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Background. The acquisition of castration resistance is lethal and inevitable in most prostate cancer patients under hormone
therapy. However, effective biomarkers and therapeutic targets for castration-resistant prostate cancer remain to be defined.
Methods. Comprehensive bioinformatics tools were used to screen hub genes in castration-resistant prostate cancer and were
verified in androgen-dependent prostate cancer and castration-resistant prostate cancer in TCGA and the SU2C/PCF Dream
Team database, respectively. Gene set enrichment analysis and in vitro experiments were performed to determine the potential
functions of hub genes involved in castration-resistant prostate cancer progression. Results. Three hub genes were screened out
by bioinformatics analysis: MCM4, CENPI, and KNTC1. These hub genes were upregulated in castration-resistant prostate
cancer and showed high diagnostic and prognostic value. Moreover, the expression levels of the hub genes were positively
correlated with neuroendocrine prostate cancer scores, which represent the degree of castration-resistant prostate cancer
aggression. Meanwhile, in vitro experiments confirmed that hub gene expression was increased in castration-resistant prostate
cancer cell lines and that inhibition of hub genes hindered cell cycle transition, resulting in suppression of castration-resistant
prostate cancer cell proliferation, which confirmed the gene set enrichment analysis results. Conclusions. MCM4, CENPI, and
KNTC1 could serve as candidate diagnostic and prognostic biomarkers of castration-resistant prostate cancer and may provide
potential preventive and therapeutic targets.

1. Background

In recent years, prostate cancer has been the second leading
cause of cancer-related death in males [1]. Hormone therapy
that targets the androgen receptor (AR) remains the main-
stay therapy for prostate cancer. Unfortunately, nearly all
patients under hormone therapy ultimately progress to
castration-resistant prostate cancer (CRPC), which is charac-
terized by its nonresponse to most currently available thera-
pies, and the median overall survival time is only 15-36
months [2, 3]. The treatment of CRPC remains a significant
challenge, and there is still a lack of excellent prognostic bio-
markers and effective treatments for CRPC patients [2, 4, 5].
Therefore, the identification and validation of hub genes

involved in CRPC are necessary to provide new insights into
prediction, prognostic evaluation, and therapeutic strategies
for CRPC.

Identification of differentially expressed genes (DEGs)
among expression profiles is a crucial step in searching for
hub genes and is widely used to explore potential mecha-
nisms of cancer progression [6, 7]; gene expression arrays
have long been a ubiquitous platform used to identify DEGs
[8]. However, differences in sample size, sample sources, or
platforms can lead to inconsistency in the expression levels
of genes identified among different studies [9–11]. There-
fore, eliminating the differences in individual studies and
ensuring the reliability and representativeness of the selected
DEGs have become a top priority. A bioinformatics method,
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named robust rank aggregation (RRA), that can integrate
multiple gene expression datasets has been developed to
settle this problem [12]. This method can be used to analyze
a series of separate datasets by aggregating the resultant
DEG list in each dataset to minimize bias and errors among
different datasets, thereby obtaining robust DEGs represent-
ing multiple integrated expression datasets. To date, many
studies have exploited the RRA method to obtain robust
DEGs for identification of hub genes [11, 13]. However, in
prostate cancer, most studies have focused on seeking DEGs
between adjacent normal tissues and prostate cancer (PCa)
tissues and seldom concentrate on finding robust DEGs
between androgen-dependent prostate cancer (ADPC) and
CRPC [14, 15].

Most prostate cancer patients undergoing androgen
deprivation therapy will inevitably develop CRPC, which
involves multiple mechanisms and signaling pathways, and
the progression is complicated [16, 17]. The existing bio-
markers of CPRC mainly focus on genomic aberrations,
and several biomarker-driven clinical trials are underway
in patients with CRPC. However, in addition to genomic
aberrations, the phenotype of CRPC tumors can evolve dur-
ing disease progression, and treatment resistance manifests
by changes in gene expression, epigenetics, and/or tumor
morphology [18]. Therefore, much effort should be made
to explore and illustrate the potential mechanisms driving
CRPC development and to provide new biomarkers and
therapeutic targets for CRPC. Our study imaginatively inte-
grated GEO transcriptome datasets from different studies to
screen robust DEGs in CRPC and combined them with a
series of bioinformatics tools to identify potential hub genes,
enriching the types of biomarkers associated with tran-
scriptome expression changes. Gene set enrichment analysis
(GSEA) and in vitro experiments were performed to explore
and verify the potential biological functions of hub genes in
CRPC. We found that MCM4, CENPI, and KNTC1 were
overexpressed in CRPC cells and that increased MCM4,
CENPI, and KNTC1 expression predicted poor overall sur-
vival in CRPC patients. A decrease in the expression of the
three hub genes led to abnormal CRPC cell cycle transition
and suppressed CRPC cell proliferation. In addition, the
expression levels of the three hub genes were associated with
the NEPC score, indicating that the three hub genes may be
involved in CRPC progression. Our study demonstrates that
the three identified hub genes may be potential therapeutic
targets in CRPC. Suppression of these genes may provide a
new treatment strategy for CRPC. In addition, combined
with other prostate cancer biomarkers, such as prostate spe-
cific antigen (PSA), and serum androgen levels, these hub
genes could provide a novel approach to predict CRPC.

