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In this paper, we investigate a challenging but interesting task in the research

of speech emotion recognition (SER), i.e., cross-corpus SER. Unlike the

conventional SER, the training (source) and testing (target) samples in cross-

corpus SER come from di�erent speech corpora, which results in a feature

distribution mismatch between them. Hence, the performance of most

existing SER methods may sharply decrease. To cope with this problem,

we propose a simple yet e�ective deep transfer learning method called

progressive distribution adapted neural networks (PDAN). PDAN employs

convolutional neural networks (CNN) as the backbone and the speech

spectrum as the inputs to achieve an end-to-end learning framework. More

importantly, its basic idea for solving cross-corpus SER is very straightforward,

i.e., enhancing the backbone’s corpus invariant feature learning ability by

incorporating a progressive distribution adapted regularization term into the

original loss function to guide the network training. To evaluate the proposed

PDAN, extensive cross-corpus SER experiments on speech emotion corpora

including EmoDB, eNTERFACE, and CASIA are conducted. Experimental results

showed that the proposed PDAN outperformsmost well-performing deep and

subspace transfer learningmethods in dealingwith the cross-corpus SER tasks.

KEYWORDS

cross-corpus speech emotion recognition, speech emotion recognition, deep transfer

learning, domain adaptation, deep learning

1. Introduction

Speech is one major way human beings communicate in daily life, which carries

abundant emotional information. Consider that if computers were able to understand the

emotional states of human beings’ speech signals, human-computer interaction would

undoubtedly be more natural. Consequently, the research of automatically recognizing

emotional states from speech signals, a. k. a., speech emotion recognition (SER) has

attracted wide attention among the affective computing, human-computer interaction,
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and speech signal processing communities (El Ayadi et al.,

2011; Schuller, 2018). Over the past several decades, many well-

performing SER methods have been proposed and achieved

promising performance onwidely-used publicly available speech

emotion corpora (Zong et al., 2016; Zhang et al., 2017, 2022;

Kwon, 2021; Lu et al., 2022). However, it is noted that most

of them did not consider the realistic scenario where the

training and testing speech signals are possibly recorded by

different microphones or in different environments. In this case,

a feature distribution mismatch may exist between the training

and testing speech samples, and hence the performance of these

originally well-performing SER methods may decrease sharply.

This brings us a meaningful and more challenging task in

SER, i.e., cross-corpus SER. Unlike the conventional SER, the

labeled training and unlabeled testing samples in cross-corpus

SER come from different speech corpora. Following the naming

conventions in cross-corpus SER, we will refer to the training

and testing samples/corpora/feature sets as the source and target

ones throughout this paper in what follows.

In recent years, researchers have been devoted to the

research of cross-corpus SER and proposed many promising

methods. Schuller et al. (2010b) may be the first to have

investigated this problem, and designed three different

normalization methods including speaker normalization (SN),

corpus normalization (CN), and speaker-corpus normalization

(SCN) to alleviate the feature distribution mismatch between

the source and target speech samples. Since that, lots of

transfer learning and domain adaptation methods have been

successively designed to deal with cross-corpus SER tasks.

For example, Hassan et al. (2013) proposed to compensate

for the corpus shift by reweighting the source speech samples

to deal with cross-corpus SER tasks. A new version of the

modified support vector machine (SVM) called importance-

weighted SVM (IW-SVM) was designed by incorporating

three typical transfer learning methods including kernel

mean matching (KMM) (Gretton et al., 2009), unconstrained

least-squares importance fitting (uLSIF) (Kanamori et al.,

2009), and Kullback-Leibler importance estimation procedure

(KLIEP) (Tsuboi et al., 2009) to learn the source sample weights.

In the work of Song et al. (2016), Song et al. presented a

transfer non-negative matrix factorization (TNMF) for the

cross-corpus SER problem. The basic idea of TNMF is to

decompose the source and target speech feature sets into

different non-negative feature matrices under the guidance of

maximum mean discrepancy (MMD) (Borgwardt et al., 2006)

and hence the gap between the source and target speech signals

described by the non-negative matrices can be alleviated (Liu

et al., 2018). Moreover, Liu et al. proposed a domain-adaptive

subspace learning (DoSL) model to handle the cross-corpus SER

problem. This method measures the distribution gap between

the source and the target speech samples through a one-order

moment, i.e., the mean value of speech feature vectors. Then a

subspace learning model enhanced by the one-order moment

regularization term is built to learn a projection matrix to

transform the source and target speech sample from the original

feature space to the labeled one. The transformed source and

target speech samples in such label space would share similar

feature distributions. More recently, Zhang et al. (2021) further

proposed an extended version of DoSL called joint distribution

adaptive regression (JDAR) to align the source and target

speech feature distributions to remove their mismatch by

considering the marginal distribution gap together with the

emotion class aware conditional one. By jointly minimizing

both feature distribution gaps, the JDAR model can achieve a

better performance than DoSL in dealing with the cross-corpus

SER tasks.

