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Abstract: Violacein has attracted increasing attention due to its various biological activities, such
as antibacterial, antifungal, antioxidative, and antitumor effects. To improve violacein production,
formic acid (FA) was added to a culture medium, which resulted in a 20% increase (1.02 g/L)
compared to the no-FA-addition group (0.85 g/L). The use of a stirred-tank bioreactor system also
improved violacein production (by 0.56 g/L). A quorum-sensing (QS)-related gene (cviI) was induced
by FA treatment, which revealed that the mechanism induced by FA utilized regulation of the cviI
gene to induce the vio gene cluster for violacein production. To analyze the antioxidative properties
of the violacein produced, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2′-azinobis-(3-
ethylbenzthiazoline-6-sulphonic acid) (ABTS) scavenging tests were conducted, and results reveal
that the values of the 50% inhibitory concentration (IC50) of DPPH and ABTS were 0.286 and
0.182 g/L, respectively. Violacein also showed strong inhibitory activity against Gram-positive
bacteria (Staphylococcus aureus and Bacillus subtilis). In summary, this study found that the addition
of formic acid can promote QS of Chromobacterium violaceum, thereby promoting the synthesis of
violacein. Subsequently, the promoting effect was also evaluated in a bioreactor system. These
findings will be helpful in establishing an economically beneficial production model for violacein in
future work.

Keywords: Chromobacterium violaceum; violacein; quorum sensing; formic acid; microbial pigment

1. Introduction

Violacein is a purple pigment produced by microorganisms, such as species of the
genera Chromobacter, Pseudoalteromonas, Janthinobacterium, and Duganella [1], which are
often found in plants, soils, rivers, and marine environments [2]. Chromobacterium violaceum
(C. violaceum), a Gram-negative and facultative aerobic bacterium [3], has been extensively
studied due to its high violacein production capacity [4]. Violacein presents various
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biological functions, such antibacterial [5], antifungal [6], antiviral [7], antiparasitic [8], and
anticancer properties [9], which can be used in medical applications. On the other hand,
microbially produced violacein is more in line with modern environmental protection
concepts than chemically synthesized dyes are. Therefore, violacein has also garnered the
attention of the textile industry [10].

In spite of violacein presenting high economic value, the low violacein yield of
C. violaceum is considered to be the main limitation of its application [11]. Different strate-
gies have been applied to increase its production. In the violacein biosynthesis pathway,
tryptophan is an important substrate that can be added to media to significantly increase
violacein production [12]. Some agricultural wastes, such as soybean meal [13], sugar-
cane bagasse [12], and pineapple waste [14], were also applied as alternative nutrients to
decrease violacein production costs. In studies of violacein-producing strains, Corynebac-
terium glutamicum [15], Yarrowia lipolytica [16], and Escherichia coli [17] were designed as
genetically modified strains using biosynthesis engineering technology. The violacein
synthesis gene cluster, vioABCDE, was transformed into the hosts for violacein production.
In addition, a bioreactor was used to scale up violacein production [17]. However, violacein
is a water-insoluble compound, and accumulates inside bacteria [18], which may inhibit its
production. This endo-secretion property makes it difficult to develop an immobilization
system for continuous fermentation. Thus, improving the efficiency of present bioreactor
systems has become an important issue for the industrial-scale production of violacein.

Quorum sensing (QS) is a well-known signaling mechanism in microorganisms for
controlling various phenotypes, such as biofilm formation, swarming motility, H2O2 resis-
tance, and cell aggregation [19]. In the violacein biosynthesis pathway of C. violaceum, QS
also plays a crucial role. In the C. violaceum QS regulation system, homologous systems such
as CviI/R and LuxI/R can be activated by utilizing the autoinducer, N-acyl-L-homoserine
lactones (AHLs) [20], to induce violacein production. The released autoinducer accumulates
in the environment outside cells, which depends on an increased cell density and further
induces the QS system when the concentration of the autoinducer reaches a threshold.
Therefore, regulation of a QS system using the addition of an autoinducer can be a means
of improving violacein production [21]. However, autoinducers (e.g., AHLs) are expensive;
hence, finding alternative QS inducers has become a potential direction for increasing
violacein production.

