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Introduction
Meiosis is a specialized cell division in which recombination of 

homologous chromosomes is followed by two rounds of chro-

mosome segregation. In early prophase I, Spo11 initiates re-

combination by introducing DNA double-strand breaks (Keeney 

et al., 1997). An elaborate structure, the synaptonemal complex, 

is also formed to stabilize pairing of homologues (Page and 

Hawley, 2004). Once recombination has completed and double-

strand breaks have been repaired, the synaptonemal complex 

is disassembled. Later in prophase I, exchange sites are seen 

as chiasmata, which serve to link homologues, ensuring their 

separation to opposite poles at the fi rst meiotic division. As the 

events of chromosome reorganization during prophase I are 

largely meiosis specifi c, molecular mechanisms governing this 

process are likely to go beyond our understanding of mitotic 

cell division.

Upon the completion of recombination in prophase I, all 

meiotic chromosomes cluster together to form a compact spher-

ical structure called the karyosome within the enlarged oocyte 

nucleus in Drosophila melanogaster (King, 1970). This cluster-

ing of meiotic chromosomes in the oocyte nucleus is also ob-

served in humans (Parfenov et al., 1989). Within the karyosome, 

chromosomes are arranged in an organized way. Homologous 

chromosomes are paired at centromeric heterochromatin, but 

their arms are often separated. Futhermore, centromeric hetero-

chro matin of different chromosomes tends to be clustered together 

(Dernburg et al., 1996).

Although very little is known about the molecular mecha-

nism of karyosome formation, a class of mutants (called the 

spindle or karyosome class) has been reported to have defective 

karyosome organization in addition to axis patterning defects in 

oocytes (Morris and Lehmann, 1999). These mutants have been 

shown to activate the meiotic checkpoint pathway, but it remains 

to be understood how activation of the meiotic checkpoint leads 

to defective karyosome structure.

Recent studies have shown that nucleosomal histone 

kinase-1 (NHK-1) is essential for karyosome formation and main-

tenance (Cullen et al., 2005; Ivanovska et al., 2005). NHK-1 was 

originally identifi ed as a kinase that phosphorylates histone 2A 

in vitro (Aihara et al., 2004). NHK-1 is conserved from nema-

todes to humans (Vrk-1 in Caenorhabditis elegans and Vrk1-3 

in mammals), and multiple substrates have been reported for 

the homologous kinases in other organisms (Lopez-Borges 

and Lazo, 2000; Sevilla et al., 2004a,b; Nichols et al., 2006; 

Gorjanacz et al., 2007). Female sterile nhk-1 mutants fail to 

form or maintain the karyosome in the oocyte nucleus (Cullen 

et al., 2005; Ivanovska et al., 2005). Later in female meiosis, 

nhk-1 mutants show the formation of separate metaphase I spin-

dles around each bivalent chromosome (Cullen et al., 2005). 
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This suggests that one function of the karyosome is to facilitate 

the formation of a single spindle by holding meiotic chromosomes 

in close proximity.

In nhk-1 mutant oocytes, the phosphorylation of H2A, 

loading of condensin, and synaptonemal complex disassembly 

are defective (Ivanovska et al., 2005). It was suggested that the 

phosphorylation of H2A promoted a certain pattern of histone 

modifi cations that together play an instructive role in changing 

chromosome architecture and promoting karyosome formation 

in meiosis (Ivanovska et al., 2005; Ivanovska and Orr-Weaver, 

2006). Although this meiotic histone code hypothesis is attrac-

tive, H2A phosphorylation alone may not be responsible for all 

of the multiple functions of NHK-1.

The discovery of NHK-1 has given us a unique opportu-

nity to begin identifying the molecular pathway of karyosome 

formation. In this study, we report the identifi cation of barrier 

to autointegration factor (BAF), a linker between the nuclear 

envelope and chromatin, as a critical substrate of NHK-1 in 

karyosome formation. Our results indicate that BAF phosphory-

lation by NHK-1 breaks this link, allowing formation of the 

karyosome. This study provides the fi rst truly mechanistic insight 

into how this meiosis-specifi c organization of chromatin forms 

in oocytes at the molecular level.

