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Abstract
Magnetic resonance imaging (MRI) offers excellent soft-tissue contrast enabling
the contouring of targets and organs at risk during gynecological interstitial
brachytherapy procedure.Despite its advantage,one of the main obstacles pre-
venting a transition to an MRI-only workflow is that implanted plastic catheters
are not reliably visualized on MR images. This study aims to evaluate the fea-
sibility of a deep-learning-based algorithm for semiautomatic reconstruction of
interstitial catheters during an MR-only workflow. MR images of 20 gynecologi-
cal patients were used in this study. Note that 360 catheters were reconstructed
using T1- and T2-weighted images by five experienced brachytherapy planners.
The mean of the five reconstructed paths were used for training (257 catheters),
validation (15 catheters), and testing/evaluation (88 catheters). To automati-
cally identify and localize the catheters, a two-dimensional (2D) U-net algorithm
was used to find their approximate location in each image slice. Once local-
ized, thresholding was applied to those regions to find the extrema,as catheters
appear as bright and dark regions in T1- and T2-weighted images, respectively.
The localized dwell positions of the proposed algorithm were compared to the
ground truth reconstruction. Reconstruction time was also evaluated. A total of
34 009 catheter dwell positions were evaluated between the algorithm and all
planners to estimate the reconstruction variability. The average variation was
0.97 ± 0.66 mm. The average reconstruction time for this approach was 11 ±

1 min, compared with 46 ± 10 min for the expert planners. This study suggests
that the proposed deep learning, MR-based framework has potential to replace
the conventional manual catheter reconstruction.The adoption of this approach
in the brachytherapy workflow is expected to improve treatment efficiency while
reducing planning time, resources, and human errors.
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1 INTRODUCTION

The standard of care for locally advanced cervical can-
cer is to administer external beam radiation therapy with
chemotherapy followed by brachytherapy.1–3 Interstitial
high dose rate (HDR) brachytherapy is a crucial form
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of brachytherapy for improving the overall survival while
limiting treatment toxicity in patients with larger tumors
or asymmetric tumor morphology.4–8

The adoption of three-dimensional (3D) imaging in
the interstitial gynecological workflow using magnetic
resonance imaging (MRI) offers unparalleled soft-tissue

J Appl Clin Med Phys. 2022;23:e13494. wileyonlinelibrary.com/journal/acm2 1 of 9
https://doi.org/10.1002/acm2.13494

mailto:aravi@mollisurgical.com
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/acm2
https://doi.org/10.1002/acm2.13494


2 of 9 SHAAER ET AL.

contrast enabling the delineation of targets and organs
at risk (OAR). MRI helps identify patients with unique
morphological features that would benefit from an inter-
stitial implant. Several catheters are implanted through
a brachytherapy template during interstitial gynecolog-
ical brachytherapy to enable optimal conformity to the
cervical disease’s unique morphology. MRI images are
then acquired for treatment planning purposes.9,10 While
the target and OARs can be delineated in MRI, the dark
void appearance of the catheters is a challenge for
human planners to differentiate from air cavities and
other anatomical regions similar in appearance. Com-
puted tomography (CT) is currently used as an adjunct
to MRI during interstitial gynecological brachytherapy
to visualize the catheters. However, the CT/MRI work-
flow is prone to registration uncertainties, longer pro-
cedure times, and additional radiation exposure.11 The
standard approach to planning begins with manually
reconstructing the positions of the catheters on the
images. This manual process is challenging, prone
to human error, and time consuming.11,12 A transi-
tion to MR-only treatment planning is desirable and
would reduce the risks associated with adjunctive CT
imaging.