Formic acid (FA) is a commonly used organic acid and has been applied in the agri-
cultural, textile, and pharmaceutical industries for many years [22]. A previous study
indicated that hydrolysis of agriculture wastes, such as sugarcane bagasse, can be used to
obtain a carbon source from cellulose for fermentation applications. Nevertheless, some
toxic compounds such as FA may also be released from the hydrolysis process [23]. During
a pretest of applying agriculture waste hydrolysates to bacterial cellulose (BC) produc-
tion [24,25], we noted that BC production improved with a specific concentration of FA.
BC is considered to function as a kind of biofilm that can provide protection for bacteria
against harm from heat, ultraviolet (UV) light, and antibiotics [26]. Consequently, this
phenomenon provided a hypothesis that FA’s role could possibly be correlated with regu-
lating a QS system. This study investigated the effect of adding FA to increase violacein
production and examined the QS mechanisms involved. Furthermore, FA applied for
violacein yield enhancement in a bioreactor system was also evaluated for developing an
industrial violacein production process.

2. Materials and Methods
2.1. Materials

L-Tryptophan was purchased from Great Amino Trading (Kaohsiung, Taiwan). Beef
extract was purchased from Biolife (Milan, Italy). Peptone was purchased from Bioshop
(Burlington, ON, Canada). Tryptic soy broth (TSB) was purchased from Becton Dickinson
(Franklin Lakes, NJ, USA). FA was purchased from Honeywell Fluka (Steinheim, Ger-
many). Dimethyl sulfoxide (DMSO), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic
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acid (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were purchased from Merck
(Darmstadt, Germany). Trolox was purchased from Sigma-Aldrich (St. Louis, MO,
USA). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin–
streptomycin, and cell counting kit-8 (CCK-8) were purchased from GE Healthcare Life
Science (Logan, UT, USA).

2.2. Microorganisms and Maintenance

C. violaceum ATCC 12472, E. coli BCRC 10239, Salmonella enterica serovar typhimurium
(S. typhimurium) BCRC 10747, Staphylococcus aureus (S. aureus) ATCC 6538P, and Bacillus
subtilis (B. subtilis) BCRC 17435 were purchased from the Bioresource Collection and
Research Center (BCRC; Hsinchu City, Taiwan). These bacteria were kept frozen in double-
distilled (dd)H2O containing 20% (v/v) glycerol at−80 ◦C. C. violaceum was grown routinely
in nutrient broth (NB) containing 5 g/L peptone and 3 g/L beef extract at 25 ◦C with shaking
at 180 rpm in the dark.

C. violaceum was inoculated on nutrient agar and incubated at 25 ◦C. Colonies of
C. violaceum were inoculated into 250 mL flasks containing 10 mL of sterilized NB and
incubated at 25 ◦C and 180 rpm until the absorbance reached an approximate OD600 value
of 1.1. Subsequently, a final volume of 1% inoculum of bacterial culture was transferred
to 250 mL flasks containing 10 mL of sterilized NB with different concentrations of FA
(40, 80, and 160 ppm) and L-tryptophan (0.075, 0.15, 0.3, 0.6, and 1.2 mg/mL) and incubated
at 25 ◦C and 180 rpm for 48 h. After incubation, the cell number and the amount of crude
violacein were determined.

The biomass of C. violaceum was determined according to a previously reported
method [27] with slight modifications. Briefly, 1 mL of bacterial culture was transferred
to a 1.5 mL Eppendorf tube and centrifuged at 104× g for 10 min. The supernatant was
discarded, and 1 mL of DMSO was added to the pellet. After vortexing for 10 min with a
vortex mixer, the DMSO was removed, and the pellet was resuspended in 1 mL of ddH2O
to measure the absorbance at 600 nm using a UV/visible (vis) spectrometer (Mecasys,
Daejeon, Korea). The biomass of C. violaceum was calculated via linear regression. The
correlation between the OD600 value and cell number was determined by a plating method
to calculate the colony-forming units (CFU) of C. violaceum.

2.3. Violacein Production and Its Measurement

Violacein was extracted according to a previously reported method [28] with slight
modifications. Briefly, 1 mL of the bacterial culture was transferred to a 1.5 mL Eppendorf
tube and centrifuged at 104× g for 10 min. The resulting supernatant was discarded, and
1 mL of DMSO was added to the pellet. After vortexing, cells were disrupted by ultrasoni-
cation for 15 min. The DMSO extract was then separated from cells by centrifugation at
104× g for 7 min. The amount of crude violacein in the supernatant was determined by
measuring the absorbance at 575 nm with a UV/vis spectrometer (Mecasys). The concen-
tration of violacein was calculated using the Beer–Lambert Law, and the molar extinction
coefficient of violacein used in this experiment was 10.955 L/g/cm [29]. The concentration
of violacein was calculated using the following Equation:

A = εbc;

where A is the absorbance of the sample at 575 nm, ε is the molar extinction coefficient of
violacein, b is the length of the light path, and c is the concentration of the sample.