2. Materials and Methods

2.1. Collection of PCa Gene Expression Datasets. All avail-
able datasets were downloaded from GEO. The selection
criteria were as follows: (1) the gene expression data of both
ADPC and CRPC tissue samples derived from clinical
patients were included, and the gene expression data of
xenograft-derived tumor tissue samples were excluded; (2)

a minimum of five ADPC and five CRPC tissue samples were
included in an independent gene expression dataset; and (3)
the GEO platform contained at least 5,000 gene probes.
Selected by the above criteria, three datasets were finally
included in this study: GSE3325, GSE32269, and GSE35988.
Additionally, RNA-sequencing and clinical data of ADPC
were obtained from TCGA database (https://portal.gdc
.cancer.gov/repository), and RNA-sequencing and clinical
data of CRPC were downloaded from SU2C/PCF Dream
Team (http://www.cbioportal.org/study/summary?id=prad_
su2c_2019) [19]. The TCGA and SU2C/PCF data were nor-
malized, and the batch effects were removed using the R pack-
age “limma”. The preprocessing data have been validated in
published research [20].

2.2. Identification of Robust DEGs. The R package “limma”
was utilized to normalize the expression data and find DEGs
in each GEO dataset with the cutoff criteria of jlog 2 − fold
change ðFCÞj ≥ 1 and adjusted P value < 0:05 [21]. Then,
the RRA method was applied to integrate DEGs from each
dataset, which is a standard method to minimize bias and
errors among several datasets. The ranking of each gene in
the final gene list of was determined by its P value, and genes
with an adjusted P < 0:05 were considered to indicate signif-
icant DEGs in RRA analysis [12].

2.3. Functional Enrichment Analysis. The Database for Anno-
tation, Visualization and Integrated Discovery (DAVID)
(https://david.ncifcrf.gov/) was used to conduct Gene Ontol-
ogy (GO) function and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses of robust DEGs [22].
GO terms and KEGG pathways with adjusted P < 0:05 were
considered statistically significant and visualized using
“ggplot2” in R package [23].

2.4. Protein–Protein Interaction Network Construction. The
STRING database (https://cn.string-db.org/) was employed
to construct a protein–protein interaction (PPI) network
[24]. The parameter of interactive relationships among DEGs
was set as high confidence > 0:7. Visualization and analysis of
the PPI network were performed using Cytoscape software
version 3.4.0 (http://www.cytoscape.org/) [25]. The plug-in
MCODE of Cytoscape software was used to screen key mod-
ules in the whole PPI network (the parameters were set to
default), and pathway enrichment analysis was performed
for DEGs in each module using the DAVID database. The
cytoHubba plug-in provides twelve topological analysis
methods for ranking nodes in a network by their network
features. However, considering that the MCC algorithms can
capture more essential proteins in the top ranked list among
both high-degree and low-degree proteins, the MCC algo-
rithms of cytoHubba plug-in were carried out to screen poten-
tial hub genes in the whole PPI network in this study [26].

2.5. Gene Set Enrichment Analysis. The 75th percentile and
25th percentile values of the expression level of each hub
gene were set as the cutoff points for dividing the data into
a high expression group and a low expression group for
CRPC samples. GSEA_4.0.1 software (http://www.gsea-
msigdb.org/gsea/index.jsp) was utilized to conduct GSEA
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between the two groups to determine the potential functions
of the three hub genes in CRPC. The annotated gene set
c2.cp.kegg.v7.5.1.symbols.gmt (system files of GSEA soft-
ware) was selected as the reference gene set. Under the cutoff
criterion of a nominal (NOM) P value < 0.05, the pathways
with the highest normalized enrichment score (NES) rank-
ing were chosen for analysis.

2.6. Cells and Cell Culture. Three human castration-resistant
prostate adenocarcinoma cell lines [PC-3 (catalog no:
TCHu158), DU145 (catalog no: TCHu222), and 22-Rv1(ca-
talog no: TCHu100)] and one human androgen-dependent
prostate adenocarcinoma cell line [LNCaP (catalog number:
TCHu173)] were purchased from the Cell Bank of Shanghai
Institute of Biochemistry and Cell Biology, Chinese Acad-
emy of Sciences (Shanghai, China), a distributor of ATCC.
All four PCa cell lines were cultured in a 5% CO2 incubator
in RPMI 1640 medium with 10% FBS. The ATCC (https://
www.atcc.org/) was used to determine the culture method
for each cell line.

2.7. siRNA Transient Transfection. Cells were seeded at 2 ×
105 cells/well in 6-well plates and transfected with siRNA
using Lipofectamine 2000 according to the manufacturer’s
instructions (catalog no: 11668019, Invitrogen Life Technolo-
gies, Carlsbad, CA). After four hours of transfection, the
medium containing siRNA was replaced with a fresh medium.
The target sequences of siRNAs are listed in Table 1.

2.8. Western Blotting, Cell Proliferation, and Cell Cycle
Distribution Analysis. Western blotting, cell viability assays,
and cell cycle distribution analysis were performed accord-
ing to our previous study [27]. Antibodies against CENPI
(1: 2000, catalog no: ab118796) and MCM4 (1 : 2000, catalog
no: ab4459) were purchased from Abcam (Cambridge, MA,
USA). An antibody against KNTC1 (1 : 200, catalog no: sc-
81853) was purchased from Santa Cruz (Santa Cruz, CA,
USA). An antibody against GAPDH (1 : 1000, catalog no:
5174S) was purchased from Cell Signaling Technology (Bev-
erly, MA, USA). HRP-conjugated secondary antibodies
derived from rabbits and mice were also purchased from Cell
Signaling Technology [anti-rabbit IgG (1 : 5000, catalog no:
7074S) and anti-mouse IgG (1 : 5000, catalog no: 7076S)].
Cell viability was measured using a Cell Counting Kit-8 (cat-
alog no: C008-3, 7seabiotech, Shanghai, China) following the
manufacturer’s instructions. Cell cycle distribution was mea-
sured via flow cytometry with PI/RNase staining buffer (cat-
alog no: 550825, BD Biosciences).