To date, there have been a number of studies aimed
at automatically localizing and reconstructing plastic
brachytherapy catheters. The use of active MR-tracked
stylets for catheter localization has been reported.13

Hrinivich et al. reconstructed ring-shaped and oval
applicators in MRI images through a model-to-image
registration algorithm.14 Recently, the use of deep learn-
ing for catheter segmentation has been reported dur-
ing brachytherapy procedures in CT,15 MRI,16 and US.14

Jung et al. proposed a deep-learning assisted approach
to reconstruct ring and tandem applicators in gyne-
cological HDR brachytherapy.17 The proposed method
was able to automatically reconstruct the applicator in
approximately 15 s per case. Dai et al. investigated a
deep learning-based approach to automatically recon-
struct multiple catheters in MRI images for prostate HDR
brachytherapy treatment planning.18 Their model was
trained using the manual catheter reconstruction offered
by experienced physicists as a ground truth image along
with the original MRI images. After the network was
trained, MRI images of a new prostate cancer patient
were fed into the model to predict the locations and
shapes of all the catheters. They were able to detect all
catheters from 20 patients receiving HDR brachytherapy
with a catheter tip error of 0.37 ± 1.68 mm. These find-
ings confirmed that deep learning can successfully help
with the development of catheter reconstruction during
HDR brachytherapy.

The primary aim of this study was to evaluate the
accuracy of a novel deep learning-assisted semiau-
tomatic algorithm to reconstruct interstitial catheters
during MR-only interstitial gynecological brachytherapy.
We report the differences in catheter reconstruction

TABLE 1 Patient and tumor characteristics (n = 20)

Item Number of patients (n)

Number of patients (n) 20

Median age (range) in years 62 (32–78)

Diagnosis

malignant neoplasm cervix uteri 10

malignant neoplasm of endometrium 5

malignant neoplasm of vagina 5

FIGO stage

IA-IVA 5

IIB-IIIB 7

Local recurrence 8

Intracavitary cases 4

Interstitial cases 16

Template type Syed-Neblett (n = 20)

Total number of catheters (mean ± SD) 360 (19 ± 4)

Number of fraction (median) 2

Abbreviation: FIGO, International Federation of Obstetrics and Gynecology.

between the algorithm and manual ground truth and the
required time for catheter reconstruction.

2 MATERIALS AND METHODS

2.1 Data collection

The development of the reconstruction algorithm was
based on MRI scans of twenty gynecological cancer
patients treated with interstitial brachytherapy between
2018 and 2020 at the Odette Cancer Centre (ON,
Canada). The local research ethics board approved the
study. Patient characteristics are summarized in Table 1.
Local standard of care MRI sequences were used for
all the images on the same scanner; these included 3D
T1 weighted (3D T1W) and 3D T2 weighted (3D T2W)
images obtained using a standardized exam sequence
on a 1.5 T (T) Ingenia MRI scanner (Philips Medical Sys-
tem, AMS). MRI scans were acquired with an in-plane
pixel size of 0.5327 × 0.5327 mm2 and a slice thickness
of 1 mm. Three brachytherapy radiation therapists and
two medical physicists with more than 100 patient cases
experience manually reconstructed 360 catheters using
the Oncentra Brachytherapy treatment planning sys-
tem v.4.5.2 (Nucletron, Elekta AB, Stockholm, Sweden).
Interobserver variability in catheter positions between
the planners was evaluated in our previous study and
found to be 0.68 ± 0.60 mm.19 Manual reconstruction
was performed using both the 3D T1W and the 3D
T2W MRI images, which provided complementary infor-
mation to the planner during reconstruction. Markers
were used to aid in the visualization of the catheters
and have been previously described.19 Catheters
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containing these markers appear as signal voids (dark)
on the 3D T2W images and as a positive signal (bright)
on the 3D T1W images.The manual labels (x and y coor-
dinates for each catheter) for each observer were aver-
aged and used for training and testing the model. For
training, the manual labels were used to identify the cen-
troid of the catheter region within each of the raw image
patches.