2.4. Production of Violacein in the Stirred-Tank Bioreactor

Violacein was produced in a 3.5 L stirred-tank bioreactor (Firstek, New Taipei City,
Taiwan) in batch mode. A final volume of 1% inoculum of C. violaceum was transferred to
250 mL flasks containing 50 mL of sterilized NB and incubated at 25 ◦C and 180 rpm for
18 h in the dark. Subsequently, 200 mL of bacterial culture was transferred to the bioreactor
containing 1800 mL of sterilized NB with 0.3 mg/mL L-tryptophan and 160 µg/mL FA and
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incubated for 48 h under the following conditions: 25 ± 3 ◦C, 180 rpm, an aeration rate of
1 vvm, and pH 7 ± 0.3. NB with only 0.3 mg/mL of L-tryptophan was used as a control.
The pH value was maintained at 7 ± 0.3 with 1 N HCl. During fermentation, the glass
tank of bioreactor was covered with aluminum foil sheets to prevent light from influencing
violacein production.

2.5. Relative Expression of QS Genes Using a Quantitative Polymerase Chain Reaction (qPCR)

The QS system for C. violaceum was regulated by AHL and the C. violaceum QS receptor
(CviR) receptor. To analyze QS in C. violaceum, a qPCR was used to investigate the gene
expression of cviI coding for AHL synthase and cviR coding for the CviR.

Total RNA was extracted from C. violaceum using TRIzolTM (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol, and then messenger (m)RNA was
reverse-transcribed into complementary (c)DNA using RevertAid First Strand cDNA Syn-
thesis (Thermo Scientific, Waltham, MA, USA). Then, 18 ng of cDNA was used to ana-
lyze gene expression using SYBR Green Real-Time PCR (Geneone, Seoul, Korea). qPCR
conditions were as follows: 2 min at 50 ◦C, 10 min at 95 ◦C, and 40 cycles of 15 s at
95 ◦C and 60 s at 60 ◦C. The qPCR was performed using designed forward (F) and re-
verse (R) primers (rpoB-F, 5′-GCCCACACTTCCATCTCACCGAAAC-3′ and rpoB-R, 5′-
TCCAAGACCCAGATGACCCTGTTCG-3′; vioA-F, 5′-CCTTGCCATGCTCTTTCAGC-3′

and vioA-R, 5′-CGAGGTGTATCCGTTCACCC -3′; cviI-F, 5′-GAAACCGTCCTCGCATAAGG-
3′ and cviI-R, 5′-CTGAAACTAAGCTGCGACAGTTG-3′; and cviR-F, 5′-GGTATTGGGACG
CCTGAACA-3′ and cviR-R, 5′-CTGGGAGTACTGGTTGAGCC-3′. The abundance was
normalized to the rpoB housekeeping gene [30].

2.6. Antimicrobial Activity

To evaluate the antimicrobial activity, we investigated violacein’s actions against
bacterial pathogens using a disc diffusion assay and minimum inhibitory concentration
(MIC) assay. The bacterial pathogens we used in this experiment included E. coli, S. aureus,
B. subtilis, and S. typhimurium. E coli, S. aureus, and B. subtilis were cultured in NB, while
S. typhimurium was cultured in TSB.

A disc diffusion assay was used to examine the antibacterial effects of violacein as
described by Sewify et al. [31] but with the following modifications. Briefly, 0.1 mL of
overnight bacterial culture was inoculated on agar and spread over the surface of the agar
using a sterile L-shaped spreader. Using a sterile cork-borer 5 mm in diameter, three holes
per plate were made in the inoculated agar. Different concentrations of violacein at 40 µL,
each diluted with DMSO were added to each well. The plates were then incubated at 37 ◦C
for 24 h. After incubation, the diameters of the clear inhibition zones were measured to
evaluate the antimicrobial activity. The same solvents utilized to dissolve violacein were
used as negative controls.