Results and discussion
A reduction of NHK-1 results in 
chromosomes being anchored to the 
nuclear envelope
Upon completion of recombination in prophase I, the oocyte 

nucleus dramatically changes its architecture and organizes meiotic 

chromosomes into a single cluster called the karyosome. The mo-

lec ular mechanism of karyosome formation is not understood. 

Recently, female sterile nhk-1 mutations were identifi ed that lead 

to abnormal morphology of the karyosome (Cullen et al., 2005; 

Ivanovska et al., 2005). To understand the role of NHK-1 in karyo-

some formation, we fi rst performed detailed examination of the 

karyosome abnormality induced by nhk-1 mutations.

We (Cullen et al., 2005) and Ivanovska et al. (2005) have 

previously identifi ed female sterile mutations in the conserved 

kinase NHK-1 that both disrupt karyosome organization. One allele 

(Z3-0437) is a missense mutation that alters a residue within 

the kinase domain (Ivanovska et al., 2005), whereas the other 

(triplet) is a nonsense mutation that truncates the noncatalytic 

domain of NHK-1 (Cullen et al., 2005). As it is not certain how 

these mutations affect the activity or regulation of NHK-1, we 

studied a third female sterile allele (E24) of nhk-1 in which the 

karyosome had not previously been examined. This allele has a 

small insertion in the 5′ untranslated region of NHK-1 (Cullen 

et al., 2005), and hemizygous mutants (nhk-1E24/Df(3R)ro-80b, 

which we refer to as nhk-1E24/Df) contain the full-length NHK-1 

protein, but the amount of the protein is reduced to 15–20% of 

wild-type ovaries.

At wild-type oogenesis stage 2 (pachytene stage), meiotic 

chromosomes occupy the entire region of the oocyte nucleus. 

At later stages (postpachytene stages), all meiotic chromosomes 

are clustered together within the enlarged nucleus to form a 

compact structure called the karyosome. The wild-type karyosome 

usually adopts a spherical shape away from the nuclear envelope 

(Fig. 1). In nhk-1E24/Df, karyosome morphology became gener-

ally more extended. Most strikingly, immunostaining for lamin 

and DNA revealed that chromosomes tended to form extensive 

contact with the nuclear envelope (Fig. 1 A). Quantitative analysis 

confi rmed that the karyosome was less compact and tended to be 

located closer to the nuclear envelope in nhk-1 mutants, although 

the exact defects varied from oocyte to oocyte (Fig. 1 B).

Identifi cation of BAF as an 
NHK-1 substrate
Identifi cation of NHK-1 substrates would be key to understanding 

how the karyosome forms during female meiosis. To identify 

substrates of NHK-1, we fi rst produced full-length NHK-1 in 

Figure 1. Anchorage of meiotic chromosomes to the nuclear envelope in an nhk-1 mutant. Karyosome defects caused by an nhk-1 mutation. (A) Ovaries 
from wild-type and nhk-1E24/Df were immunostained for lamin and DNA. (B) The closest distance between chromosomes and the outline of the nuclear 
envelope was measured. The degree of karyosome compaction is defi ned here as the diameter of the smallest circle able to encompass all chromosomes. 
Bar, 10 μm.
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bacteria as a fusion protein to maltose-binding protein (MBP; 

Fig. 2 A). In addition, inactive NHK-1 (NHK-1K77R) with a mu-

tation in a conserved ATP-binding residue (K77R) was produced. 

Purifi ed MBP–NHK-1 and MBP– NHK-1K77R were tested for 

their activities in an in vitro kinase assay against myelin basic 

protein as a substrate. Myelin basic protein has many phosphory-

latable residues and is commonly used as an artifi cial kinase 

substrate. Autoradiography indicated that myelin basic protein 

was phosphorylated by MBP–NHK-1 but not by MBP–NHK-

1K77R (Fig. 2 B). This demonstrated that bacterially produced 

MBP–NHK-1 kinase is active in vitro.

