81§0.01 0.79§0.02 0.82§0.04 0.21§0.02 0.18§0.04
Ada 0.79§0.02 0.78§0.03 0.81§0.03 0.22§0.03 0.19§0.03

Unilateral RF 0.79§0.01 0.56§0.05 0.92§0.03 0.44§0.05 0.08§0.03
Ada 0.75§0.01 0.70§0.08 0.78§0.05 0.30§0.08 0.22§0.05

External validation Bilateral RF 0.86 0.80 0.91 0.20 0.09
Ada 0.85 0.77 0.90 0.23 0.10

Unilateral RF 0.86 0.58 0.98 0.42 0.02
Ada 0.85 0.58 0.97 0.42 0.03

Notes: RF: random forest; Ada: adaptive boosting.
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income (35.1%), and the missing data related to the other 10 factors
were considered missing at random. The missing data were
imputed using the missForest algorithm. CC prediction models
were trained in bilateral and unilateral patients separately. The
accuracy, sensitivity, specificity, and false negative and positive
Fig. 4. ROC curves and AUC values of models with different algorithms and type of cataract
prediction models performed better in bilateral patients than in unilateral cases, and RF yi
under the curve; RF: random forest; Ada: adaptive boosting; CI: confidence interval.
rates of the CC identification models established by RF and Ada in
the 4-fold cross validation and external validation are shown in
Table 2. The ROC curves and AUC values of models with different
algorithms and lateralities of cataracts (bilateral or unilateral) are
compared in Fig. 4. The results show that CC prediction models
s (bilateral or unilateral) in internal 4-fold cross validation and external validation. CC
elded better performance than Ada. ROC: receiver operating characteristic; AUC: area



Fig. 5. Relevance ranks of the 11 relevant factors of CCs in bilateral and unilateral patients. Family history of CC, low parental education level, and comorbidity were identified as the
top three most relevant factors to both bilateral and unilateral CC diagnosis.

Table 3
Clinical test of the stability of CC identification models.

Nos. of patients vs. controls Algorithm Accuracy Sensitivity Specificity False negative rate False positive rate

94 vs. 100
(1:1)

RF 0.86 0.80 0.93 0.20 0.07
Ada 0.88 0.82 0.93 0.18 0.07

50 vs. 100
(1:2)

RF 0.86§0.01 0.72§0.01 0.93§0.01 0.28§0.01 0.07§0.01
Ada 0.85§0.02 0.72§0.02 0.92§0.02 0.28§0.02 0.09§0.02

30 vs. 100
(1:3)

RF 0.88§0.01 0.69§0 0.93§0.01 0.31§0 0.07§0.01
Ada 0.87§0.02 0.72§0.02 0.91§0.03 0.28§024 0.09§0.03

10 vs. 100
(1:10)

RF 0.92§0.01 0.78§0 0.93§0.01 0.22§0 0.07§0.01
Ada 0.89§0.02 0.75§0.05 0.91§0.03 0.25§0.05 0.09§0.03
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performed better in bilateral patients than in unilateral cases, and
RF outperformed Ada. The model for the identification of children
at high risk for CC based on RF is available (www.ccpmohpredic
tion.cn) for the preclinical application testing stage.

To improve the development of prevention and identification
strategies for CCs, we assessed and ranked the relative importance of
the eleven factors using RF. As shown in Fig. 5, family history of CCs,
parental education, and comorbidity exhibited the greatest relevance
to CCs in both bilateral and unilateral cases. A close relationship
between history of supplemental oxygen inspiration or infant incuba-
tor use and CCs was also observed.
3.3. Clinical test of the CC identification models

