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The cucumber mosaic virus (CMV) 2b protein not only inhibits anti-viral RNA silencing but also quenches
transcriptional responses of plant genes to jasmonic acid, a key signalling molecule in defence against
insects. This suggested that it might affect interactions between infected plants and aphids, insects that
transmit CMV. We found that infection of tobacco with a 2b gene deletion mutant (CMVD2b) induced
strong resistance to aphids (Myzus persicae) while CMV infection fostered aphid survival. Using electrical
penetration graph methodology we found that higher proportions of aphids showed sustained phloem
ingestion on CMV-infected plants than on CMVD2b-infected or mock-inoculated plants although this did
not increase the rate of growth of individual aphids. This indicates that while CMV infection or certain viral
gene products might elicit aphid resistance, the 2b protein normally counteracts this during a wild-type
CMV infection. Our findings suggest that the 2b protein could indirectly affect aphid-mediated virus
transmission.

M
ost viruses possess suppressor proteins that target one or more of the components of RNA silencing, an
adaptive anti-viral mechanism occurring in plants and many other eukaryotes1,2. One of the first
suppressors to be identified was the 2b protein of cucumber mosaic virus (CMV)3. CMV is a pos-

itive-sense RNA virus with three genomic segments that between them encode five proteins4. The 2b protein is
encoded by the 39-proximal open reading frame of CMV RNA 2 and is expressed during infection from a sub-
genomic mRNA, called RNA 4A5. It is a small (c. 12 kDa), multifunctional polypeptide that inhibits anti-viral
RNA silencing by binding short-interfering (si)RNAs. It also disrupts micro (mi)RNA-regulated gene expression
and DNA methylation through interactions with the host silencing proteins Argonautes 1 and 4, respectively6–11. It
also protects CMV to some extent from salicylic acid-induced anti-viral defences12,13 and it influences cell-to-cell
and systemic movement of CMV14–16. Experiments using mutant viruses lacking all or part of the 2b gene have
revealed much concerning the biological functions of the 2b protein. Ryabov and colleagues17 developed one such
deletion mutant from the Fny strain of CMV. In Fny-CMVD2b (hereafter referred to as CMVD2b) a sequence
corresponding to the 2b gene and a small portion of the 2a gene was deleted. CMVD2b infects tobacco (Nicotiana
tabacum), N. benthamiana and Arabidopsis thaliana (ecotype Col-0) but does not induce symptoms in these
hosts10,16,18.

Our group recently investigated the effects of the Fny-CMV 2b protein on the A. thaliana transcriptome using
DNA microarrays. We found that in 2b-transgenic A. thaliana plants approximately 90% of genes that are
regulated by jasmonic acid (JA) no longer respond following treatment with methyl-JA19. Consistent with this,
infection of A. thaliana plants with CMV, but not with CMVD2b, inhibited the responses of JA-regulated genes to
methyl-JA. As well as regulating resistance to certain microbes, JA regulates resistance to a number of insect pests,
including insects that transmit viruses such as aphids and whiteflies20–25. The effect of the 2b protein on JA-
regulated defensive signalling could be significant since CMV is transmitted by aphids4. Interestingly, Mauck and
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colleagues26 found that CMV infection altered the attractiveness of
squash plants to aphids, also suggesting that the virus was interfering
with defensive signalling.

Aphids transmit CMV in a non-persistent manner. Non-persistently
transmitted viruses are acquired, i.e. bind to the aphid mouthparts
(stylets), after only seconds or minutes of contact with the plant, and
transmission to new hosts is also rapid; occurring in the early stages
of feeding on epidermal cells27,28. Aphids do not internalise non-
persistently transmitted viruses and they retain the ability to transmit
the viruses for no more than a few hours27,29–31. The coat protein,
which is responsible for encapsidating the genomic RNAs of CMV
into virus particles, is the sole factor required for binding of CMV to
the stylet and it confers aphid transmissibility on this virus32–34.
However, because the CMV 2b protein disrupted JA-regulated gene
expression we speculated that the 2b protein might indirectly influ-
ence CMV transmission by affecting the interactions of infected
plants with aphids19. In this study we used virus-infected tobacco
to investigate the effects of the 2b protein on aphid colonization,
feeding behaviour and growth.