Next, we used this bacterially produced kinase to search 

for potential substrates in cells. First, extracts from Drosophila 

cultured S2 cells were heat treated to inactivate endogenous 

kinases (Fig. S1; available at http://www.jcb.org/cgi/content/

full/jcb.200706067/DC1; Tavares et al., 1996). Then, this heat-

inactivated extract was added to NHK-1 kinase to assay for poten-

tial substrates in vitro. One band with a mobility equivalent to 6 kD 

showed strong incorporation of phosphates when wild-type 

NHK-1 was used but not inactive NHK-1K77R (Fig. 2 C, left). 

We also found this 6-kD band when we used heat-inactivated 

extract from ovaries (Fig. 2 C, right).

This 6-kD band was also detected in a kinase assay using 

NHK-1 purifi ed from S2 cells. S2 cells were fi rst transfected 

with the NHK-1–GFP gene or received transfection procedures 

without the plasmid (mock transfected). NHK-1–GFP was pulled 

down from cell extracts using a GFP antibody and was used for 

a kinase assay. We found that even without adding exogenous 

substrates, one band of 6 kD was specifi cally phosphorylated in 

a pull-down fraction from NHK-1–GFP-transfected cells but not 

from mock-transfected cells (Fig. 2 D). These results indicated 

that a protein of 6 kD in S2 cells binds to NHK-1 and is a good 

in vitro substrate of NHK-1.

In the course of our study, phosphorylation of BAF by 

Vrk-1 (the NHK-1 orthologue) was reported (Nichols et al., 

2006; Gorjanacz et al., 2007). As BAF is a highly conserved 

Figure 2. NHK-1 phosphorylates BAF. (A) Purifi ed MBP–NHK-1 from bacteria. (B) Phosphorylation of myelin basic protein by MBP–NHK-1, not by inactive 
MBP–NHK-1K77R. (C) Phosphorylation of a 6-kD protein in a heat-inactivated S2 cell and ovary extract by MBP–NHK-1. (D) Specifi c phosphorylation of 
a 6-kD protein by NHK-1–GFP. Cell extracts were made from S2 cells that transiently expressed NHK-1–GFP or had received mock transfection procedures. 
Cell fractions pulled down by a GFP antibody were used in a kinase assay without exogenous substrates. (E) BAF is the substrate of NHK-1 in the S2 cell 
extract. Cell extracts from S2 cells treated with double-stranded RNA for BAF and β-lactamase (control) were used in an NHK-1 kinase assay. (F) NHK-1 phos-
phorylates BAF. BAF and luciferase (Luc) were translated in vitro and used in a kinase assay. The right panel shows equivalent translated products labeled 
with [35S]methionine. Only BAF was specifi cally phosphorylated by MBP–NHK-1. (C, D, and F) The arrowheads point to specifi c phosphorylated proteins. 
(G) S2 cell fractions pulled down with MBP–NHK-1, MBP–NHK-1K77R, or MBP were immunoblotted with a BAF antibody. S2 cell extract (10% equivalent of 
pull-downs) was run in parallel.
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small protein, we thought that Drosophila BAF (Furukawa et al., 

2003) would be a good candidate for the 6-kD protein phos-

phorylated by NHK-1. To test this possibility, we partially de-

pleted BAF from S2 cells by RNAi. The cell extract was heat 

inactivated and used as substrate in an in vitro NHK-1 kinase 

assay. Autoradiography showed that the 6-kD band was greatly 

reduced in BAF-depleted cell extract (Fig. 2 E), indicating that 

the protein phosphorylated by NHK-1 was indeed BAF. For fur-

ther confi rmation, BAF protein was translated in vitro in reticulo-

cyte lysate and used as a substrate in a kinase assay (without heat 

treatment). BAF protein was specifi cally phosphorylated by 

MBP–NHK-1 but not by MBP–NHK-1K77R (Fig. 2 F).

Furthermore, we tested for physical association between 

NHK-1 and BAF. S2 cell extracts were incubated with bacte-

rially produced MBP–NHK-1, MBP–NHK-1K77R, or MBP, 

and MBP fusion proteins were pulled down on amylose resin. 

Immunoblotting indicated that BAF was pulled down by MBP–

NHK-1 and MBP–NHK-1K77R but not by MBP alone (Fig. 2 G). 

This result indicated that BAF is able to physically interact with 

NHK-1 and that the interaction is independent of its kinase activity. 