2.9. Statistical Analysis. The Mann–Whitney test, Kruskal–
Wallis test, and Student’s t test were employed to determine
the statistical significance of differences between groups.
Receiver-operating characteristic (ROC) curves were plotted,
and the area under the ROC curve (AUC) was calculated to
assess the diagnostic values of the hub genes. Kaplan–Meier
analysis for overall survival was executed based on the hub
gene expression levels using GraphPad prism 9 software
(https://www.graphpad.com/). The cutoff value was set at
the mean value to divide CRPC samples into a high expres-

sion group and a low expression group, and a log-rank test
was used to determine statistical significance. In addition,
the association of hub genes with clinical features (Gleason
score, serum PSA and NEPC score) of CRPC were analyzed
with Spearman r or Pearson r. All statistical tests were two-
sided and performed with GraphPad Prism 9 software; sta-
tistical significance was defined as a P value < 0.05.

3. Results

3.1. Robust Rank Aggregation Analysis of DEGs between
ADPC and CRPC. In this study, three available Gene Expres-
sion Omnibus (GEO) gene expression profiles were down-
loaded according to strict criteria (see the “Materials and
Methods”), and the characteristics of the GEO datasets are
shown in Table 2. Subsequently, identification, validation,
and functional analysis of DEGs were performed in line with
the workflow (Figure 1).

First, the R package “limma” was utilized to normalize
the data and find DEGs of each GEO dataset between CRPC
and ADPC [21]. Volcano plots of the distribution of DEGs
in each dataset are shown in Figures 2(a)–2(c). The RRA
method was used to integrate DEGs from each dataset and
obtain the robust DEGs. A total of 261 upregulated and
266 downregulated genes were screened out, and top 20
significantly upregulated and downregulated robust DEGs
are shown in a heatmap in Figure 2(d). DDX39A was the
most significantly upregulated gene (P = 3:59E − 06, average
logarithmic fold change = 1:487), followed by GSDMB

Table 2: Characteristics of the included datasets.

Dataset
ID

Country
Number of
samples

GPL ID
Number of rows
per platform

GSE3325 USA
6CRPC
6ADPC

GPL570 23520

GSE32269 USA
29CRPC
22ADPC

GPL96 22282

GSE35988 USA
27CRPC
49ADPC

GPL6480 19596

Note: GSE: Gene Expression Omnibus series; GPL: Gene Expression
Omnibus platform; CRPC: castration-resistant prostate cancer; ADPC:
androgen-dependent prostate cancer.

Table 1: The list of the target sequence for siRNAs.

Genes Target sequences

MCM4-si1 GCAGAAGAUAUAGUGGCAATT

MCM4-si2 GCAUGGCACUCAUCCACAATT

MCM4-si3 GCUGCCUCAUACUUUAUUATT

CENPI-si1 GCUUAUUCCCUCCAUCUUATT

CENPI-si2 GCUAAGGACUUUGGUAAAUTT

CENPI-si3 CCUCCUGUCUCGUCCAAUUTT

KNTC1-si1 GCUGUAAACACACGGAUAUTT

KNTC1-si2 CCAACUUCCUGGAUACCAUTT

KNTC1-si3 GCUGGUAUUUGGACUAUUUTT
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(P = 3:69E − 05, average logarithmic fold change = 1:47). In
addition, ACTG2 (P = 1:40E − 07, average logarithmic
fold change = 5:37) and MYLK (P = 2:34E − 07, average
logarithmic fold change = 3:69) were the most significantly
downregulated genes.

3.2. Functional Enrichment Analysis of Robust DEGs. To
determine the potential functional roles of the upregulated
and downregulated robust DEGs, the DAVID database was
used to analyze GO function and KEGG enrichment. The
top 10 enriched GO terms and KEGG pathways of the above
robust DEGs are shown in Figure 3. In biological processes
(BP), the upregulated robust DEGs were significantly
enriched in cell division, mitotic nuclear division, and cell
proliferation (Figure 3(a)); the downregulated robust DEGs
were significantly enriched in positive regulation of tran-
scription from the RNA polymerase II promoter, negative
regulation of transcription from the RNA polymerase II pro-
moter, and transcription from the RNA polymerase II pro-
moter (Figure 3(e)). For cell component (CC), nucleus,
cytoplasm, and nucleoplasm were the most enriched terms
in the upregulated robust DEGs (Figure 3(b)), and the
downregulated robust DEGs were mostly enriched in the

cytoplasm, extracellular exosome, and cytosol (Figure 3(f)).
Molecular function (MF) analysis revealed that the upregu-
lated robust DEGs were mainly enriched in protein binding,
ATP binding, and DNA binding (Figure 3(c)), and the
downregulated robust DEGs were mostly enriched in
sequence-specific binding, heparin binding, and actin bind-
ing (Figure 3(g)). Moreover, in KEGG analysis, the upregu-
lated robust DEGs were significantly enriched in the cell
cycle, pathways in cancer, and the PI3K-Akt signaling path-
way (Figure 3(d)), and the downregulated robust DEGs were
significantly enriched in pathways in cancer, HTLV-I infec-
tion, and focal adhesions (Figure 3(h)).