Results
Aphid survival is altered on tobacco infected with CMV and
CMVD2b. Groups of wingless (apterous) aphids (Myzus persicae)
comprising nymphs of the third and fourth developmental stage or
instar were confined on virus-infected tobacco leaves using clip cages
and 72 hours later the numbers of aphids that had died were
counted. Fewer aphids survived on plants infected with CMVD2b
than on mock-inoculated plants or plants infected with wild-type
CMV (Fig. 1a). The proportion of dead aphids found at this time
was similar on mock-inoculated and CMV-infected plants (27%
and 28%, respectively: Fig. 1a). In contrast, a significantly higher
proportion of aphids feeding on CMVD2b plants died over the
course of the experiment (46%). An additional two experiments
were carried out with similar results. Further statistical analysis
was carried out to confirm that these results were significant and
consistent between independent experiments. Thus, when all the
data from the three biological replicates were pooled, an effect of
both virus infection and experimental repetition was found while
there was no interaction (p,0.001 for virus infection, p,0.001
experimental repetition, and p50.34 for interaction) showing that
the results were consistent across the experiments. These analyses
were followed up using the statistical method of contrasts to compare
the proportion of aphids that died on CMVD2b-infected plants with
the proportions that died on mock-inoculated plants or plants
infected with CMV. This methodology confirmed that the effect of
CMVD2b was significant (p50.00002, 80df). Thus, the numbers of
dead aphids were higher on CMVD2b-infected than on CMV-
infected or mock-inoculated plants.

Since the survival of aphids on tobacco was compromised on
CMVD2b-infected plants, we investigated in more detail the devel-
opmental stages at which the aphids were being affected. Thus,
groups of first instar nymphs were selected and confined on mock-
inoculated, CMV-infected and CMVD2b-infected plants. Again,
fewer aphids survived on plants infected with CMVD2b than on
mock-inoculated plants; however, the period of confinement was
extended from three to seven days to see this difference (Fig. 1b).
Furthermore, aphid survival was enhanced on plants infected with
CMV (Fig. 1b). The proportion of dead aphids found on mock-
inoculated leaves was 16%, while the proportion of dead aphids on
wild-type CMV-infected plants was significantly lower at less than
2% (p5 0.0009; Student’s t-test). In contrast, the proportion of
aphids that were dead on CMVD2b infected-plants was significantly
higher at 37% (p50.04; Students t-test).

These data indicated that tobacco plants infected with CMVD2b
were more resistant to aphids than mock-inoculated plants. Furthermore,

aphids showed improved survival when transferred to CMV-infected
plants at an early stage in their development.

Aphids on CMVD2b-infected tobacco spent less time phloem
feeding. Aphid survival was compromised on tobacco plants
systemically infected with CMVD2b and enhanced on CMV-
infected tobacco. Therefore, we investigated the feeding behaviour
of individual insects on virus-infected plants using the electrical
penetration graph (EPG) technique. EPG is a continuous electro-
nic monitoring technique that allows identification of the parti-
cular plant tissue that an aphid is probing as well as the feeding

Figure 1 | Increased numbers of aphids die on tobacco plants infected
with CMVD2b. (a) Ten third and fourth instar aphids were confined to

clip cages attached to tobacco leaves systemically infected with either CMV

or CMVD2b or that had been mock-inoculated. The proportion of aphids

that died after 3 days was significantly higher on CMVD2b-infected plants

(*) compared to CMV-infected or mock-inoculated plants (ANOVA,

p#0.01). (b) Ten first instar aphids were confined to clip cages on leaves

systemically infected with either CMV, CMVD2b or that had been mock-

inoculated. Significantly more aphids died on the CMVD2b-infected

plants (*) compared to mock-inoculated plants (Student’s t test p#0.05).

Additionally, aphid survival was significantly enhanced on CMV infected

plants (**) compared to mock-inoculated (Student’s t test p#0.0009).

Error bars represent the standard error of the mean.
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activity it is engaged in (eg ingestion, salivation etc.)35–37. This enables
a full description of feeding behaviour over a given time period to be
deduced. We investigated aphid feeding behaviour and stylet activity
over a 12 h period on tobacco plants infected with CMV, CMVD2b
or on plants that had been mock-inoculated.