2.2 System specifications

The proposed algorithm was implemented on a research
computer running the 64-bit Windows 7 Professional
operating system (Microsoft, Redmond, Washington)
with 16 CPUs processor (Intel, Santa Clara, California)
and 16 GB of RAM.A GeForce GTX980 v.436.48 graph-
ics card with 4 GB of memory was installed (NVIDIA,
Santa Clara, CA). The proposed algorithm was imple-
mented in Python (PyCharm v.2019.1.2, Python 3.5)
using Keras with TensorFlow backend.20

2.3 The proposed semiautomatic
catheters reconstruction algorithm

There are two steps in the proposed reconstruction algo-
rithm. The first step was to segment the images to iden-
tify the suspected positions of catheters using the U-net
model.21 Two U-net models were trained independently
on T1W and T2W images, and probability masks of
catheters were generated. In the second step, the gen-
erated probability masks were used to identify catheter
positions on each slice through postprocessing steps.
The following two sections will detail these two steps.

2.3.1 U-net network architecture

Initial catheter segmentation was performed using a
deep, convolutional neural network. Two 2D U-net mod-
els were trained separately for 3D T1W and 3D T2W
image sets. As shown in Figure 1, the U-net model has
symmetrical encoding and decoding parts. The encod-
ing part involved five levels;each level was composed of
two 3 × 3 convolution layers followed by a rectified linear
unit activation function (ReLU)22 and a 2 × 2 max pool-
ing, respectively. For this down-sampling step, a stride
size of 2 × 2 was applied to decrease the size of the fea-
ture maps from 128 × 128 to 8 × 8. The decoding part
(up-sampling) included four levels, each starting with a
deconvolutional layer with a filter size of 2 × 2 followed
by the ReLU function.Finally,a 1 × 1 convolution and sig-
moid activation function were applied to generate prob-
ability masks.

The U-net model was trained using the set of patients
split into 70% (n = 14, 257 catheters) for training, 5%

(n = 1, 15 catheters) for validation, and 25% (n = 5,
88 catheters) for testing.23 The model performance was
improved using both T1W and T2W images perturbed by
translation, scaling, and rotation in the axial plane. Per-
turbation is crucial to avoid training overfitting when a
small training dataset is used. The training of the model
was evaluated by quantifying the number of needles cor-
rectly identified after the model was trained using 1, 3,
5, 10, and 14 patients. This step was performed to illus-
trate how performance improved as a result of increased
training data. A total of 41 547 64 × 64 patches were
extracted from T1W and T2W images separately, which
were then used to train the model. Both U-net models
were trained on the extracted 64 × 64 patches for 100
epochs with a batch size of eight.The number of epochs
represents the number of times that the model will pro-
cess the entire training set. The network was optimized
by maximizing the Dice similarity coefficient between the
predicted catheter locations and the ground truth pro-
vided by the planners (average of five planners).A small
value εwas added to the numerator of the Dice equation
(i.e., smooth) to avoid division by zero when both vol-
umes, predicted and true, do not contain any foreground
pixels. The learning rate was set to 1 × 10–5 with a He
normal initializer. The total number of learning parame-
ters was 31 031 685.

Training time was approximately one day for each of
the T1W- and T2W-based models, and the testing time
was 1.5 s/slice (≈5 min per image volume). The net-
work’s output was a probability map,which quantifies the
probability of each pixel in the patch as being a catheter
or non-catheter. Pixels with probability of more than 0.5
in the mask were considered as catheter regions, while
pixels with probability of less than 0.5 were considered
as non-catheters regions.

2.3.2 Post-processing

The second step of the proposed algorithm was to link
segmented regions to reconstruct the catheter(s) within
the images using the U-net outputs (Figure 2). Using
the approximate positions of the catheters, rectangles
around those approximate positions were calculated
(Figure 2c). The hyperintense (bright) and hypointense
(dark) regions within those rectangles were labeled as
catheters in the T1W and T2W images, respectively.The
catheter position coordinates from the previous slice
were used to eliminate the false positives and select the
best catheters out of candidate labeled regions.