3.3. Construction of a PPI Network of Robust DEGs and
Identification of Potential Hub Genes. To understand the
interaction of robust DEGs, the STRING database was
applied to construct a PPI network, and the results revealed
that 339 nodes and 2362 edges were present in the whole PPI
network (Figure 4(a)). The MCODE plug-in was used to
identify key modules in the whole PPI network. The top 4
modules are shown in Figures 4(b)–4(e), and the genes in
each module are listed in Table 3. Furthermore, pathway
enrichment analysis of the top 4 modules was performed

3 PCa GEO datasets
(Including ADPC and CRPC)

Based on “limma” package in R studio

DEGs identification in each
dataset

RRA methods, adjusted P < 0.05

GO and KEGG analysis

Functional enrichment analysis Pathway enrichment analysis

PPI network construction and
modules analysis

MCC score filtering

9 Potential hub genes

1. CRPC vs ADPC (Analysis of expression variation, ROC)
2. Survival analysis in CRPC

3 Hub genes

Correlation analysis in CRPC
(Gleason scores, PSA levels, NEPC scores)

GSEA
(Function annotation)

In vitro experiments
(Validation in CRPC cells)

Validation in TCGA and SU2C/PCF dream team database

Based on STRING database and cytoscape so�ware

Robust DEGs in CRPC
(261 upregulated and 266 downregulated genes)

Figure 1: Study workflow. GEO: Gene Expression Omnibus; DEG: differentially expressed genes; RRA: robust rank aggregation; GO: Gene
Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein-protein interaction network; MCC: maximal clique centrality;
TCGA: The Cancer Genome Atlas; SU2C/PCF Dream Team: SU2C-Prostate Cancer Foundation Prostate Dream Team; ROC: receiver-
operating characteristic curve; NEPC: neuroendocrine prostate cancer; GSEA: gene set enrichment analysis.
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Figure 2: Identification of DEGs in each GEO dataset. (a–c) Volcano plots of the distribution of DEGs in each dataset. (d) Expression
heatmap of the top20 significant upregulated and downregulated DEGs determined by P value. Each row represents one gene, and each
column indicates one dataset. Red means upregulation, and blue means downregulation. The numbers in the heatmap indicate
logarithmic fold change in each dataset calculated by the “limma” R package. DEG: differentially expressed gene; GEO: Gene Expression
Omnibus; RRA: robust rank aggregation.
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Figure 3: Continued.
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in the DAVID database (Supplementary Table S1), and the
results indicated that cell cycle, protein digestion and
absorption, vascular smooth muscle contraction, and ribo-
some were the significantly enriched pathways in the indi-
vidual modules.

Meanwhile, the cytoHubba plug-in, which provides
twelve topological analysis methods for ranking nodes in a
network by their network features [26], was used to screen
hub genes in the whole PPI network. Eventually, sixty-four
potential hub genes were screened out according to the max-
imal clique centrality (MCC) method (Supplementary
Table S2), and we selected nine genes that are rarely reported
in prostate cancer (NCAPG2, MCM4, KIF18B, CENPM,
KNTC1, CENPI, GTSE1, ERCC6L, and FAM64A) for fur-
ther validation.

3.4. Hub Gene Validation in the TCGA and SU2C/PCF
Dream Team Databases. To validate the nine potential hub
genes in CRPC, the expression profiles and clinical data
of hub genes were downloaded from TCGA (representative
for ADPC) and SU2C/PCF Dream Team (representative for
CRPC) databases. Subsequently, the data were normalized
to the fragments per kilobase of exon model per million
mapped fragments (FPKM) value for further analysis.
Comparing the expression levels of hub genes in CRPC
and ADPC, it was noted that eight of the hub genes were
significantly increased in CRPC, and ERCC6L showed a
significant decrease (P < 0:001, Figure 5(a); Supplementary
Figure S1A). We carried out ROC curve analysis and calcu-
lated the AUC value. Coincidentally, except for ERCC6L
(AUC = 0:6169), the remaining potential hub genes showed
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Focal adhesion

cAMP signaling pathway
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Figure 3: GO and KEGG enrichment analysis of robust DEGs. (a–c) Bubble plot of GO enrichment analysis of upregulated DEGs. (d)
Bubble plot of KEGG pathway enrichment analysis of upregulated DEGs. (e–g) Bubble plot of GO enrichment analysis of downregulated
DEGs. (h) Bubble plot of KEGG pathway enrichment analysis of downregulated DEGs. GO: Gene Ontology; KEGG: Kyoto Encyclopedia
of Genes and Genomes.
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high diagnostic value (AUC > 0:85) in distinguishing CRPC
fromADPC (Figures 5(b) and 5(c); Supplementary Figure S1B).
Afterward, Kaplan–Meier survival analysis and log-rank tests
were performed to evaluate the prognostic value of the hub
genes. As a result, only MCM4, CENPI, and KNTC1 were
found to be associated with poor overall survival in CRPC.
The median overall survival (OS) times in the high MCM4,
CENPI, and KNTC1 expression groups vs. the low expression
groups were 22.14 vs. 25.62, 22.14 vs. 28.88, and 15.37 vs.
29.40 months (log-rank P < 0:05), respectively, while the other
six potential hub genes showed no significant association with
the OS rate in CRPC patients (Figures 5(d) and 5(e); Supple-
mentary Figure S1C). Moreover, coexpression analysis
revealed a positive correlation among MCM4, KNTC1, and
CENPI (MCM4 vs. KNTC1, r = 0:46, P < 0:0001; MCM4 vs.
CENPI, r = 0:54, P < 0:0001; KNTC vs. CENPI, r = 0:66, P
< 0:0001) (Figure 5(f)). Of note, these results suggest that
MCM4, CENPI, and KNTC1 showed excellent performance
as diagnostic and prognostic biomarkers in CRPC.