On the other hand, deep transfer learning techniques have

also been used to cope with the cross-corpus SER tasks.

Unlike the transfer subspace learning methods, most deep

transfer learning ones try to learn a robust deep neural

network to learn corpus invariant features to describe the

speech signals. For example, Deng et al. (2014, 2017) proposed

a series of unsupervised domain adaptation methods based

on autoencoder (AE) to bridge the gap between the source

and target speech emotion corpora. The basic idea of these

methods is to learn a common subspace through AE instead of

widely used subspace learning such that the source and target

speech signals have the same or similar feature distributions

in the learned subspace. Different from the work of Deng

et al. (2014, 2017), Abdelwahab and Busso (2018) proposed

to use another deep neural network, i.e., deep belief network

(DBN), to investigate the cross-language and cross-corpus SER

problem on five speech emotion corpora and the experimental

results demonstrated more promising performance than sparse

AE and SVM based baseline systems. Recently, adversarial

learning-based methods have also been applied to coping with

cross-corpus SER tasks. Abdelwahab and Busso (2018) made

use of adversarial multi-task training to learn a common

representation for training and testing speech feature sets. Two

tasks were designed to enable the networks to be robust to the

corpus variance. Specifically, one task is to build the relationship

between the emotion classes and acoustic descriptors of speech

signals. The other is to learn the common representation by

enforcing the source and target speech features cannot be

distinguished. More recently, Gideon et al. (2019) presented

an adversarial discriminative domain generalization (ADDoG)

model with the help of domain generalization. Unlike most

deep transfer learning methods, the ADDoG model used the

speech spectrums as the inputs instead of the handcrafted speech

features and simultaneously improved its corpus robustness in

multiple speech corpora. Following the work of Gideon et al.

(2019), Zhao et al. (2022) also used the speech spectrums as

the inputs of the networks to achieve the end-to-end learning

manner for cross-corpus SER tasks and proposed a deep

transductive transfer regression neural network (DTTRN) with

an emotion knowledge guided MMD loss to remove the feature
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distribution mismatch between the source and target speech

corpora.

Inspired by the success of the above deep transfer learning

methods, in this paper we also focus on the research of designing

deep transfer learning methods to deal with the cross-corpus

SER tasks. We propose a novel method called progressive

distribution adapted neural networks (PDAN). The basic idea

of PDAN is very straightforward, i.e., enabling the deep neural

networks to directly learn an emotion discriminative and corpus

invariant representations for both source and target original

speech signals by leveraging the powerful nonlinear mapping

ability and hierarchical structure of deep neural networks.

Specifically, we first make use of convolutional neural networks

to build the relationship between the source emotion label

information and speech spectrums to endow the emotion

discriminant ability to PDAN. Then, three feature distribution

adapted regularization terms are imposed on different fully

connected layers to respectively guide the network to learn

the corpus invariant common representations for both speech

corpora. To evaluate the effectiveness of the PDAN, we conduct

extensive cross-corpus SER experiments on three widely-used

speech emotion corpora, i.e., EmoDB (Burkhardt et al., 2005),

eNTERFACE (Martin et al., 2006), and CASIA (Zhang and

Jia, 2008). Experimental results demonstrate the effectiveness

and superior performance of PDAN over recent state-of-the-

art transfer learning methods in dealing with cross-corpus SER

tasks. In summary, the main contributions of this paper include

three folds:

1. We proposed a novel end-to-end deep transfer learning

model called PDAN to cope with cross-corpus SER tasks.

Unlike most existing methods, PDAN can directly learn the

corpus invariant and emotion discriminative speech features

from the original speech spectrums by resorting to the

nonlinear mapping ability of deep neural networks.

2. We presented a new idea of progressively adapting the feature

distributions between the source and target speech samples

for the proposed PDAN by designing three different derived

MMD loss functions.

3. Extensive cross-corpus SER tasks are designed to evaluate

the proposed PDAN method. By deeply analyzing the

experimental results, several interesting findings and

discussions are given in our paper.