Altogether, BAF binds to NHK-1 and is a good substrate of 

NHK-1 in vitro.

The noncatalytic domain of NHK-1 is 
critical for its kinase activity
NHK-1 consists of an N-terminal kinase domain and a C-terminal 

noncatalytic region (Fig. 3 A; Aihara et al., 2004). The triplet 
allele of nhk-1 has a nonsense mutation that results in loss of the 

noncatalytic domain and showed a female sterile phenotype with 

karyosome defects (Cullen et al., 2005).

To establish the role of the C-terminal noncatalytic region, 

we made a series of truncations to NHK-1 in bacteria and tested 

them for their kinase activity against myelin basic protein and 

heat-inactivated S2 cell extract (Fig. 3). We found that truncations 

of the noncatalytic domain greatly infl uenced kinase activity. 

Interestingly, kinase activities toward BAF and myelin basic pro-

tein were differently affected by each truncation. In particular, 

∆C1 and ∆C2 showed similar activities against myelin basic pro-

tein, but ∆C1 had much weaker activity toward BAF than ∆C2, 

indicating that the small region (335–422 aa) contains the residues 

specifi cally important for NHK-1 kinase activity toward BAF. 

This region includes the basic-acidic-basic motif (368–408 aa; 

Aihara et al., 2004), the only recognizable feature in the noncata-

lytic region commonly found among the NHK-1 orthologues.

Expression of nonphosphorylatable BAF 
disrupts karyosome formation
BAF is known to physically interact with DNA and inner nuclear 

envelope proteins, including LEM-domain proteins (Furukawa, 

1999; Segura-Totten and Wilson, 2004). Furthermore, biochem-

ical experiments have indicated that the phosphorylation of 

BAF by Vrk-1 (a mammalian NHK-1 homologue) reduces its 

interaction with both DNA and LEM-domain proteins in vitro 

(Nichols et al., 2006). Our working hypothesis is that BAF an-

chors meiotic chromosomes to the nuclear envelope in early fe-

male meiosis and that the phosphorylation of BAF by NHK-1 

disrupts this link and allows chromosomes to form one compact 

cluster (the karyosome) within the enlarged oocyte nucleus (see 

Fig. 5). This hypothesis predicts that an ectopic expression of 

nonphosphorylatable BAF in wild-type oocytes would prevent 

the formation of proper karyosome organization even in the 

presence of endogenous BAF. We chose to investigate the role 

of the phosphorylation in this way.

The three N-terminal serine and threonine residues of mam-

malian BAF have been shown to be phosphorylated in vitro by 

Vrk-1 (Fig. 4 A; Nichols et al., 2006). To test our hypothesis, we 

replaced equivalent residues of Drosophila BAF with alanines 

(BAF-3A) to make a nonphosphorylatable version of BAF 

(Fig. 4 A). To examine the role of the phosphorylation in oocytes, 

the nonphosphorylatable BAF-3A and wild-type BAF were ex-

pressed in oocytes under an upstream activating sequence (UASp) 

controlled by GAL4, whose expression, in turn, was driven in 

oocytes by a maternal α-tubulin promotor. Immunoblots confi rmed 

that both versions of BAF proteins were produced in oocytes.

To test that the mutated residues of BAF are the sites 

phosphorylated by NHK-1, extracts of ovaries expressing wild-

type BAF and BAF-3A were heat inactivated and used in an 

in vitro NHK-1 kinase assay. Oocytes expressing BAF-3A showed 

a greatly reduced phosphorylation of BAF compared with oocytes 

expressing wild-type BAF (Fig. 4 B). This result indicated that 

Figure 3. The noncatalytic domain targets NHK-1 activity toward BAF. 
(A) A summary of NHK-1 truncations (∆1–3). Small white boxes indicate the 
basic-acidic-basic motif commonly found in the C-terminal regions of the 
NHK-1 orthologues. (B) Kinase assays of bacterially produced MBP–NHK-1 
and various truncations against heat-inactivated S2 cell extract or myelin 
basic protein. The numbers indicate the signal intensities relative to those 
of the full-length NHK-1. The arrowheads indicate full-length MBP–NHK-1 
and truncations.
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the mutated residues of BAF include the major sites phosphory-

lated by NHK-1.