3.5. The Association of Hub Genes with Clinical Features of
CRPC in the SU2C/PCF Dream Team Database. To identify
the potential roles of hub genes in CRPC, the association of
MCM4, CENPI, and KNTC1 with clinical features of CRPC

was evaluated. First, we examined the association of the
expression of MCM4, CENPI, and KNTC1 with serum PSA
and Gleason score, which is typically used to grade PCa. The
results showed that the expression levels of MCM4, KNTC1,
and CENPI in CRPC samples were positively correlated with
Gleason scores (P < 0:05, Figure 6(a)), although the correla-
tion coefficient was low. Additionally, it was noted that none
of the hub gene expression levels were associated with serum
PSA levels (P > 0:5, Figure 6(b)). Finally, we investigated
whether the expression of MCM4, CENPI, and KNTC1 was
associated with the NEPC score, which was introduced to
quantify the degree of CRPC-adenocarcinoma (CRPC-
Adeno) conversion to CRPC-neuroendocrine (CRPC-NE), a
more aggressive variant of CRPC. Excitingly, the results dem-
onstrated that the expression of all three hub genes was posi-
tively correlated with the NEPC score (P < 0:01, Figure 6(c)).
Based on the above results, the expression levels of these three
hub genes may be positively correlated with the malignancy of
CRPC.

3.6. Hub Genes May Be Involved in CRPC Progression by
Regulating Cell Growth and Death-Related Pathways as
well as Replication and Repair-Related Pathways: Gene Set
Enrichment Analysis (GSEA). To determine the potential

(d) (e)

Figure 4: Construction of PPI network and module analysis. (a) The whole PPI networks. (b) PPI network of module 1. (c) PPI network of
module 2. (d) PPI network of module 3. (e) PPI network of module 4. PPI: protein-protein interaction. Red represents upregulated genes;
blue represents downregulated genes.

Table 3: The enriched genes list of top 4 key modules.

Modules Nodes Edges Genes

Module 1 49 1078

MCM4, KIF4A, DLGAP5, SPAG5, PTTG1, MELK, RACGAP1, KIF20A, TROAP, KIAA0101
DTL, CENPF, ASPM, FANCI, CENPM, CDKN3, PRC1, CENPA, CDK1, AURKA, KIF2C FAM64A,
CDCA8, CDCA3, CDC20, BUB1, NUSAP1, TPX2, CDC6, BUB1B, CCNA2 FOXM1, NEK2, CKS2,
CDC25C, CCNB1, PBK, ASF1B, MKI67, CCNB2, TOP2A, KIF14 BIRC5, NCAPG, NCAPH, KIF15,

RRM2, UBE2C, CENPE

Module 2 9 36 COL11A1, P4HA1, COL4A6, PLOD2, PLOD3, COL4A3, COL14A1, COL5A2, COL1A2

Module 3 8 28 MYLK, MYL9, TPM1, LMOD1, ACTG2, ACTA2, TPM2, MYH11

Module 4 7 19 RPL27A, RPS11, EIF3D, RPL3, RPL10L, EEF1A1, RSL24D1
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Figure 5: Continued.
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functional pathways of hub genes, expression-based GSEA
was utilized to map KEGG in the SU2C/PCF Dream Team
database. The top 3 GSEA pathways were selected according
to the normalized enrichment score (NES) ranking [NOM
P < 0:05, false discovery rate ðFDRÞ < 0:05]. The results
showed that high expression of the three hub genes was
mainly related to cell growth and death-related pathways
and replication and repair-related pathways (Figures 7(a)–
7(c)). For cell growth and death-related pathway gene sets,
the cell cycle was enriched in the high expression group of
all three hub genes, and oocyte meiosis was enriched in
the MCM4 and CENPI high expression groups. For replica-
tion and repair-related pathway gene sets, DNA replication
was enriched in the MCM4 high expression group, and
homologous recombination and mismatch repair were
enriched in the high KNTC1 expression group. In addition,
progesterone-mediated oocyte maturation, an endocrine
system-related pathway, was enriched in the high CENPI
expression group. A heatmap of gene sets for the top 3
GSEA pathways of each hub gene is shown in Supplemen-
tary Figure S2. In terms of the above GSEA results, the
enriched pathways of the three hub genes were mainly
involved in cell cycle regulation and cell growth regulation.
We further performed coexpression analysis to identify the
genes most related to the hub genes. Among the top 5 most
related genes for each hub gene, chromosomal instability-

regulated genes (TPX2, NUF2, TOP2A, BRCA1, and BRIP1,
P < 0:001, Spearman r > 0:75) and cell cycle-related genes
(CDK2, UBE2C, and CDCA5, P < 0:001, Spearman r >
0:75) accounted for the largest proportion (Figure 7(d)),
suggesting that the cell cycle transition regulated by chro-
mosomal instability may be a potential mechanism affecting
CRPC progression.