The ground truth slice (m) was selected, in which all
the catheters were reconstructed from a starting plane
(the inner plane of the physical trans-perineal template
that was in contact with the patient). In slice m + 1,
the nearest candidate catheters to the ground truth
(slice m) were selected as the true positives and the rest
were eliminated. A physical free length measurement
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F IGURE 1 U-net model architecture. The blue boxes show features maps. The number on top of each box represents the number of
channels in each layer. The size of the input and output images were 128 × 128

F IGURE 2 Algorithm postprocessing step using magnetic resonance imaging (MRI) images of one gynecological patient (testing set). (a)
The red box shows the U-net output (true and false positive catheter positions); (b) using the U-net output approximate positions, catheters were
located in the MRI images, T1w(top) and T2w (bottom) images, respectively; (c) rectangles were then calculated and used to find the exact
positions of catheters in both image sets. As a final step, hyperintense (T1W) and hypointense (T2W) regions within those rectangular are
localized as catheters

was used to stop the reconstruction of all catheters
automatically. The free length (i.e., catheter length out-
side the patient) of the catheter along with the known
thickness of the template were used to calculate the
physical length of the catheter inside the patient (the
total length of the catheter - [free length + template
thickness]). This step was necessary to ensure that all
catheters were correctly detected and identified.

If segmented regions were not present within the 8-
pixel neighborhood centered on the location from the

previous slice, the catheter was labeled a ‘‘jumping
catheter.” In these cases, the change in the positions
(∆x and ∆y) of all correctly detected catheters was
used to fix the position of the jumping catheter. We
assumed that the positions of all predicted catheters in
slice n were {(x1n, y1n), (x2n, y2n)⋯ (xin, yin)}. In addition,
the position of the same catheters in the following slice
was {(x1(n+1), y1(n+1)), (x2(n+1),y2(n+1))⋯ (xi(n+1),yi(n+1))},
where i represents the total number of catheters. Using
this information, we can define the changes in the
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F IGURE 3 Workflow of the deep learning-assisted algorithm for brachytherapy catheter reconstruction. The workflow starts with the manual
selection of all catheters in the starting slice n (template plane) in T1W or T2W image. The images (both T1W and T2W) are then cropped and
patched (size 128 × 128). These patches are then fed separately to two U-Net models. Following, mathematical operations and connected
component labeling are performed to accurately identify the centroid of the catheter region. The resulting catheters coordinates from T1W and
T2W are concatenated and used to find the corrected location of the catheters in slices n + 1, n + 2….n + i, where i is the number of slices

catheters’ positions as

Δx =
(|x1(n+1) − x1n| + |x2(n+1) − x2n| +⋯+ |xi(n+1) − xin|)

No. of predicted catheters

and

Δy =
(|y1(n+1) − y1n| + |y2(n+1) − y2n| +⋯+ |yi(n+1) − yin)|

No. of predicted catheters

The estimated Δx and Δy values were then added to the
jumping catheter coordinates (x and y) to fix its position.
By using this technique, the correct location of jumping
catheters was calculated. Figure 3 illustrates the work-
flow of the semiautomatic algorithm.

3 RESULTS

3.1 Patient demographics

20 patients who underwent CT/MR-based interstitial
brachytherapy of either three or four fractions were
enrolled in this retrospective study. The median age
was 63 years (range, 32–78 years). The Interna-
tional Federation of Gynecology and Obstetrics (FIGO)
stage distribution was IA-IIIA (n = 5), IIB-IIIB (n = 4)
and IVA (n = 2). The remaining patients (n = 9)
were treated for recurrent endometrial or vaginal car-
cinoma. All patients had template-based interstitial

brachytherapy using Syed-Neblett template (Best Med-
ical International Inc., Springfield, VA, USA) along with
plastic catheters (ProGuide Sharp Catheter Set, 6F ×

294 mm, Elekta, AB, Stockholm, Sweden). The results in
this section are based on the testing dataset and aver-
aged over five patients.