We found that the expression of BAF-3A in oocytes led 

to female sterility, whereas the expression of wild-type BAF 

did not. We then examined whether the expression of BAF-3A 

or wild-type BAF affects karyosome morphology. Immuno-

staining showed that overexpression of wild-type BAF did not 

alter karyosome morphology (Fig. 4 C). Meiotic chromosomes 

were clustered into a compact spherical body away from the 

nuclear envelope.

Figure 4. Expression of nonphosphorylatable BAF disrupts karyosome formation. (A) Primary sequences of the N terminus of BAF from humans and Drosophila. 
P indicates the phosphorylation sites of mammalian BAF by Vrk-1. Ser4 is the most prefered site. Three potential phosphorylation sites were mutated to cre-
ate nonphosphorylatable BAF (BAF-3A). (B) BAF-3A is not phosphorylated by NHK-1. Extracts from ovaries expressing wild-type BAF (wtBAF) and BAF-3A 
were heat inactivated and used as a substrate in an MBP–NHK-1 kinase assay. The bottom panel (an immunoblot) shows that comparable amounts of BAF 
are expressed. (C) Expression of nonphosphorylatable BAF (BAF-3A) resulted in karyosome defects. Oocytes expressing wild-type BAF and BAF-3A were 
immunostained for lamin and DNA. (D) The karyosome is less compact and located close to the nuclear envelope in BAF-3A–expressing oocytes. This was 
quantifi ed as in Fig. 1 C. (E) BAF-3A expression but not wild-type BAF induced accumulation of the LEM-domain protein Otefi n to a region of the nuclear 
envelope attached to chromosomes. Bars, 10 μm.
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In contrast, the expression of nonphosphorylatable BAF-3A 

disrupted karyosome morphology (Fig. 4, C and D). Strikingly, 

chromosomes often formed extensive contact with the nuclear 

envelope (Fig. 4, C and D), which closely resembled the pheno-

type seen in nhk-1 mutants. In addition, the karyosome often 

lost spherical morphology and became more extended. We noted 

that this karyosome morphology defect is not completely iden-

tical to the nhk-1 mutant. This may be caused by the presence of 

wild-type BAF or other fully phosphorylated NHK-1 substrates. 

Expression of BAF-3A in a null background and identifi cation 

of additional substrates could provide more information on this 

issue. In conclusion, BAF phosphorylation is critical for the 

detachment of chromosomes from the nuclear envelope and for 

the formation of a proper karyosome.

Expression of nonphosphorylatable BAF 
maintains a link between a LEM-domain 
protein and chromatin
BAF is proposed to link chromatin DNA to LEM-domain–

containing inner nuclear envelope proteins by binding to both 

simultaneously (Shumaker et al., 2001). BAF phosphorylation 

reduces the affi nity of BAF for DNA and LEM-domain pro-

teins in vitro (Nichols et al., 2006). Therefore, we expected 

that LEM-domain proteins would be involved in anchorage of 

chromosomes to the nuclear envelope induced by nonphosphory-

latable BAF-3A.

To test this possibility, we determined the localization of a 

Drosophila LEM-domain protein, Otefi n, in oocytes that ex-

press wild-type BAF or BAF-3A. In oocytes expressing wild-

type BAF, Otefi n was localized to the nuclear envelope uniformly 

as in wild type. In oocytes expressing nonphosphorylatable 

BAF-3A, Otefi n was often accumulated in a region of the 

nuclear envelope that has close contact with meiotic chromo-

somes (Fig. 4 E). These results confi rmed the involvement of 

the LEM-domain protein in the link between chromosomes and 

the nuclear envelope.

Phosphorylation of BAF by NHK-1 allows 
karyosome formation
This study, together with previous studies (Furukawa, 1999; 

Shumaker et al., 2001; Bengtsson and Wilson, 2006; Nichols 

et al., 2006; Gorjanacz et al., 2007), lead us to propose the fol-

lowing model (Fig. 5). During meiotic recombination phase, 

BAF in its unphosphorylated form anchors chromosomes to the 

nuclear envelope by binding to both DNA and LEM-domain 

nuclear envelope proteins in oocytes. Upon the completion of 

recombination, NHK-1 phosphorylates BAF to reduce its affi nities 

for DNA and LEM-domain proteins. This allows the release of 

chromosomes from the nuclear envelope and the formation of 

the karyosome. When NHK-1 activity is reduced or nonphos-

phorylatable BAF is expressed, unphosphorylated BAF keeps 

chromosomes tethered to the nuclear envelope and prevents the 

formation of the karyosome.