3.7. The Hub Genes Govern the Cell Cycle in CRPC and
Promote Cell Proliferation. To further confirm the hub genes
validated in the TCGA and SU2C/PCF Dream Team data-
bases and clarify their biological functions in CRPC, we
investigated hub gene expression levels in four PCa cell lines,
representing ADPC (LNCaP) and CRPC (PC3, DU145, and
22RV1). As expected, the expression levels of the three hub
genes were significantly increased in CRPC cells compared
to ADPC cells (Figure 8(a)). CCK-8 assays were used to esti-
mate hub gene effects on CRPC cell proliferation, and the
results revealed that inhibition of hub genes suppressed
CRPC cell growth (Figures 8(b) and 8(c)). Based on the
GSEA results, the three hub genes may play vital roles in
controlling the cell cycle. Thus, flow cytometry was carried
out to analyze the changes in cell cycle distribution after
the expression of the hub genes was suppressed. The results
suggested that MCM4 silencing led to CRPC cell arrest in G1
phase, while CENPI and KNTC1 silencing caused CRPC
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Figure 5: Validation of hub genes in TCGA and SU2C/PCF Dream Team dataset. (a) MCM4, CENPI, and KNTC1 expression variation
between ADPC and CRPC. (b) ROC curve analysis of the nine potential hub genes shown with AUC values. (c) ROC curve to assess
sensitivity and specificity of MCM4, CENPI, and KNTC1 for diagnosing CRPC. (d) Kaplan-Meier survival analysis of the nine potential
hub genes in CRPC shown with median survival ratios. (e) Kaplan-Meier curve indicates that higher expression of MCM4, CENPI, and
KNTC1 was correlated with poor survival of CPRC patients. (f) Expression level correlation analysis among the potential hub genes. P
values were obtained by the Mann–Whitney test, Log-rank test, and Spearman correlation analysis. All data are represented by mean ±
SD.
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cells to arrest in G2 phase (Figure 8(d)), confirming the vital
roles of hub genes in regulating cell cycle transition in CRPC.
In addition, MCM4/6/7 helicase inhibitor heliquinomycin
shows a similar effect with MCM4 siRNAs in hindering
CRPC cell growth (Supplementary Figure S3). Regrettably,
no inhibitors of CENPI and KNTC1 have been developed
on the market at present. Overall, we provide evidence that
the three hub genes screened out by our comprehensive bio-
informatics analysis are expressed at a higher level in CRPC
than in ADPC and may play critical roles in regulating the
cell cycle to influence CRPC progression.

4. Discussion

The conversion of ADPC to CRPC remains a rigorous chal-
lenge for prostate cancer treatment [2]. Therefore, explora-
tion of hub genes involved in CRPC progression is of
profound significance in providing new insights into CRPC
therapeutic strategies. At present, although numerous indi-
vidual studies have used gene expression arrays and RNA-

seq to discover biomarkers and therapeutic targets for CRPC
[28, 29], considering differences in xenograft-derived tumor
tissues, sample sizes, and technology platforms, the results
among different studies are always inconsistent [9–11]. In
this study, to overcome the above shortcomings, we only
selected GEO expression profiles derived from patient tumor
tissue (including CRPC and ADPC) and then applied the
RRA method to integrate different expression profiles,
searching for robust DEGs among different studies. Eventu-
ally, we screened 261 upregulated and 266 downregulated
robust DEGs.

Among the top 20 significantly upregulated and down-
regulated robust DEGs, several genes have been reported to
participate in CRPC progression. For example, in CRPC,
the AR coactivators SRC1, SRC3, p300, and MED1 bind to
the UBE2C enhancer, resulting in overexpression and acti-
vation of UBE2C, thereby inactivating the M-phase check-
point, governing the cell cycle, and promoting CRPC cell
proliferation [30, 31]. FOXM1, another top 20 significantly
upregulated robust DEG, is considered a master regulator
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Figure 6: Identification of the association between hub gene and CRPC clinical characteristics. (a) Association of MCM4, CENPI, and
KNTC1 expression levels with Gleason scores in CRPC samples. (b) Association of MCM4, CENPI, and KNTC1 expression levels with
PSA levels in CRPC patients. (c) Association of MCM4, CENPI, and KNTC1 expression levels with NEPC scores in CRPC patients. P
values were obtained by Spearman correlation analysis. All data are represented by mean ± SD.
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Figure 7: Continued.
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of enzalutamide-resistant (ENZR) CRPC, and targeting
FOXM1 reduces cell growth and stemness in ENZR CRPC
in vitro and in vivo [32]. In addition, among the top 20
significantly downregulated robust DEGs, DPP4 was identi-
fied as an AR-stimulated tumor suppressor gene that is
downregulated in the progression of CRPC transformation,
leading to CRPC cell growth [33]. Given the above published
research, the reliability of robust DEGs screened by the RRA
method was confirmed, and several new insights were
provided for us to investigate the potential mechanism of
CRPC.