2. Proposed method

2.1. Overall picture and notations

In this section, we address the proposed PDAN model in

detail and also show how to use PDAN to deal with cross-corpus

SER tasks. To this end, we draw a picture shown in Figure 1 to

illustrate the basic idea and overall structure of the proposed

PDAN. To make the readers better understand this paper, we

first introduce some necessary notations which are used in

Figure 1 for formulating PDAN. The speech spectrums of source

and target speech samples are denoted by Ds = {X
s
1 , · · · ,X

s
Ns
}

and Dt = {X
t
1 , · · · ,X

t
Nt
}, respectively, where Ns and Nt are

the source and target sample numbers. According to the task

setting of cross-corpus SER, the source emotion labels are given,

while the target ones are entirely unknown. Hence, we denote

the source emotion labels by Ys = {ys1, · · · , y
s
Ns
}. Note that the

ith sample’s emotion label ysi ∈ R
C×1 is a one-hot vector whose

kth entry would be 1 while the others are all 0 if its corresponding

label was kth of C emotions.

2.2. Formulating PDAN

As described in Sect. Introduction, the basic idea of PDAN

is very straightforward, i.e., building an emotion discriminative

and corpus invariant end-to-end neural network for cross-

corpus SER. To achieve this goal, we first construct a

convolutional neural network (CNN) consisting of a set of

convolutional layers and three fully connected (FC) layers to

serve as the basic structure of PDAN. Then, to achieve the

goal of end-to-end learning, we transform the original speech

signals into spectrums to serve as the inputs of the PDAN.

Note that in PDAN, the source and target speech spectrums

will be simultaneously fed to train the PDAN, which can also

be interpreted as inputting them into two weight-shared CNNs

shown in Figure 1. Subsequently, it is clear to see from Figure 1

that our PDAN has four major loss functions to guide the

network training, i.e., Ls, Lm, Lrc, and Lfc, respectively, which

correspond to the basic idea of the proposed PDAN. The first

loss function is called emotion discriminative loss denoted by

Ls, which is designed for enabling the network to be emotion

discriminative and can be formulated as

Ls =
1

Ns

Ns
∑

i=1

JCE(g3(g2(g1(f (X
s
i )))), y

s
i ), (1)

where JCE is the cross-entropy loss bridging the source speech

spectrums and their corresponding emotion labels, g1, g2, and

g3 are the parameters of fully connected layers, and f denotes

the parameters of the convolutional layers, respectively.

As for the resting loss functions, they aim to improve

the robustness of the speech features learned by PDAN to

the corpus invariance. To this end, based on the MMD

criterion (Borgwardt et al., 2006), we first design marginal

distribution adapted loss Lm and impose it on the first FC layer

in PDAN, which is formulated as follows:

Lm = ‖
1

Ns

Ns
∑

i=1

8(g1(f (X
s
i )))−

1

Nt

Nt
∑

i=1

8(g1(f (X
t
i )))‖

2
H
, (2)
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FIGURE 1

The overview of progressive distribution adapted neural networks (PDAN). The PDAN uses the speech spectrums as the inputs and directly builds

the relationship between the emotion labels and speech signals. It consists of several convolutional layers and three fully connected (FC) layers

and is trained under the guidance of the combination of four loss functions, i.e., emotion discriminative loss Ls, marginal distribution adapted

loss Lm, rough emotion class aware conditional distribution adapted loss Lrc, and fine emotion class aware conditional distribution adapted loss

Lfc.

where Lm is the square of the original MMD function and can

be used to measure the marginal distribution difference between

the source and target feature sets, 8(·) is the kernel mapping

operator, and ‖·‖H means the inner product in such reproduced

kernel Hilbert space (RKHS).

Secondly, we design a fine emotion class aware conditional

distribution adapted loss Lfc, which is added to regularize the

last FC layer and can be expressed as follows:

Lfc =
1

C

C
∑

j=1

‖
1

Nsj

Nsj
∑

i=1

8(g3(g2(g1(f (X
s
i )))))

−
1

Nt

Ntj
∑

i=1

8(g3(g2(g1(f (X
t
i )))))‖

2
H
, (3)

where X
sj
i and X

tj
i correspond to the speech samples belonging

to the jth emotion and Nsj and Ntj denote their sample numbers

satisfying Ns1 + · · · + NsC = Ns and Nt1 + · · · + NtC = Nt ,

respectively. Hence, it is clear that Lfc can be used to measure

the fine emotion class aware conditional feature distribution gap

between the source and target speech features.

Finally, we consider designing a rough emotion class aware

conditional distribution adapted regularization term, i.e., Lrc,

to guide the feature learning in the second FC layer, whose

formulation is as follows:

Lrc =
1

Cr

Cr
∑

j=1

‖
1

Nsj

Nsj
∑

i=1

8(g2(g1(f (X
s
i ))))

−
1

Nt

Ntj
∑

i=1

8(g2(g1(f (X
t
i ))))‖

2
H
, (4)

where Cr < C can be called a rough emotion class number.