3.2 Training performance

The average Dice similarity coefficient (DSC) score was
equal to 0.59 ± 0.10. Figure 4 illustrates the improve-
ment in the performance of the algorithms as a result
of training with datasets with incrementally larger sizes.
Horizontal and vertical axes represent the number of
patients in the training set and the number of needles
correctly identified, respectively. Detection performance
increases by adding more patients.Using 14 patients for
training, the number of correct needles increases from
44 to approximately 66 needles (out of 88 needles in
total).

3.3 Catheter reconstruction evaluation

Figure 5 shows axial T1W MR Images of a representa-
tive test case. No catheter was missed during the recon-
struction process across all patients. Figure 6 illustrates
semiautomated reconstruction (blue) and manual (red)
catheter tracks for one gynecological patient. Figure 7
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F IGURE 4 The impact of the number of patients used for
training the UNet model on the number of needles correctly detected.
Results shown were averaged over five patients (testing set). The
number of patients used for training was 1, 3, 5, 10, and 14

shows the variability in dwell positions between manual
and semiautomated reconstruction presented as a lin-
ear histogram.A total of 34 009 catheter dwell positions,
positioned at 1 mm intervals along the reconstructed
catheter paths, were assessed over five patients to esti-
mate reconstruction variability. The average variation
was 0.97 ± 0.66 mm. More than 98.32% of dwell posi-
tions variations were < 2 mm; though, a few (1.68%)
were more than 3 mm. Each catheter was visually
tracked and reconstructed. A visual illustration in the
axial view of one case is shown in the Supporting Infor-
mation.

3.4 Catheter reconstruction time

The average reconstruction time across all five plan-
ners and patients was 46 ± 10 min. In contrast, the
average time for the semiautomatic reconstruction was
11 ± 1 min, significantly lower (p < 0.001) than manual
reconstruction.

4 DISCUSSION

There is a need to facilitate MR-only gynecological
brachytherapy workflows that eliminate CT imaging
and may potentially enable a transformation into an
outpatient procedure. MR-based catheter reconstruc-
tion is, however, considered one of the main chal-
lenges in MR-only interstitial brachytherapy. Implanted
catheters are not easily visualized, and reconstruction
is challenging. In this work, we proposed a novel deep
learning-assisted semiautomatic algorithm for catheter

reconstruction during MR-only interstitial gynecological
brachytherapy treatment planning.

Accurate catheter reconstruction is necessary for
MR-only-based gynecological interstitial brachytherapy.
Systematic manual errors in reconstruction may result
in significant uncertainties in dosimetric parameters
for target and OARs.11 In this work, a semiautomatic
algorithm was developed to replace manual reconstruc-
tion. A dataset of 360 catheters from 20 gynecological
cancer patients was used to develop and test the
proposed algorithm. The algorithm achieved a human
planner level performance for the MRI-based catheter
reconstruction process. The results of the algorithm on
an unseen test dataset showed an average variation in
dwell positions of 0.97 ± 0.66 mm, which is clinically
acceptable. According to GYN GEC-ESTRO guideline,
catheter reconstruction variation of more than 2 mm
may lead to an undesirable impact on DVH parameters
either for target or organs at risk.2

The algorithm proposed in this study was built to
detect and reconstruct all catheters continuously in all
slices using a two-dimensional (2D) version of the U-
net model combined with post-processing steps. In our
approach, segmentation regions were predicted for the
entire image volume by making predictions from pre-
vious slices. This work is partially dependent on the
original form of the UNet deep learning model devel-
oped by Ronneberger et al.21 This model was chosen
because (i) this model is based on the convolution neu-
ral network (CNN), which has been extensively used to
develop automated accurate and stable detection and
segmentation methods for the clinical target volume and
brachytherapy catheters on US, MR and CT images
during prostate and gynecological brachytherapy,18,24,25

and (ii) learned features from UNet CNN layers can be
recognized regardless of their position in the image.This
makes it useful for processing images with similar fea-
tures (e.g.,catheter positions),and is robust against vari-
ations in feature position or imaging conditions.26