To deeply understand the functions of robust DEGs in
CRPC, GO and KEGG analyses were performed using the
DAVID database. Among the upregulated robust DEGs,
several GO terms, such as cell division, protein binding,
and ATP binding, were mainly enriched and confirmed to
be involved in the progression of CRPC [34–36]. Further-
more, KEGG enrichment of the upregulated DEGs was
mainly distributed in the cell cycle, pathway in cancer and
PI3K-Akt signaling pathway. To the best of our knowledge,
most of the genes that were identified as robust DEGs are
widely involved in cell cycle governance in CRPC cells
[37–39]. The PI3K-Akt signaling pathway is a key oncogenic
pathway and plays a pivotal role in cancer progression, drug
resistance, and treatment in various cancer types [40, 41],
and its constitutive activation due to loss of PTEN in most
advanced prostate cancer cases contributes to resistance to
androgen deprivation therapy [42, 43]. Therefore, targeting
PI3K-Akt is considered a promising approach for the treat-
ment of CRPC [44, 45]. Unsurprisingly, Marques and col-
leagues revealed that using PI3K-Akt inhibitors combined

with androgen deprivation improves the treatment efficacy
in prostate cancer [46]. Among the downregulated robust
DEGs, positive/negative regulation of transcription from the
RNA polymerase II promoter, extracellular exosome, and
sequence-specific DNA binding were the main enrichment
GO terms. Interestingly, it has been reported that exosomes
play a promotive role in mediating multidrug resistance in
most cancer types, including the induction of CRPC neuroen-
docrine differentiation by delivering adipocyte differentiation-
related proteins [47, 48]. KEGG enrichment analysis showed
that downregulated DEGs were concentrated in pathways in
cancer, HTLV-1 infection, and focal adhesions. Notably, focal
adhesion kinase phosphorylation mediates docetaxel resis-
tance in CRPC [49]. Given the robust DEG functional enrich-
ment results, there are enough reasons to believe that these
DEGs may be closely related to CRPC progression and drug
resistance.

The robust DEGs were used to construct a PPI network,
and key modules were identified with the MCODE plug-in
of Cytoscape software. Interestingly, pathway enrichment
analysis of the key modules revealed that robust DEGs in
the significant module were mostly enriched in the cell cycle,
which is consistent with the KEGG pathway enrichment
results for upregulated robust DEGs. The maximal clique
centrality algorithm (MCC) was employed to screen hub
genes in the whole PPI network. According to the MCC
value, sixty-four genes were screened out, and we selected
nine genes rarely reported in PCa for further validation
(NCAPG2, MCM4, KIF18B, CENPM, KNTC1, CENPI,
GTSE1, ERCC6L, and FAM64A). Through a series of valida-
tions of expression variation, ROC curve analyses, and K-M
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Figure 7: Gene set enrichment analysis (GSEA) of KEGG pathway gene sets in hub genes high-expression versus low-high-expression
samples from SU2C/PCF Dream Team dataset. (a–c) Top 3 gene sets (according to GSEA normalized enrichment score) enriched in the
high-expression group of each hub gene. (a) MCM4; (b) CENPI; (c) KNTC1. NOM P value and FDR are shown in each plot. (d) The
top 5 most related genes of each hub gene. P values were obtained by Spearman or Pearson correlation analysis.
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Figure 8: Continued.
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plots in TCGA and the SU2C/PCF Dream Team database,
we identified three hub genes, namely, MCM4, CEPNI,
and KNTC1, which are of high diagnostic and prognostic
value for CRPC. Unexpectedly, the three genes have no
significant correlation with serum PSA in CRPC. However,
the expression levels of the three hub genes were found to
be positively correlated with NEPC scores, which represent
the degree of CRPC-Adeno transformation into CRPC-NE
(a more aggressive CRPC variant) [50]. Some reports have
emphasized that CRPC-NE does not secrete PSA, manifests
as low PSA progression, and is characterized by unrespon-
siveness to hormone therapy [51–53], supporting the above
arguments. Meanwhile, we evaluated the relationship
between NEPC scores and Gleason scores, and the results
revealed that no significant correlation existed between the
two clinical features in CRPC (Spearman r = 0:1090, P =
0:0799, Supplementary Figure S1D), although the expression
of the three hub genes showed a certain correlation with
the Gleason score. Coincidentally, Krauss and colleagues
emphasized that no significant difference in neuroendocrine
differentiation exist between patients with different Gleason
scores [54]. In addition, the three hub genes were also verified
in ADPC and CRPC at the cellular level. These conclusions
provide evidence that the three hub genes could serve as

potential diagnostic and prognostic biomarkers of CRPC
and strengthen the argument that the three hub genes may
play vital roles in CRPC progression.