2.7. Antioxidant Activity
2.7.1. DPPH Radical Scavenging Activity

The scavenging capability of violacein against DPPH radicals was evaluated using a
previously reported method [32] with slight modifications. Briefly, 20 µL of a sample was
added to 180 µL of a 100 µM DPPH methanol solution in a 96-well plate. The absorbance at
517 nm was measured after 30 min at room temperature in the dark. In this assay, the same
solvents utilized to dissolve violacein served as a control. The DPPH radical scavenging
activity was calculated as follows:

DPPH radical scavenging activity (%) =

{
[Ac− (As−Ab)]

Ac

}
∗ 100;

where Ac is the absorbance of the DPPH methanol solution without a sample, As is the
absorbance of the DPPH methanol solution and sample, and Ab is the absorbance of the
sample without the DPPH methanol solution. The antioxidant activity of the sample was
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expressed as the concentration of a sample that caused 50% inhibition (IC50) of DPPH
radicals, which was calculated via linear regression.

2.7.2. ABTS Radical Scavenging Activity

The scavenging capability of violacein against ABTS+ radicals was evaluated using a
previously reported method [32] with slight modifications. An ABTS+ stock solution was
prepared by mixing equal volumes of 2.45 mM potassium persulfate in an aqueous solution
and 7 mM ABTS in an aqueous solution and then incubating the mixture for 12 h in the
dark to generate ABTS+ radicals. Then, the ABTS+ stock solution was diluted with ddH2O
to an absorbance of 0.7 (±0.02) at 734 nm. Briefly, 20 µL of the sample was added to 180 µL
of the ABTS+ solution in a 96-well plate. The absorbance at 734 nm was measured after
6 min at room temperature in the dark. In this assay, the same solvents utilized to dissolve
violacein served as a control, and the sample and controls were examined in triplicate. The
ABTS+ radical scavenging activity was calculated as follows:

ABTS scavenging activity (%) =

{
[Ac− (As−Ab)]

Ac

}
∗ 100;

where Ac is the absorbance of the ABTS+ solution without a sample, As is the absorbance of
the ABTS+ solution and sample, and Ab is the absorbance of a sample without the ABTS+

solution. The antioxidant activity of a sample was expressed as the concentration that
caused 50% inhibition (IC50) of ABTS+ radicals, which was calculated via linear regression.

2.8. Statistical Analysis

Statistical evaluations of all experimental data (variation from basal values) were
performed using an analysis of variance (ANOVA). Post hoc comparisons with the negative
control were performed with Tukey’s test. Statistical analyses were conducted with IBM
SPSS Statistics 19 (IBM, Armonk, NY, USA), and p < 0.05 was considered significant.

3. Results and Discussion
3.1. Impacts of FA and Tryptophan Addition on Violacein Production by C. violaceum

Tryptophan is the substrate of violacein biosynthesis in C. violaceum. To optimize
violacein production, concentrations of tryptophan and FA were evaluated, and results
are shown in Figure 1, which demonstrates that the group with the addition of 0.15 and
0.3 mg/mL tryptophan presented the highest violacein production (0.83 and 0.8 g/L) with
196% and 185% improvements, respectively, after 48 h of culture compared to the control
group. However, the addition of tryptophan at more than 0.3 g/L may have decreased
violacein instead. This may have been due to unbalanced carbon/nitrogen ratios that
disrupted tryptophan metabolism for violacein-producing microorganism growth [32].
The condition of 0.3 mg/mL tryptophan with 48 hr cultivation was used in the formic
acid induction experiments (Figure 1C,D) due to its more stable violacein production. As
to the addition of FA (Figure 1C,D), violacein production increased depending on the
added FA concentration. However, cell death with no violacein production was seen
after the addition of 320 µg/mL FA. Previous studies found that FA may exhibit toxicity
toward microorganisms and can further inhibit the production of metabolic products [23,25].
There are no related studies demonstrating that FA may also play a role as an inducer.
Interestingly, Liu et al. [33] found that the addition of 1/6 of the minimum inhibitory
concentration (MIC) of kanamycin (the MIC of kanamycin in C. violaceum ATCC12472 was
8 µg/mL) induced QS of C. violaceum, resulting in an increase in violacein production. This
finding suggests the possibility of an induction mechanism of FA in violacein production.
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To investigate the effect of the time that FA and tryptophan were added, different time
points were used for biomass growth and violacein production. Figure 2A shows that the
C. violaceum growth was highest in all groups after 24 h of incubation. In the growth phase
of C. violaceum, cell growth rapidly increased after 12 h and entered the mid-log phase after
24 h [34]. Results show no effects on cell growth after the addition of tryptophan and FA at
different time points. However, in the groups with initial tryptophan addition, violacein
production had significantly increased at both 24 and 48 h later. These results suggest that
using tryptophan as a substrate for violacein biosynthesis requires time for its conversion.
The highest yield appeared in the group in which tryptophan and FA were added at 0 h,
which reached 1.02 g/L. Figure 2B also reveals that the addition of FA improved violacein
production (compared to groups 1 to 4 and 5) by 8.2% and 20%, respectively. This suggests
that the effect of FA may begin after its addition, but adding tryptophan at the initial time
point will provide greater induction than the sequential addition after 24 h.