Note that Lrc shown in Equation (4) looks like a new

measurement of conditional distribution mismatch between

the source and target speech features, which is so similar to

Lfc in Equation (3). However, they are actually very different.

Specifically, in Lrc, a set of emotion classes involved in cross-

corpus SER will merge together and then the conditional

MMD is calculated. This is motivated by the work of the

valance-arousal emotion wheel proposed by Yang et al. (2022)

shown in Figure 2. As Figure 2 shows, it is clear to see that
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FIGURE 2

The 2D arousal-valence emotion wheel proposed by Yang et al.

(2022). It consists of two dimensions, where the horizontal axis

denotes the degree of valence while the vertical axis

corresponds to the arousal. Each typical discrete emotion can

be mapped to one point in the emotion wheel according to its

corresponding valence and arousal values.

most of the existing typical emotions are all high-arousal

and only a few emotions, e.g., Sad, are low-arousal. It is

also interesting to see that along the valence dimension,

the separability among these emotions would be significantly

improved. For example, we can observe from Figure 2 that

Angry, Disgust, and Fear are low-valence, while Surprise and

Happy are high-valence although they all belong to the high-

arousal ones. Inspired by the above observations, we propose

to align the rough emotion-aware conditional distributions

with respect to the valence dimension in the second FC

layer and hence design Lrc to further improve the corpus

invariance of the proposed PDAN together with the resting

two ones. It should be noticed that since the features in

shallow layers have limited discriminative ability, it may be

a tough task to directly align the fine emotion class aware

conditional distribution gap between the source and target

speech features together with the marginal one in the first

FC layer. Therefore, we assign the fine emotion class aware

conditional distribution term to the last FC layer instead of the

first one because such features in the deepest FC layer would

be more emotion-discriminative. According to the granularity

of the emotion class information used in calculating these three

feature distribution adapted terms, it can be seen that the

feature distribution adaption operations of PDAN are present

in a progressive way. This is why we call the proposed method

PDAN.

Under the above considerations, we are able to arrive

at the optimization problem of the proposed PDAN by

jointly minimizing the four well-designed losses, which can be

expressed as follows:

min
f ,g1,g2,g3

Ltotal = Ls + λ1Lm + λ2Lrc + λ3Lfc, (5)

where λ1, λ2, and λ3 are the trade-off parameters controlling the

balance among the four losses.

2.3. Optimization of PDAN

Since the calculation of two conditional distribution adapted

loss needs the target label information, we optimize the

optimization problem of PDAN by using an alternated direction

method. Specifically, we first randomly initialize the parameters

of PDAN, i.e., f , g1, g2, and g3, and then predict the

pseudo emotion labels of target speech samples denoted by

L
p
t . Subsequently, perform the following two major steps until

convergence:

1. According to L
p
t , calculate the loss functions Ltotal and

update the parameters of PDAN, i.e., f , g1, g2, and g3, by the

typical optimization algorithm, e.g., SGD and Adam.

2. Fix f , g1, g2, and g3, and update the pseudo target emotion

labels L
p
t .

Note that in PDAN, the kernel trick can be used to effectively

calculate three MMD based losses, which can be formulated as

follows:

MMD2(Xs,Xt) = ‖
1

Ns

Ns
∑

i=1

8(xsi )))−
1

Nt

Nt
∑

i=1

8(xti )))‖
2
H
,

=
Ns

Ns(Ns − 1)

Ns
∑

i 6=j

k(xsi , x
s
j )+

1

Nt(Nt − 1)

Nt
∑

i 6=j

k(xti , x
t
j )−

2

NsNt

Ns,Nt
∑

i,j=1

k(xsi , x
t
j ), (6)

where k(·) is a kernel function replacing the inner product

operation between vectors in RKHS produced by 8(·) with

calculating a predefined function, and xsi and xti are the ith

column in Xs and Xt
i .

Finally, we summarize the detailed procedures for updating

PDAN in Algorithm 1 such that the readers can better

understand how to optimize the proposed PDAN.

3. Experiments

3.1. Speech emotion corpora and
protocol

In this section, we design extensive cross-corpus SER tasks

to evaluate the proposed PDAN method. Three public available

speech emotion corpora including EmoDB (Burkhardt et al.,
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Input: Source Speech Spectrums: Ds = {X
s
1 , · · · ,X

s
Ns
},

Target Speech Spectrums: Dt = {X
t
1 , · · · ,X

s
Nt
},

Learning Rate: α,

Trade-off Parameters: λ1,λ2, and λ3,

Maximal Iterations: Nmax.