Few studies have investigated the use of fully
automatic or semiautomatic reconstruction of interstitial
catheters during gynecological HDR brachytherapy.27–29

Most of these have developed catheter reconstruction
methods for titanium applicators or are primarily based
on CT images.17 The development of MRI-based
catheter reconstruction methods has been limited.30,31

Of note is work by Zaffino et al., who conducted a study
of 50 gynecological patients treated with MRI-guided
HDR brachytherapy with a total of 826 catheters.30

Using a deep 3D U-net model, they achieved an aver-
age DSC of 0.60 ± 0.17, which is comparable to the
value reported in this work (0.59 ± 0.10).They achieved
an average Hausdorff distance of 2.0 ± 3.4 mm
between manual and automatic reconstructions, which
is less than the value reported in this study (4.20 ±

2.40 mm). 124 out of the 826 catheters (15%) were
missed or incorrectly identified. The time needed to
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F IGURE 5 Axial T1-Weighted MR image of a gynecological patient treated with 15 interstitial high dose rate (HDR) catheters. Left: manual
reconstruction; (right) semiautomated reconstruction using the proposed algorithm

F IGURE 6 Reconstructed catheter paths obtained manually
(red) and semiautomatically using the proposed algorithm (blue)

label a test MRI was 9 ± 2.5 min. A similar approach
was implemented for catheter reconstruction during
MR-guided prostate brachytherapy.18 Other studies
have explored the use of electromagnetic (EM) tracking
based catheter reconstruction.32–35 Poulin et al. have
developed an EM tracking system for automated and
real-time catheter reconstruction in CT images.32 They
reported a total reconstruction time of 3 min for a 17
catheter implant with a mean 3D distance error of 0.66±
0.33 mm.

The average reconstruction time of our semiauto-
mated algorithm was<12 min per patient which makes a
possible reduction in a clinical workflow time. Measured
times include the manual selection of all the catheters
at a reference slice.The elimination of the need for man-
ual catheter reconstruction has the potential to improve
reproducibility, safety and adoption of MR-only for inter-
stitial gynecological HDR brachytherapy.
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F IGURE 7 Line histogram shows the three-dimension (3D)
reconstruction variation between a manual and semiautomated
algorithm in mm

There are some limitations of this study. First, the
training step of the proposed algorithm was based
on image patches. This might affect the efficiency of
the algorithm since patch-based training and testing
are computationally slow compared to whole-image-
based approaches which predict all pixel labels in one
computation.Second, the number of test cases was lim-
ited; additional test cases are needed to further eval-
uate the algorithm’s clinical utility. Third, the algorithm
was developed and evaluated based on images using
a standardized exam sequence of a 1.5 T MRI scan-
ner to ensure that contrast in T1W and T2W images
are maintained across the cohort of patients. The per-
formance of the algorithm was not evaluated for other
MRI scanners or image sequences. For sequences on
different machines or even varying imaging settings,
retraining of the U-net model is recommended to ensure
similar performance. Finally, the algorithm developed in
this study is only valid for plastic interstitial catheters with
or without MR line markers. This work was developed
to ease the challenge associated with plastic catheter
reconstruction during MR-only gynecological workflow.
It was not built to track or reconstruct tandem or metallic
catheters. Note that retraining of the U-net model would
be required to reconstruct metal catheters.

5 CONCLUSION

A novel deep learning-assisted semiautomatic algo-
rithm for catheter reconstruction using MRI images
was developed and evaluated in this study. The pro-
posed algorithm was shown to be clinically feasible and
accurate. This semiautomatic algorithm offers a unique

opportunity to explore replacing the manual reconstruc-
tion of catheters during MR-only interstitial gynecologi-
cal HDR brachytherapy.
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