Anchoring of chromosomes to the nuclear envelope appears 

to be a common feature during meiotic recombination across 

eukaryotes. Association of clustered telomeres with the nuclear 

envelope during early prophase I is found in many organisms 

(Scherthan, 2007). In fi ssion yeast, this association is required for 

effi cient recombination (Ding et al., 2004). In C. elegans, pairing 

centers are associated with nuclear envelope proteins (Him8 and 

Zim1-3) that are required for pairing and synapses (Phillips et al., 

2005; Phillips and Dernburg, 2006). After the completion of re-

combination in female meiosis, meiotic chromosomes have to be 

detached from the nuclear envelope to form the karyosome, as it 

facilitates the formation of a single spindle, which takes place in 

the absence of centrosomes (Cullen et al., 2005).

Figure 5. BAF phosphorylation by NHK-1 
kinase in karyosome formation. See the last 
section of Results and discussion for details. 
P, phosphorylation.
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Our identifi cation of BAF as an NHK-1 substrate is a 

breakthrough in the molecular understanding of karyosome 

formation. BAF was originally identifi ed as a cellular protein 

associated with the preintegration complex of retroviruses 

(Lee and Craigie, 1998) and was later shown to bind to DNA and 

multiple proteins (Segura-Totten and Wilson, 2004). Because of its 

simultaneous interactions with DNA and inner nuclear envelope 

proteins, BAF is proposed to act as a linker between chromatin 

and the nuclear envelope (Shumaker et al., 2001). Consistently, 

BAF has been shown to be required for reassembly of the nuclear 

envelope around chromosomes after mitosis (Segura-Totten et al., 

2002; Gorjanacz et al., 2007). However, it has been an open ques-

tion as to whether BAF has structural roles in chromatin or nuclear 

architecture once the nucleus is formed.

Recent studies (Nichols et al., 2006; Gorjanacz et al., 2007) 

showed that Vrk-1, an NHK-1 orthologue, phosphorylates BAF in 

mammals and nematodes. The cellular function of the phosphory-

l ation was unclear, although it affects the localization of BAF 

and emerin in interphase (Bengtsson and Wilson, 2006; Nichols 

et al., 2006). Vrk-1 and BAF are both essential for nuclear enve-

lope reassembly, but the role of BAF phosphorylation in this pro-

cess was not tested. This study is the fi rst demonstration of a 

cellular role for BAF phosphorylation and of a structural role for 

BAF in organizing the nucleus, which is already formed.

Materials and methods
Drosophila genetics
Standard techniques of fl y manipulation were followed (Ashburner et al., 
2005). All stocks were grown at 25°C in standard cornmeal media except 
in some cases in which females were matured at 18°C. w1118 was used as 
wild type. Details of mutations, chromosome aberrations, and common 
vectors can be found in Lindsley and Zimm (1992) or at Flybase (Drysdale 
et al., 2005). Transgenic fl ies of pUASp-BAF and pUASp-BAF-3A were 
made by Genetic Services and crossed with a maternal Gal4 driver (V2H) 
under the α-tubulin67C promotor.