Output: Optimal Network Parameters: f = f̂, g1 = ĝ1,

g2 = ĝ2, and g3 = ĝ3.

1: Initialize the network parameters: f̃, g̃1, g̃2, and

g̃3, and iteration indicator: iter = 0.

2: while Ltotal 6= 0 ‖ iter < Nmax do

3: iter = iter + 1;

4: Fix f, g1, g2, and g3, predict the pseudo label

L
p
t ;

5: Fix L
p
t , calculate Ltotal;

6: Update f, g1, g2, and g3:

7: ∇θ ←
∂
(

Ls+λ1Lm+λ2Lrc+λ3Lfc

)

∂θ
, where θ = {f , g1, g2, g3};

8: θ
n+1 ← θ

n − α∇θ;

9: end while

Algorithm 1. The detailed procedures for updating optimization

problem of PDAN in Equation (5).

2005), eNTERFACE (Martin et al., 2006), and CASIA (Zhang

and Jia, 2008), are chosen. EmoDB is one of the most widely-

used German acted speech emotion corpora collected by

Burkhardt et al. from TU Berlin, Germany. Ten participants

consisting of five women and five men were recruited to

simulate seven types of emotions, i.e., Neutral, Angry, Fear,

Happy, Sad,Disgust, and Boredom, respectively. The total sample

number reaches 545 and can be downloaded from the http://

www.expressive-speech.net/emodb/. eNTERFACE is an induced

audio-video bi-modal emotion database. We only adopted its

audio part and the language is English. It consists of 1,257 speech

samples from 41 independent speakers comprising six basic

emotions, i.e., Disgust, Sad, Angry, Happy, Fear, and Surprise,

respectively. CASIA is a Chinese acted speech corpus designed

by the Institute of Automation, Chinese Academy of Science.

It recruited four speakers including two women and two men

to record 1,200 speech samples from six typical emotions, i.e.,

Neutral, Surprise, Angry, Happy, Fear, and Sad.

By alternatively using either two of these three speech

emotion corpora to serve as the source and target domains,

six cross-corpus SER tasks are designed denoted by B → E,

B → E, B → E, B → E, B → E, and B → E,

respectively. Note that B, E, and C are the abbreviations of

EmoDB, eNTERFACE, and CASIA. The left and right corpora

of the arrow denote the source and target ones in such a cross-

corpus SER task. Since these three corpora have inconsistent

emotion labeling information, in each task we select the speech

samples sharing the same emotion label from the corresponding

source and target corpora. To make the readers better know

the detail of the sample information in each cross-corpus SER

task, we summarize the sample statistics of speech corpora

used in all six tasks in Table 1. As for the performance metric,

we choose unweighted average recall (UAR) (Schuller et al.,

2010b) defined as the accuracy per class averaged by the total

emotion class number, which is widely used in evaluating

SER methods. For comparison purpose, five typical transfer

subspace learning methods, i.e., Transfer Component Analysis

(TCA) (Pan et al., 2010), Geodesic Flow Kernel (GFK) (Gong

et al., 2012), Subspace Alignment (SA) (Fernando et al., 2013),

Domain Adaptive Subspace Learning (DoSL) (Liu et al., 2018),

and Joint Distribution Adaptive Regression (JDAR) (Zhang

et al., 2021), respectively, and four deep transfer learning

methods, i.e., Deep Adaptation Networks (DAN) (Long et al.,

2015), Domain-Adversarial Neutral Network (DANN) (Ajakan

et al., 2014), Deep-CORAL (Sun and Saenko, 2016), and Deep

Subdomain Adaptation Network (DSAN) (Zhu et al., 2020),

respectively, are included.

3.2. Implementation details

First, as for the subspace learning comparison methods,

we choose two types of speech feature sets, i.e., IS09 (Schuller

et al., 2009) and IS10 (Schuller et al., 2010a) to describe

speech signals, respectively. The IS09 feature set consists of 384

elements including 16×2 acoustic low-level descriptors (LLDs)

such as fundamental frequency (F0), zero-crossing rate (ZCR),

and Mel-frequency cepstrum coefficient (MFCC), and their first

order difference, and their 12 corresponding functions such

as maximal value, mean value, and minimal value. The IS10

feature set has 1,582 elements which are obtained by applying 21

statistical functions to 38 LLDs and their first order derivatives

plus 2 single features about F0 (the number of onsets and

tern duration) and discarding 16 zero-information features (e.g.,

minimum F0). The detailed information of these two feature sets

are referred to in the works of Schuller et al. (2009) and Schuller

et al. (2010a), respectively. In the experiments, the openSIMLE

toolkit (Eyben et al., 2010) is used to extract the IS09 and IS10

feature sets. The hyper-parameters of all the subspace learning

methods are set as follows:

1. TCA, GFK, and SA: A hyper-parameter, i.e., the reduced

dimension denoted by d, needs to be set for TCA, GFK, and

SA. In the experiments, we search the d from a parameter

interval [5 : 5 : dmax], where dmax is the maximal dimension

reduced by these three methods in each experiment.