We examined seven key parameters of feeding behaviour (sum-
marised in Supplementary Table 1). There were no significant differ-
ences in the total time spent on each feeding activity by aphids placed
on mock-inoculated or virus-infected plants. However some marked
trends were noticed (Supplementary Figure S1). For example, the
total time spent ingesting phloem sap (the richest food source for
aphids) was lowest for aphids on CMVD2b-infected tobacco, correl-
ating with the higher mortality rate of aphids on these plants. Also,
the total time spent ingesting from the xylem (vessels containing few
nutrients and also the conduits for nicotine translocation) was lowest
for aphids on CMV-infected plants, which appeared to correlate with
improved aphid survival.

The average duration of periods of phloem sap ingestion by aphids
(calculated as the total time spent ingesting phloem divided by the
number of phloem ingestion events) and the proportion of aphids
able to carry out sustained phloem sap ingestion (classified as inges-
tion periods longer than 30 minutes) reflect an increased acceptance
of the host plant by the aphid37. We found that the average duration
of periods of phloem ingestion (not including periods cut short by
the end of the 12 hour recording period) was significantly longer in
aphids on CMV-infected tobacco (7.5 minutes) compared to aphids
on mock-inoculated or CMVD2b-infected tobacco (3.9 and 3.7 min-
utes respectively; Fig. 2a). This indicated better host acceptance by
aphids on CMV-infected plants. Furthermore, the proportion of
aphids that could carry out sustained phloem feeding was highest
on CMV-infected tobacco plants and lowest on CMVD2b-infected
plants (Fig. 2b). The difference in the total time spent on phloem
ingestion between aphids that did or did not carry out sustained
phloem feeding was large. Aphids that carried out sustained
phloem-feeding spent about 300 minutes in total on this activity
while aphids that did not carry out sustained phloem-feeding spent
a total time of 40–60 minutes feeding (Supplementary Figure 2).
Also, those aphids that did not display sustained phloem feeding
spent more time inactive or ‘not probing’, i.e. their stylets were not
engaged with the plant surface. This high proportion of aphids
spending less time feeding on CMVD2b-infected plants appeared
to correlate with the decreased survival of aphids on these hosts.

The effects of virus infection on aphid colony growth. The analysis
of feeding behaviour was followed up with an investigation of growth
rate for individual first instar nymphs on virus-infected plants.
Surprisingly, the mean relative growth rate (MRGR) of individual
aphids over the five days after birth was significantly lower on CMV-
infected plants compared to either mock-inoculated or CMVD2b-
infected plants (Fig. 3). The experiment was replicated three times
with consistent results. The MRGR is mainly determined by food
quality when the temperature is controlled and aphids are confined
to clip cages38. As adults spent more time phloem feeding on CMV-
infected tobacco (Fig. 2), the lower growth rate of the nymphs
indicated that CMV-infected plants are a poorer source of nutrition
than either mock-inoculated or CMVD2b-infected plants.

Because aphid nymphs had an enhanced survival rate on CMV-
infected plants, yet showed poorer growth on these plants, we went
on to investigate the outcome of these apparently contradictory
effects on colony development. Nymphs that had been born on
mock-inoculated or virus-infected tobacco plants were confined to
clip cages and their survival and reproduction were monitored over
15 days (Fig. 4). The greatest total number of progeny was observed
on the CMV-infected plants (Fig. 4a). This was largely the con-
sequence of the increased numbers of founder aphids surviving on
CMV-infected leaves (Fig. 4b), in line with our previous results

(Fig. 1). Furthermore, it was noticed that the decline in the founder
aphid population on mock-inoculated and CMVD2b-infected
tobacco occurred at the same time as the first progeny were deposited

Figure 2 | Duration of phloem ingestion by aphids changes on virus-
infected tobacco. Virus infection caused significant changes in aphid

feeding behaviour, as measured by the electrical penetration graph (EPG)

technique. Aphids were tethered to EPG probes and placed on individual

plants. Their feeding behaviour was recorded for 12 hours. n$14 for each

plant group. (a) The average duration of phloem ingestion was

significantly increased for aphids on tobacco plants systemically infected

with CMV (*) compared to mock or CMVD2b-infected plants (Kruskal

Wallis test p50.0029). The average duration phloem ingestion does not

include any period that was cut short by the end point of the EPG

recording. (b) The proportion of aphids showing sustained phloem

ingestion for periods longer than 30 minutes is greatest on CMV-infected

plants and lowest on CMVD2b-infected plants (x2, P5 0.042).

www.nature.com/scientificreports
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(at 7–8 days post infestation). This critical period in early adulthood
and concomitant decline in aphid survival has also been observed for
M. persicae on potato plants39.