In vitro kinase assays
Culture of S2 cells, transfection, and RNAi were performed as described 
previously (Brittle and Ohkura, 2005). For a kinase assay, MBP–NHK-1, its 
mutated versions, and MBP were expressed in Escherichia coli (BL21) at 
18°C and purifi ed using amylose beads (GE Healthcare). As substrates, 
we used myelin basic protein (Sigma-Aldrich) and ovary or S2 cell extracts 
lysed in kinase buffer (10 mM Hepes, pH 7.6, 50 mM KCl, and 5 mM 
MgCl2) and inactivated by incubation at 65°C for 20 min. In a typical ki-
nase reaction, substrate and around 1 μg MBP–NHK-1 were mixed with 5 μCi 
γ-[32P]ATP (GE Healthcare) in 20 μl of kinase buffer and incubated at 
room temperature (20°C) for 60 min before the addition of 20 μl of 2× pro-
tein sample buffer. The samples were analyzed by SDS-PAGE, and dried 
gels were exposed to x-ray fi lms with an intensifi er screen or a phosphor 
screen (Molecular Dynamics). For a kinase assay from immunoprecipitated 
NHK-1–GFP fractions, transfected S2 cells were lysed in lysis buffer (150 mM 
NaCl, 20 mM Tris, pH 7.5, 5 mM EGTA, 1 mM DTT, 1 mM PMSF, and 
protease inhibitors [Roche]), incubated with a GFP antibody for 1 h at 4°C 
and further with protein G beads (Invitrogen) for 1 h, and washed in lysis 
buffer and subsequently kinase buffer. BAF and luciferase were translated 
in reticulocyte lysate using a TNT Quick-Coupled Transcription/Translation 
system (Promega) and were directly used for kinase assays.

Molecular and immunological techniques
Standard molecular techniques were used throughout (Harlow and Lane, 
1988; Sambrook et al., 1989). pUASp-BAF was made by inserting BAF 
cDNA into pUASp. pUASp-BAF-3A was made by PCR amplifi cation of 
BAF cDNA using a 5′ primer containing the desired mutations followed 
by insertion into pUASp. A plasmid expressing MBP–NHK-1 was made 
by inserting the NHK-1 coding sequence into pMALc2 (GE Healthcare). 
MBP–NHK-1K77R was created using the QuikChange Site-Directed Muta-

genesis kit (Promega). Truncations of MBP–NHK-1 were made by introducing 
a premature stop codon by site-directed mutagenesis. The P-element plasmid 
expressing NHK-1–GFP was made by inserting the GFP coding region in 
nhk-1 cDNA driven by the nhk-1 promotor. The absence of unwanted muta-
tions in all constructs was confi rmed by DNA sequencing using BigDye 
(Applied Biosystems).

For the pull-down assay, bacterially produced MBP fusion proteins 
were purifi ed on amylose beads and incubated with soluble S2 cell extract 
in lysis buffer. After washing three times in lysis buffer, the beads were ana-
lyzed by SDS-PAGE and immunoblotting. Peroxidase-conjugated antibodies 
(Jackson ImmunoResearch Laboratories) were used as secondary antibodies 
in Western blotting and were detected using an ECL kit (GE Healthcare).

Cytological analysis
Ovaries were immunostained as described previously (Theurkauf et al., 
1992). Secondary antibodies conjugated with Cy3, Cy5, or AlexaFluor488 
(Jackson ImmunoResearch Laboratories or Invitrogen) were used at 1:250–
1:1,000 dilutions. The primary antibodies used in this study include those 
against lamin (1:250; gift from P. Fisher, State University of New York, Stony 
Brook, NY; Stuurman et al., 1995), Otefi n (1:10; gift from Y. Gruenbaum, 
Hebrew University, Jerusalem, Israel; Ashery-Padan et al., 1997), BAF 
(1:1,000; gift from P. Fisher; Furukawa et al., 2003), and GFP (3E6; 1:100; 
Invitrogen). DNA was counterstained with 0.4 μg/ml DAPI (Sigma-Aldrich) 
and 2 μg/ml propidium iodide (Sigma-Aldrich). Immunostained ovaries 
were mounted in 85% glycerol/2.5% propyl gallate. A series of 1-μm opti-
cal sections were taken using a plan-Apochromat 63× 1.4 NA lens (Carl 
Zeiss, Inc.) attached to a microscope (Axiovert 200M; Carl Zeiss, Inc.) with 
a confocal scan head (LSM510meta; Carl Zeiss, Inc.). A single midsection 
of the oocyte nucleus has been presented. All digital images were imported 
to Photoshop (Adobe) and adjusted for brightness and contrast uniformly 
across entire fi elds.

Online supplemental material
Fig. S1 contains additional information on heat inactivation of endogenous 
kinases in S2 cell extract. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200706067/DC1.
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