2. DoSL and JDAR: There are two hyper-parameters in DoSL

and JDAR methods, i.e., λ and µ. They are used to control

the balance between the original regression loss function

and two regularization terms including feature selection

and feature distribution difference alleviation terms. In the

experiments, they are both searched from the parameter

interval [5 : 5 : 100]. In addition, since the JDAR method
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TABLE 1 The sample statistics of EmoDB (B), eNTERFACE (E), and CASIA (C) corpora used in the designed six cross-corpus SER tasks.

Tasks Speech corpus (# Samples belonging to each emotion) Total

B→ E B (Angry: 127, Sad: 62, Fear: 69, Happy: 71, Disgust: 46) 375

E→ B E (Angry: 211, Sad: 211, Fear: 211, Happy: 208, Disgust: 211) 1,052

B→ C B (Angry: 127, Sad: 62, Fear: 69, Happy: 71, Neutral: 79) 408

C→ B C (Angry: 200, Sad: 200, Fear: 200, Happy: 200, Neutral: 200) 1,000

E→ C E (Angry: 211, Sad: 211, Fear: 211, Happy: 208, Surprise: 211) 1,052

C→ E C (Angry: 200, Sad: 200, Fear: 200, Happy: 200, Surprise: 200) 1,000

needs to iteratively predict the pseudo emotion labels of the

target speech signals and calculate the emotion class aware

conditional distribution gap between the source and target

speech feature sets, we set the iterations as 5 for JDAR in all

the cross-corpus SER tasks.

Second, as for the deep learning methods including our

PDAN, we first transform the original speech signals into speech

spectrums to serve as the inputs of all the methods. Specifically,

for each speech sample from the emotion corpora, we set

the frame size and overlap as 350 and 175 sampling points,

respectively, and then all the speech frames windowed by the

Hamming function were transformed to spectrums by using

Fourier transformation to compose the speech spectrums. Note

that in speech spectrum generation, the sampling frequencies

used for EmoDB, eNTERFACE, and CASIA are 16, 44, and

16 kHz, respectively. In the implementations of all the deep

learning methods, the Adam optimizer is used to train the

model. Its three parameters, i.e., β1, β2, and weight decay λ are

set as 0.9, 0.999, and 0.005, respectively. During the training

stage, the batch size and the initial learning rate are set to 32

and 0.0002, respectively. AlexNet (Krizhevsky et al., 2012) is

served as the CNN backbone of all the deep learning methods

and only the neuron number of the last fully connected layer

is reset as the one involving emotion class number in each

cross-corpus SER task. Moreover, since most of the comparison

methods adopt MMD losses, following the work of Long et al.

(2015) and Zhu et al. (2020), we use themixed Gaussian function

to serve as the kernel function, i.e., K =
∑5

i=1 Ki, where

Ki(u, v; σi) = e

−‖u−v‖2

2σ2i , where σi denotes the bandwidth and

its value range is [2, 4, 8, 16, 32]. Finally, the trade-off parameter

of each comparison methods is set as follows:

1. DAN and DSAN: There is only one trade-off

parameter in DAN and DSAN. We set its interval as

[0.001, 0.005, 0.01, 0.05, 0.1, 0.5].

2. DANN: DANN also has only one trade-off parameter. We set

its searching range as [0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 0.5].

3. Deep-CORAL: Similar to the above deep transfer learning

methods, one trade-off parameter in Deep-CORAL needs to

be set. In the experiments, its interval is [1, 10, 20, 30, 50, 100].

4. PDAN: The proposed PDAN has three trade-off

parameters, i.e., λ1, λ2, and λ3. We search them from

[0.001, 0.005, 0.01, 0.05, 0.1, 0.5] throughout all the tasks.

Moreover, since the proposed PDAN needs to update the

target labels in the optimization, in the training stage we will

fix the network parameters and update the target labels at

the end of each epoch. In addition, we set the rough class

number Cr = 2 and divide the original emotions into two

rough classes including High-Valence (Happy, Surprise, and

Neutral) and Low-Valence (Angry, Sad, Fear, and Disgust).