To evaluate the performance of the CC identification model using
real CC patient in an approximation of the clinical environment with
a relatively low disease prevalence, we tested the model in four clini-
cal datasets with gradually decreasing proportions of CC patients.
Ninety four patients with bilateral CCs and 100 randomly selected
healthy controls from the external dataset were included in this clini-
cal test. The ratios of CC patients to healthy controls in the 4 datasets
were approximately 1:1, 1:2, 1:3, and 1:10. Four analyses using sam-
pling with replacement were performed in each dataset to reduce
the sampling error, except in the dataset with a 1:1 patient:control
ratio. As shown in Table 3, the CC identification models showed good
discriminatory ability between the bilateral CC patients and healthy
children with high accuracies and AUC values (Fig. 6 (a) and (b)). Fur-
thermore, the CC identification models achieved stable performance
in the four subgroups and maintained acceptable accuracy and AUC
values even in the 1:10 dataset.
4. Discussion

This study compared potential predictive factors for CCs between
children with CCs and healthy controls, who exhibited distinct char-
acteristics. Additionally, we established, to the best of our knowledge,
the first practical identification model that effectively identifies chil-
dren at high risk for CC based on 11 easily obtainable predictive fac-
tors. Benefiting from the advantages of feasibility and nearly zero
cost, the models have the potential to compensate for the deficiency
in current CC screening, especially in underdeveloped areas.

Most AI algorithms used for disease identification or prediction
models have been trained based on different modalities of medical
imaging [26,27], and the performance of medical AI techniques using
non-imaging-based structured data remains unclear. Liang et al. [28]
recently trained an AI model that demonstrated high diagnostic accu-
racy across common childhood diseases based on 101.6 million data
points from 1,362,559 pediatric patients. However, collecting such a
large volume of hospital-based medical data from patients with CCs
and other rare congenital diseases is very difficult. In this study, we
analyzed 11 variables in 2005 CC patients and healthy children and
trained CC identification models, which exhibited satisfactory dis-
crimination and stability, indicating that medical AI techniques
achieve satisfactory performance in identifying congenital diseases
even with limited data. Furthermore, the data used for the model
training in the current study were collected noninvasively from both
mothers and children.

Given the advantages of technical feasibility, and the ease and
noninvasive nature of the data collection, this CC prevention and
screening strategy has great potential. We designed a program (avail-
able at: www.ccpmohprediction.cn) to enable a wider range of test-
ing after several rounds of validation, including internal cross

http://www.ccpmohprediction.cn
http://www.ccpmohprediction.cn
https://www.ccpmohprediction.cn


Fig. 6. ROC curves and AUC values of two AI algorithms for bilateral patients in the clinical test. ROC: receiver operating characteristic; AUC: area under the curve; AI: artificial intel-
ligence; CI: confidence interval.

D. Lin et al. / EBioMedicine 51 (2020) 102621 7
validation, external validation, and test in an approximation of the
clinical environment. The State Council of China reported that
18.46 million infants were born at hospitals across the country in
2016 [29], one year after the two-child policy was announced. The
number of new onset CC cases was estimated to be up to 13,715 per
year in China based on the incidence of 7.43/10,000 among Asian
populations [2]. Red reflex detection at 6�8 weeks after birth among
newborns is recommended for CC screening in the UK [30] and other
developed countries [31]. However, due to a shortage of medical
resources, CC screening is not included in routine congenital disease
screening programmes in China, and patients in undeveloped and
remote areas can easily be missed [6]. Furthermore, some late-onset
CCs are not manifested immediately after birth but develop gradually
until the age of approximately 1 year. In addition, some mild cata-
racts (such as sutural cataracts) and peripheral cataracts tend to be
missed by red reflex testing with undilated pupils, as carried out by
non-ophthalmic health care workers. A practical identification model
that can screen these infants with a high risk of CC but easily missed
would be of great clinical significance, especially in undeveloped and
remote areas. It is highlighted that novel digital health solutions
could help overcome these clinical barriers by supporting timely
diagnosis and referral [32]. Our screening program holds promise for
reducing the missed diagnoses by serving as a complementary CC
screening procedure. Although the screening model cannot replace
screening by a qualified practitioner at present, it would be another
way to timely identify those who may potentially benefit from medi-
cal intervention, meaning that some could avoid missing the best sur-
gical timing among the key stage of visual development in early
postnatal life.