Chromosomal instability (CIN), also known as genomic
instability, is a hallmark of human cancer. It is associated
with metastasis, therapeutic resistance, and poor prognosis
[55]. It has been reported that MCM4 and CENPI are
involved in mediating chromosomal stability to influence
the cell cycle and that KNTC1 knockdown suppresses cell
viability and induces apoptosis in esophageal squamous cell
carcinoma [56–58]. In coexpression analysis, MCM4 was
significantly associated with TPX2, which is a microtubule-
associated protein that can activate the cell cycle kinase
Aurora A and regulate the mitotic spindle, affecting chromo-
somal stability [59]. In addition, MCM4 was markedly
related to cell cycle-regulating genes, such as CDK2, UBE2C,
and CDCA2 [30, 60, 61]. NUF2, a component of the kineto-
chore NDC80 complex, plays an integral role in regulating
the binding of the centromere and spindle microtubules to
achieve the correct separation of chromosomes. Due to the
irreversibility of separation, any error can cause cell death
or chromosomal instability [62, 63]. It is worth noting that
the NUF2 expression level was positively correlated with
the expression levels of CENPI and KNTC1. BRCA1 is a
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Figure 8: Hub genes are upregulated in the CRPC cell line and promote cell proliferation through governing cell cycle. (a) Protein
expression levels of hub genes in PCa cell line. (b) MCM4, CENPI, and KNTC1 protein levels in indicated cells transfected with target
siRNAs. (c) CCK-8 assay evaluates cell viability of CRPC cells after transfection with target siRNAs. (d) Cell cycle distribution analysis of
CRPC cells after transfection with target siRNAs using flow cytometry. P values were obtained by Student’s t-test. Bars represent the
means ± SD of three replicates. ∗P ≤ 0:05, ∗∗P ≤ 0:01, and ∗∗∗P ≤ 0:001.
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major homologous recombination-mediated repair (HRR)
support protein that can work in conjunction with certain
chaperone proteins (including RAD51, CTIP, and BRIP1),
and it promotes the proper HRR process to regulate the sta-
bility of chromosomes [64]. Its expression level also showed
a clear correlation with the expression level of KNTC1.
GSEA results indicated that variations in the expression of
the three hub genes may influence cell growth and death-
related pathways and replication and repair-related path-
ways, such as the cell cycle, oocyte meiosis, homologous
recombination, DNA replication, progesterone-mediated
oocyte maturation, and mismatch repair. In vitro experi-
mental results support the thesis that the three hub genes
are involved in governing the cell cycle and promoting
CRPC cell proliferation. Combining bioinformatics analysis
and in vitro experiments, the three hub genes may promote
CRPC progression by affecting chromosomal instability and
could be potential therapeutic targets.

Overall, based on retrospective analysis of available pub-
lic databases, this study provides a new understanding of
potential hub genes involved in CRPC progression. The
three hub genes identified accurately distinguished CRPC
patients from ADPC patients, and their high expression
was found to be correlated with poor prognosis. Moreover,
the three hub genes have important biological functions
and clinical value in CRPC. Nevertheless, our study still
has some limitations. On the one hand, our model is based
on retrospective analysis and needs to be validated by pri-
mary data from prospective studies. On the other hand, this
study is mainly based on bioinformatics analysis, but the
functional mechanisms and interactions of genes are com-
plex, and more in vitro and in vivo experiments are needed
for verification and evaluation. Moreover, although the three
hub genes showed excellent diagnostic and prognostic value
in available public databases, this result is based on bioinfor-
matics predictions and requires further validation in pro-
spective cohorts.

5. Conclusion

Our research imaginatively integrated different datasets and
a series of bioinformatics tools to identify potential hub
genes. We finally screened three hub genes (MCM4, CENPI,
and KNTC1) that showed high diagnostic and prognostic
value in CRPC. Given that most reported CRPC biomarkers
are associated with genomic aberrations, the biomarkers
identified in this study enrich the types of biomarkers asso-
ciated with transcriptome expression changes. Furthermore,
the prognostic value provided by the three hub genes is
exactly what the existing biomarkers lack. In addition, we
revealed the underlying biological functions and regulatory
networks of the three hub genes in CRPC, which contributes
to a deeper understanding of the molecular mechanisms
involved in CRPC progression. In total, the three hub genes
identified in this study could serve as candidate diagnostic
and prognostic biomarkers of CRPC and may provide
potential preventive and therapeutic targets for CRPC. How-
ever, further efforts should be made to fully reveal the poten-
tial mechanisms of hub genes involved in CRPC progression

and to validate their feasibility as diagnostic and/or prognos-
tic markers in clinical practice.
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Figure S1: validation of the other six potential hub genes in
TCGA and SU2C/PCF Dream Team dataset. (A) FAM64A,
CENPM, NCAPG2, GSTE1, KIF18B, and ERCC6L expres-
sion differences between ADPC and CRPC. (B) ROC curves
of FAM64A, CENPM, NCAPG2, GSTE1, KIF18B, and
ERCC6L for diagnosing CRPC. (C) Kaplan-Meier survival
analysis of FAM64A, CENPM, NCAPG2, GSTE1, KIF18B,
and ERCC6L in CRPC. (D) The correlation analysis between
NEPC score and Gleason score. P values were obtained by
the Mann–Whitney test, log-rank test, and Pearson correla-
tion analysis. Figure S2: the heatmap of gene sets for the top3
GSEA pathway of three hub genes. (A) The heatmap of gene
sets for the top3 GSEA pathway of MCM4. (B) The heatmap
of gene sets for the top3 GSEA pathway of CENPI. (C) The
heatmap of gene sets for the top3 GSEA pathway of KNTC1.
Figure S3: the MCM4/6/7 helicase inhibitor heliquinomycin
suppresses DU145 cell proliferation by inducing cell cycle
arrest in G1 phase. (A) CCK-8 assay evaluates the cell viabil-
ity of DU145 cells after treatment with heliquinomycin. (B)
Cell cycle distribution analysis of DU145 cells after treat-
ment with heliquinomycin using flow cytometry. P values
were obtained by Student’s t-test. Bars represent the means
± SD of three replicates. ∗P ≤ 0:05, ∗∗P ≤ 0:01, and ∗∗∗P ≤
0:001. Table S1: the most enriched pathways in top4 mod-
ules. Table S2: the list of top sixty-four ranking nodes in
the whole PPI network according to the maximal clique cen-
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