3.2. Improvement in Violacein Production Using FA in a Bioreactor System

To further explore the potential of FA induction in scaling up production, a 3.5 L
stirred-tank bioreactor was used with optimized culture conditions for violacein production.
Figure 3A indicates that cell growth could reach 9 × 107 CFU/mL after 24 h, which was
the same as the flask system. However, cell numbers of C. violaceum had increased to
1.1 × 108 CFU/mL in the bioreactor system by 48 h, which was in contrast to the results of
the flask system. In the flask shaker system, a lack of nutrients and the accumulation of
produced acids and metabolic products may have caused cell death after 48 h. However, in
the reactor system, the culture medium was maintained at pH 7 and continuously provided
with high dissolved oxygen concentrations leading to extended cell growth. This may
explain why the trends of cell growth at 48 h of incubation differed in the two production
systems. As to violacein production, the group with the FA addition exhibited significant
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increases of approximately 0.2 and 0.57 g/L after 24 and 48 h of culture, which were higher
than values of the control group (0.03 and 0.25 g/L). These results show that the efficiency
of violacein production in the bioreactor was lower than that of the flask system (lower
by 50%, 0.56 vs. 1.12 g/L). Miao et al. [35] used a 10 L stirred-tank bioreactor to produce
secondary metabolic products (triptolide, wilforgine, and wilforine) from Tripterygium
wilfordii, and found that their production subsequently decreased to 6.48%, 6.27%, and
4.90% compared to the flask system. The authors mentioned that the initial inoculation
and dissolved oxygen volume were both important for secondary metabolite production
and should be optimized in the bioreactor system. In spite of lower violacein production,
that bioreactor is still a necessary production tool for scaling up production due to its
large volume. Furthermore, the addition of FA can produce a significant improvement in
violacein production in the reactor system (Figure 3B). On the other hand, when improving
the violacein yield by utilizing the addition of FA, there is no need to change the production
system, which means that producers can save the cost of a system redesign.
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3.3. Effects of FA on QS-Related Genes of C. violaceum

The violacein biosynthesis of C. violaceum is related to QS. During the production
process, various gene clusters are involved in the violacein production pathway, including
the luxIR, cviIR, and vioABCDE gene cluster [36]. Therefore, QS-related gene expres-
sions were investigated to clarify the relationship of the FA induction mechanism with
violacein production.

Figure 4 shows that cviI gene expression increased with FA treatment. The function
of CviI is related to the production of the autoinducer, C10-homoserine lactone (C10-HSL).
When C10-HSL is released from bacteria and accumulates beyond the QS threshold, it will
be detected by the violacein production receptor, resulting in violacein production [36].
Furthermore, the vioA gene expresses a rate-limiting step of the violacein synthesis path-
way [37], and it was also enhanced with FA treatment. However, its upstream-regulated
gene, cviR, did not show a difference compared to the control group. These results are
similar to those of a previous study [33] and seem to indicate that FA directly regulates the
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cviI gene to induce the vio gene cluster for violacein production. Proving this assumption
would require further direct evidence.
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3.4. Antimicrobial Properties of the Produced Crude Violacein