Taken together, these results show that aphid survival and colony
establishment is enhanced on CMV-infected plants while plants
infected with CMVD2b are more resistant to aphids. Thus the 2b
protein is implicated in promoting aphid survival on CMV-infected
tobacco despite the poorer MRGR of aphids on these plants. Recent
research suggests that the signals controlling plant preference and
initiation of reproduction are detected early during the stylet pen-
etration process, i.e. before the phloem sap (nutrient supply) is
sampled40. It may be that changes in the CMV-infected cells peri-
pheral to the vasculature play an important role in promoting aphid
survival, despite the poorer MRGR of aphids on CMV-infected
tobacco. It may also explain why only aphids reared from birth (or
an early stage in their development) showed improved longevity on
CMV-infected tobacco (Fig. 1b and Fig. 4b).

Virus infection did not affect nicotine accumulation in tobacco.
Plants of tobacco and other Nicotiana species produce the alkaloid,
nicotine, which is toxic to aphids and contributes to resistance to
herbivory24. In N. attenuata RNA dependent RNA polymerase 1, a
component of the RNA silencing machinery that is affected by the 2b
protein41, regulates a range of JA-responsive processes including
nicotine production42. Therefore, we investigated the potential role
of nicotine in CMVD2b-induced aphid resistance in tobacco by
determining whether infection with this viral mutant or with wild-
type CMV affected nicotine accumulation. However, high perfor-
mance liquid chromatography showed that nicotine levels were not
elevated in CMVD2b-infected tobacco within the time-frame that
aphid experiments were carried out, i.e. four weeks after virus inocula-
tion (Fig. 5). Treatment with methyl-JA modestly enhanced nicotine
levels in mock-inoculated plants and this was also seen in CMV and
CMVD2b-infected plants. Thus, resistance to aphids induced by
CMVD2b infection is unlikely to result from induction of increased
nicotine accumulation and there is no reason to suppose that the 2b
protein directly or indirectly affects the biosynthesis of this alkaloid.

Figure 4 | Increased survival and colony development of aphids raised
from birth on CMV-infected tobacco plants. (a) Aphid nymphs were

confined from birth to 15 days old in clip cages attached to leaves of

tobacco plants systemically infected with either CMV or CMVD2b or that

had been mock-inoculated. The total number of progeny aphids was

greater on leaves systemically infected with CMV. The combined data from

18 clip cages is presented. The experiments were carried out twice with

similar results. (b) Survival of the founder aphid was lowest on leaves

systemically infected with CMVD2b and enhanced on leaves systemically

infected with CMV compared to the mock treatment.

Figure 5 | Accumulation of nicotine in virus-infected tobacco plants.
Nicotine levels in the upper leaves of plants 14 days after mock-inoculation

or inoculation with CMV or CMVD2b, with (1) or without (2) methyl-

JA treatment 24 h prior to harvest.

Figure 3 | Growth rates of aphids feeding on virus-infected and mock-
inoculated plants. The mean relative growth rate (MRGR: mg/mg/day) of

individual aphids feeding on CMV-infected plants was significantly lower

compared to aphids feeding on CMVD2b-infected and mock-inoculated

plants (ANOVA, p50.0003). Different letters are assigned to significantly

different results (post-hoc Tukey tests, p, 0.01). Data is presented in a box

plot where the horizontal line within the box represents the 50th percentile

(median) and the top and bottom of the box represent the 75th and 25th

percentile respectively, while the extent of the whiskers indicates the

maximum and minimum of all the data.

www.nature.com/scientificreports
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Discussion
Plants systemically infected with the mutant virus CMVD2b exhib-
ited strong resistance to M. persicae indicated by increased numbers
of dead aphids on CMVD2b-infected plants. In contrast, aphid sur-
vival and colony development was improved on CMV-infected rela-
tive to mock-inoculated plants. The results imply that in tobacco one
or more CMV gene products other than the 2b protein (i.e., the 1a,
2a, movement or coat proteins) are elicitors of resistance to aphids.
These observations further suggest that during an infection of
tobacco with wild-type CMV the 2b protein somehow masks or
inhibits the effects of the conjectured elicitor molecule and prevents
the triggering of resistance to aphids. Our results indicate that in
tobacco the CMV 2b protein fine-tunes resistance signalling to aid
aphid infestation, which is a novel property for this multifunctional
viral protein.