Finally, since the target label information in cross-corpus

SER is entirely unknown, it is not possible to use the validation

set to determine the optimal model during the training stage

for the transfer learning methods. Therefore, to offer a fair

comparison, we follow the tradition of transfer learning method

evaluation and report the best results corresponding to the best

trade-off parameters for all the methods in the experiments.

3.3. Results and discussions

Experimental results are given in Table 2. From Table 2,

several interesting observations can be obtained. First, it can be

clearly seen that the proposed PDAN method achieved the best

average UAR reaching 42.83% among all the transfer learning

methods, which has an increase of 1.06% compared with the

second best well-performing method (JDAR + IS10 feature

set). Moreover, among all the six cross-corpus SER tasks, our

PDAN performs better than all the comparison methods in

three others, i.e., E→B, B→C, C→B, respectively. Although

the proposed PDAN did not achieve the best performance in

the resting three tasks, it can be seen from the comparisons

that the results obtained from our method are very competitive

against the best-performing comparison methods, e.g., 36.19%

(PDAN) v.s. 37.95% (JDAR + IS10 feature set) in task B→E.

These observations demonstrated the superiority of the PDAN

over recent state-of-the-art transfer subspace learning and

deep transfer learning methods in dealing with cross-corpus

SER tasks.
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TABLE 2 The experimental results of all the transfer learning methods for six cross-corpus SER tasks, in which the best results are highlighted in

bold.

Method B→ E E→B B→C C→B E→C C→E Average

Subspace Learning

(IS09 Feature Set)

SVM 28.93 23.58 29.60 35.01 26.10 25.14 28.06

TCA 30.52 44.03 33.40 45.07 31.10 32.32 36.07

GFK 32.11 42.48 33.10 48.08 32.80 28.13 36.17

SA 33.50 43.89 35.80 49.03 32.60 28.17 36.33

DoSL 36.12 38.95 34.40 45.75 30.40 31.59 36.20

JDAR 36.33 39.97 31.10 46.29 32.40 31.50 36.27

Subspace Learning

(IS10 Feature Set)

SVM 34.50 28.13 35.30 35.29 24.30 26.81 30.73

TCA 32.60 44.53 40.50 51.47 33.20 29.77 38.68

GFK 36.01 40.11 40.00 45.93 33.00 29.09 37.35

SA 35.65 43.92 37.50 47.06 32.10 30.61 37.80

DoSL 36.82 43.33 36.80 48.45 35.60 33.91 39.15

JDAR 37.95 47.80 42.70 48.97 35.60 37.58 41.76

Deep Learning

AlexNet 29.49 31.03 32.90 42.23 27.59 26.30 31.59

DAN 36.13 40.41 39.00 49.85 29.00 31.47 37.64

DANN 33.38 43.68 39.20 53.71 29.80 29.25 38.05

Deep-CORAL 35.03 43.38 38.30 48.28 31.00 30.89 37.81

DSAN 36.19 46.90 40.30 50.69 29.70 32.61 39.41

PDAN (Ours) 36.19 53.78 42.90 56.88 33.70 33.54 42.83

Second, by comparing the results obtained by the subspace

learning methods with IS09 and IS10 feature sets, it can be

found that most methods would achieve better performance

when using the IS10 feature set to describe speech signals. For

example, JDAR achieved the average UAR of 41.76% when using

the IS10 feature set, while its average UAR would decrease

to 36.27% if the feature set used to describe speech instead

adopted IS09. This may attribute to the limited representation

ability of the IS09 feature set compared to IS10. According to

the works of Schuller et al. (2009, 2010a), it can be known

that the IS10 feature set contains more acoustic LLDs (38) and

introduces more statistical functions (21) than IS09 (32 and 12),

which leads to a greater capacity of IS10 in describing speech

signals. Hence, the transfer subspace learning methods may

learn more discriminative representations from the IS10 feature

set in coping with cross-corpus SER tasks.

Third, it is also interesting to see that several transfer

subspace learning methods using the IS10 feature set, e.g., DoSL

and JDAR, outperformed most deep transfer learning ones. This

may attribute to the more powerful discriminative ability of the

IS10 feature set compared with the features directly learned from

the speech spectrums by the deep neural networks. Note that

besides the corpus invariant ability, the discriminative one is

also an important factor affecting the performance of transfer

learning methods, which can be supported by the comparison

between the results of IS09 and IS10 feature sets. Consequently,

with IS10 as the feature set, several subspace learning methods

may achieve better performance than the deep learning ones in

coping with the cross-corpus SER tasks.