The antimicrobial properties of crude violacein against E. coli, S. aureus, B. subtilis,
and S. typhimurium were evaluated. In the inhibition zone test (Table 1), 0.13 mg/mL
crude violacein was found to inhibit S. aureus and B. subtilis (with respective inhibition
zones of 8.8 ± 0.4 and 9.6 ± 0.4 mm), but without antimicrobial activity against E. coli or
S. typhimurium. Wang et al. [38] demonstrated that the ethanol extract of crude violacein
exhibited strong antimicrobial properties against Gram-positive bacteria, such as S. aureus
ACCC 10499, B. subtilis ACCC 10243, and Bacillus megaterium ACCC 01509, but exhibited
no inhibition against Gram-negative bacteria (E. coli ACCC 10034, Flavobacterium oryzae
ACCC 10051, or Xanthomonas campestris ACCC 10491). Because results of the inhibitory
zone test may have been influenced by the culture temperature, the addition of samples, the
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thickness of the culture agar, and the nutrient composition of the agar [39], it was necessary
to use another test to evaluate the antimicrobial ability of the produced violacein. The
MIC test (Table 1) showed that crude violacein exhibited strong inhibitory actions against
S. aureus and B. subtilis with MIC values of <0.01 and 0.03 g/L, respectively. Violacein
exhibited weak inhibition against S. typhimurium and E. coli growth (with MIC values of
0.29 and >1 g/L). These MIC results are similar to results of the inhibition zone and a
previous study [5]. Cox and Wright [40] indicated that the specificity of an antimicrobial
reagent may be due to different membrane structures of Gram-negative and Gram-positive
bacteria. Gram-negative bacteria have one more outer membrane that contains saturated
fatty acids that decrease the membrane fluidity, which prevents antimicrobial reagents from
entering the bacteria.

Table 1. Antimicrobial properties of crude violacein on tested microbes.

Tested Microbes
MIC (g/L) Inhibition Zone (mm)

Ampicillin Crude Violacein Crude Violacein (0.13 g/L)

S. aureus <0.01 <0.01 8.8 ± 0.4
B. subtilis <0.01 0.03 9.6 ± 0.4

S. typhimurium <0.01 0.29 –
E. coli <0.01 >1 –

Values represent the mean of three replicates. MIC, minimum inhibitory concentration.

3.5. Antioxidant Properties of the Produced Crude Violacein

The antioxidant properties of crude violacein were estimated utilizing two kinds of
radical scavenging assays (DPPH and ABTS assays). The DPPH results are shown in
Table 2, and the IC50 of trolox (0.0936 g/L) was lower than that of crude violacein (IC50
of 0.2867 g/L), which suggests that the antioxidant ability of trolox was better than that
of crude violacein. The ABTS assay also showed similar results (IC50 values of trolox
and crude violacein were 0.0646 and 0.1822 g/L, respectively). Cao et al. [41] mentioned
that specific N–H bonds of violacein present lower bond dissociation energy than N–H
bonds of DPPH or ABTS. That is why violacein provides a scavenging ability to remove
these radicals. Although the antioxidative ability of violacein was slightly lower than that
of trolox, it still exhibited strong antioxidant properties. In particular, the violacein we
used was a crude extract, which means that its antioxidant ability could be increased by
purification [42].

Table 2. Antioxidant effect of violacein against DPPH and ABTS radicals.

Sample Conc. of Sample (g/L) Inhibition (%) Conc. of Sample (g/L) Inhibition (%)

DPPH assay ABTS assay

Trolox

0.08 42.37 ± 0.09 0.04 36.09 ± 0.4
0.1 53.99 ± 0.42 0.05 41.23 ± 0.35

0.12 62.84 ± 0.86 0.06 47.67 ± 0.47
0.14 71.06 ± 0.2 0.07 53.14 ± 0.47
0.16 77.04 ± 0.45 0.08 58.66 ± 0.94

0.0936 IC50 0.0646 IC50

Crude violacein

0.1575 34.73 ± 0.6 0.105 34.30 ± 0.23
0.21 42.59± 0.18 0.1313 39.45 ± 0.26

0.2625 47.57 ± 0.18 0.1575 44.55 ± 0.72
0.315 52.92± 0.2 0.1838 50.72 ± 0.91

0.3675 58.71 ± 0.56 0.21 55.61 ± 0.75

0.286 IC50 0.182 IC50

Values represent the mean of three replicates. IC50, 50% inhibitory concentration.
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4. Conclusions

This study evaluated the effect of formic acid on violacein production by C. violaceum.
The violacein production increased by 20% with induction of 160 µg/mL formic acid
and the addition of 0.3 mg/mL tryptophan. These optimal conditions were also applied
to a stirred-tank bioreactor for a 50% increase in the violacein yield. Furthermore, the
relationship of formic acid treatment and quorum sensing in violacein biosynthesis was
clarified. Finally, the produced violacein exhibited great antioxidative and antimicrobial
activities against Gram-positive bacteria. These findings suggest that the addition of formic
acid can serve as a strategy for improving violacein production.
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