Infection of host plants altered the feeding behaviour of aphids.
Although the average duration of periods of phloem feeding was
significantly longer on CMV-infected tobacco, the rate of aphid
nymph biomass increase was lowest on these plants. Fu et al.43 also
found that the mass of individual adult aphids was lower on CMV-
infected tobacco compared to mock-inoculated controls. Thus,
increased feeding from the phloem of CMV-infected plants may be
a response to decreased nutritional quality of these plants. We did not
find any differences in nicotine levels following four weeks of CMV
or CMVD2b infection indicating that nicotine was not responsible
for the lower aphid mass or for the increased death of aphids placed
on CMVD2b-infected plants. We also found that the proportion of
aphids indulging in sustained phloem feeding (an indication of the
ease with which aphids can feed on a host) was highest on CMV-
infected plants and lowest on CMVD2b-infected plants. The dif-
ficulty in attaining sustained phloem feeding on CMVD2b-infected
plants could have contributed to the higher mortality rates of aphids
on these hosts.

Virus infections are known to alter host plant attractiveness and
suitability for aphid colonisation. Macias and Mink44 observed that
aphids were attracted to sugar beet plants infected with beet yellows
virus and showing symptoms of chlorosis. Aphids are also attracted
by volatiles released by virus-infected plants. This has been thought
to be associated with the persistent mode of transmission, where long
feeding periods are needed for successful virus acquisition39,45–48.
However, volatile signals can attract aphids to plants infected with
non-persistently transmitted viruses like CMV26. Virus infection
alters host carbohydrate metabolism49–51, which could conceivably
influence the performance and fecundity of aphids on infected
plants. Nevertheless, it is not always the case that this will encourage
onward transmission of viruses52.

Powell28 showed that viruses with a non-persistent mode of trans-
mission are acquired very rapidly from epidermal cells of infected
plants by aphids after only a short probing/feeding period. Aphids do
not retain these viruses for long. CMV is retained for no more than
four hours, providing the aphid does not lose the virus during sub-
sequent feeds4. Our results show that in tobacco, CMV fostered the
longevity of aphids thereby promoting colony development. In con-
trast, CMVD2b induced resistance to aphids. While it should be
remembered that CMVD2b is an artificial construct that does not
occur in nature, experiments with this mutant virus strongly suggest
that in tobacco a potential role for the 2b protein is to inhibit the
induction of resistance to aphids, caused either by CMV-encoded
factors, or by the process of virus infection itself. Since virus trans-
mission efficiency is substantially diminished on plants exhibiting
strong resistance to aphids22,53, it might be argued that the 2b protein
indirectly aids transmission by inhibiting insect resistance. However,
while inhibiting resistance to insects may aid aphid survival and
favour the growth of aphid populations, it may not favour spread
of virus-carrying aphids to new hosts.

An alternative possibility is that the action of the CMV 2b protein
is mutually advantageous to the vector and virus by promoting the
persistence of both within a plant community. For example, aphids
over-winter on a variety of hardy plants that act as reservoirs of CMV
and other viruses. When aphids become active in springtime, these
plants are potential foci for renewed virus transmission54. Thus,
inhibition of aphid resistance in host plants may not accelerate the
rate of CMV transmission but may help ensure the persistence of the
virus and its seasonal re-emergence. Given the importance of insect
transmission to most plant viruses, we suggest that manipulation of
defensive signalling pathways to enhance vector survival may be a
general role for viral silencing suppressor proteins.