Last but not least, by deeply comparing the results of

all the methods for tasks C→B and B→C and others, it is

interesting to see that most methods usually performed better

in these two tasks. This may be caused by the difference of

emotion-induced methods among these three speech corpora.

Specifically, it can be found from the works of Burkhardt

et al. (2005), Martin et al. (2006), and Zhang and Jia (2008)

that EmoDB and CASIA are both acted speech corpora, while

eNTERFACE is an induced one. In other words, the emotional

speech samples of EmoDB and CASIA are both acted by the

speakers, which are quite different from the ones in eNTEFACE.

In eNTERFACE, several stimulus materials were first used to

induce the speakers’ natural emotions, and then their speech

signals were synchronously recorded.

3.4. Ablation study

As Figure 1 and Equation (5) show, the proposed PDAN

have a set of progressive distribution adapted regularization

terms, which enable the network to learn the corpus invariant

features for cross-corpus SER and are different from other

deep transfer learning methods, e.g., DAN, DANN, and DSAN.

Specifically, the proposed progressive distribution adapted

regularization term designed for our PDAN has two major
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TABLE 3 Experimental results of PDAN with di�erent total loss functions for six cross-corpus SER tasks, in which the best results are highlighted in

bold.

Method B→E E→B B→C C→B E→C C→E Average

Ls +Lm 34.36 43.39 37.50 48.89 30.00 30.12 37.38

Ls +Lm +Lfc 35.16 48.96 41.40 54.96 32.70 32.98 41.03

Ls +Lm +Lrc +Lfc 36.19 53.78 42.90 56.88 33.70 33.54 42.83

advantages. First, besides widely-used marginal and fine class

aware conditional distribution adaptions, we also introduce

a rough emotion class aware conditional one to benefit the

alleviation of feature distribution difference between the source

and target speech emotion corpora. Second, these distribution

adapted terms are added to regularize different FC layers of

CNN to guide the corpus invariant feature learning, which

takes full advantage of the hierarchical structure of deep neural

networks. It is clear to see that the computation of marginal

distribution adapted term does not need the emotion label

information, while the two conditional ones are opposite.

Moreover, the fine class aware conditional one needs more

precise emotion label information of the speech samples

compared with the rough one. Consequently, following the

fact that the features learned in the deeper layers would have

more discriminative ability with respect to the depth of neural

network, we propose a progressive regularization method to

make full use of these three terms, i.e., adding the marginal

one to the first FC layer, the rough conditional one to the

second FC layer, and the fine conditional one to the last FC

layer, respectively.

To see whether the designed progressive adapted

regularization terms are indeed effective, we conduct additional

experiments by removing one or two of the rough emotion

class aware conditional distribution adapted term Lrc and

fine emotion class aware one Lfc to obtain the new total loss

function to train the PDAN. The reduced versions of PDAN

are denoted by Ls + Lm and Ls + Lm + Lfc, respectively.

The experimental results are shown in Table 3. From Table 3,

it can be found that the PDAN trained under the guidance

of Ls + Lm + Lrc + Lfc and Ls + Lm + Lfc performed

promisingly better than the one associated with Ls + Lm in all

six cross-corpus SER tasks. This observation indicates that the

performance of PDAN introducing the conditional distribution

adaptions would be remarkably increased compared with

merely using the marginal distribution adaption. Moreover,

it can also be seen that the results achieved by PDAN under

the guidance of Ls + Lm + Lrc + Lfc are better than

Ls + Lm + Lfc, which demonstrates the effectiveness of

further introducing the rough conditional distribution adaption

and the superiority of the proposed progressive distribution

adaptions used in PDAN for dealing with cross-corpus

SER tasks.

4. Conclusion

In this paper, we have proposed a novel deep transfer

learning method called progressive distribution adapted neural

networks (PDAN) to deal with the problem of cross-corpus SER.

Unlike existing deep transfer learning methods, PDAN absorbs

the knowledge of the emotion wheel and makes full use of the

hierarchical structure of deep neural networks. Specifically, we

design a progressive distribution adapted regularization term

consisting of a marginal distribution adaption and two different

types of conditional distribution adaptions to layer-by-layer

guide the feature learning of PDAN. Hence, PDAN can learn the

emotion discriminative and corpus invariant features for speech

signals and be effective to deal with cross-corpus SER tasks.

Extensive experiments on three widely-used speech emotion

corpora were conducted to evaluate the performance of the

proposed PDAN. Experimental results showed that the proposed

PDAN can achieve a more satisfactory overall performance

than recent state-of-the-art transfer subspace learning and

deep transfer learning methods in coping with cross-corpus

SER tasks.
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