To better understand how the subjects at high risk for CCs were
identified and to improve the interpretability of the AI algorithms,
we scored and ranked the analyzed risk factors according to their
contribution to CC diagnosis by RF. Among these factors, family his-
tory of CCs, low parental education level, comorbidity, and history of
supplemental oxygen inspiration or infant incubator use were identi-
fied as the most relevant factors to both bilateral and unilateral CC
diagnosis. These findings are similar to those of previous studies.
Nagamoto et al. [33] reported an increased prevalence (31.6%) of con-
comitant systemic abnormalities among patients with bilateral CCs.
SanGiovanni et al. [34] found that preterm infants have 3- to 4-fold
higher odds of developing infantile cataracts than those born at term.
However, the relative importance of preterm birth was lower than
that of supplemental oxygen inspiration or infant incubator use in
the current study, indicating that the previously reported increase in
infantile cataract risk may have occurred because supplemental oxy-
gen inspiration and infant incubators are disproportionately used
among preterm infants. Furthermore, detailed ocular examinations
may be warranted among children whose parents have low educa-
tion levels, although the causal link between this factor and CCs is
not completely clear.

This is a preliminary study and there are some issues that should
be discussed and thoroughly addressed before clinical application.
Regarding study design, the external validation and clinical test in
the current study were not so in the true sense. Although relatively
stable performance was exhibited by our model under a series of
patient proportions, a poorer performance may be shown in real
world environment with a disease prevalence of approximately 4.24/
10,000 [2] that much lower than those (from 1/10 to 1/1) evaluated
in the current study. The model tests should be performed within the
setting where the model would be used and in real world environ-
ment with a low disease prevalence, which would be a truer clinical
validation process. The rarity of CC cases and potential selection bias
in the dataset with too little CC cases prevented us from using these
ideal methods. Furthermore, all patients in the external validation
dataset were diagnosed in other institutes, but the data on potential
predictive factors were collected in the ZOC after referral. In addition,
the healthy controls were mainly recruited from kindergartens and
communities, and the relatively uniform source of the population
may create a bias. Regarding model application, although the CC
identification models showed relatively high AUC values and stable
performance, there is a possibility of missed diagnosis or misdiagno-
sis. Ocular disease is an important component of the predictive vari-
able of comorbidity. However, except obvious abnormal ocular
appearance such as severe strabismus and ptosis, most ocular mor-
bidities cannot be easily detected by the parents, resulting a false
negative in the variable of comorbidity. The performance of the
model with this incorrect information input may weaken and lead to
missed diagnosis. The factors of pregnancy-labor history [35] and liv-
ing environment [36,37] are also important underlying causes of
many other congenital diseases, which may cause misdiagnosis. The
combined use of traditional screening methods, such as red reflex
and slit-lamp examinations, is still necessary to improve CC identifi-
cation and reduce the rates of missed diagnosis and misdiagnosis.
Furthermore, most subjects in the training and validation of CC iden-
tification models were Chinese. Therefore, the results and the gener-
alizability of the CC identification models should be interpreted with
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caution due to differences in variables such as ethnicity, medical con-
ditions, and socioeconomic status. Finally, other limitations included
poor age matching between CC patients and healthy controls and the
possible overlaps between CCs and other types of cataracts in the
case recruitment.

In summary, this preliminary study established an accurate and
practical identification model for CC screening based solely on AI anal-
yses of eleven easily obtained predictive factors; the most relevant fac-
tors for CC development are also uncovered. Our findings are of great
clinical significance for the early detection of CCs. The identification
model has the potential to serve as a complementary screening proce-
dure for the early detection or prediction of CC development, which
could be especially useful in underdeveloped and remote areas. More
broadly, our study may provide a reference for the development of AI-
based preventive strategies for other congenital diseases.
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