Methods
Insect, plant and virus stocks and chemical treatments. Colonies of M. persicae
(Sulzer) (Insecta: Hemiptera: Aphididae) clone US1L55 were maintained on tobacco
(Nicotiana tabacum L. cv. Xanthi) plants at 20uC and 70% relative humidity under
artificial light with a photoperiod of 16 hours. Tobacco seeds were sown on Levington
M3 compost (Scotts, Chilworth, Ipswich, UK) and seedlings transplanted into
individual pots at the two-to-three leaf stage. Plants were cultivated in a growth
room (Conviron, MB, Canada) at 21uC with a photoperiod of 16 hours light
(200 mE.m22.sec21). CMV strain Fny56 and its 2b gene deletion mutant, CMVD2b17,
were propagated in tobacco and purified by the method of Ng and Perry57.

Tobacco plants were inoculated with purified virions of CMV or CMVD2b at the 3-
to 4-leaf stage. Infection by CMV led to visible symptoms and did not require addi-
tional confirmation. Systemic infection of leaves by CMVD2b (which is symptomless)
was assessed either by DAS-ELISA (Bioreba AG, Reinach, Switzerland), or using
Agdia ‘Immunostrips’ (Agdia Inc., Elkhart, IN, USA). All samples that tested positive
for CMVD2b were verified by a reverse-transcription polymerase chain reaction
method as described previously18.

Aphid performance. For aphid survival experiments, ten aphids were selected based
on instar and placed into clip cages on leaves of tobacco plants that were either mock-
inoculated or infected with either CMV or CMVD2b. Aphids were monitored daily
over the course of experiments. Statistical significance within each experiment was
assessed by ANOVA [with individual testing performed by introducing appropriate
contrasts58] or Student’s t-test. For experiments in which individual ‘founder’ aphids
were monitored for survival and production of progeny, a single adult aphid was
confined in a clip cage for 24 hours to allow birth of a single nymph. The adult aphid
was then removed, and the remaining ‘founder’ nymph was monitored over the
following 15 days.

The mean relative growth rate (MRGR) of aphids in mg/mg/day was calculated
using the formula MRGR 5 (logeWfinal2logeWinitial)/t, where t 5 time in days
between initial and final measurements of aphid fresh weight (W 5 mg). One-day-old
first instar nymphs were individually weighed on a microbalance (MX5, Mettler-
Toledo Inc., Columbus, OH, USA) before being placed on test plants. The final weight
of each aphid was taken five days after infestation. Twenty replicates per treatment
group were used. The experiment was performed three times with similar results.

Monitoring of aphid feeding behaviour. The direct-current EPG method35 was used
to monitor aphid stylet probing activity on tobacco leaves. Individual aphids were
pre- starved for 30–60 mins and tethered to 4 cm of 20 mm diameter gold wire (EPG
systems, Wageningen, The Netherlands) using conductive silver paint (Electrolube,
Swadlincote, UK, or EPG systems). The gold wire was soldered to a 1 cm brass pin,
connected to an amplifier with 1 GV resistance and 50–100X gain. Connected aphids
were placed on individual plants inside a Faraday cage and signals received from the
EPG monitor were displayed and analysed using PROBE 3.4 software (EPG systems).
Waveforms were scored according to Tjallingii and Hogen Esch37. Relevant aphid
behaviour-related EPG parameters were calculated using Microsoft Excel-based
spreadsheets developed by Dr. Edgar Schliephake (Julius Kühn Institut, Germany)
and described by Sarria et al.59.

Nicotine analyses. The lowest leaves of tobacco plants were inoculated with CMV or
CMVD2b or mock-inoculated. Four weeks post-inoculation, the upper leaves were
harvested and confirmed as virus-infected by RT-PCR. Leaves were ground in liquid
nitrogen and freeze-dried. Nicotine was extracted in methanol-water-concentrated
HCl [40/59.9/0.1 (v/v/v)] and analysed by high performance liquid chromatography
as described by Gonzalez-Rabade et al.60 using a Luna C18 column (2310 mm, 3 mm
particle size, Phenomenex, Macclesfield, UK) and a Finnigan Surveyor system
coupled to a Finnigan PDA detector (Thermo Fisher Scientific, Hemel Hempstead,
UK). Quantification was carried out using the linear range of a standard curve
constructed with known amounts of nicotine (Sigma-Aldrich, Poole, Dorset, UK) and
Xcalibur software (Thermo Fisher Scientific).
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