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Abstract: Target-oriented agents improve metastatic colorectal cancer (mCRC) survival in combi-
nation with chemotherapy. However, the majority of patients experience disease progression after
first-line treatment and are eligible for second-line approaches. In such a context, antiangiogenic
and anti-Epidermal Growth Factor Receptor (EGFR) agents as well as immune checkpoint inhibitors
have been approved as second-line options, and RAS and BRAF mutations and microsatellite status
represent the molecular drivers that guide therapeutic choices. Patients harboring K- and N-RAS
mutations are not eligible for anti-EGFR treatments, and bevacizumab is the only antiangiogenic
agent that improves survival in combination with chemotherapy in first-line, regardless of RAS
mutational status. Thus, the choice of an appropriate therapy after the progression to a bevacizumab
or an EGFR-based first-line treatment should be evaluated according to the patient and disease
characteristics and treatment aims. The continuation of bevacizumab beyond progression or its
substitution with another anti-angiogenic agents has been shown to increase survival, whereas anti-
EGFR monoclonals represent an option in RAS wild-type patients. In addition, specific molecular
subgroups, such as BRAF-mutated and Microsatellite Instability-High (MSI-H) mCRCs represent
aggressive malignancies that are poorly responsive to standard therapies and deserve targeted ap-
proaches. This review provides a critical overview about the state of the art in mCRC second-line
treatment and discusses sequential strategies according to key molecular biomarkers.
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1. Introduction

Colorectal cancer (CRC) represents the third most common cancer worldwide and the
second cause of cancer-related death [1,2]. About 20% of patients with CRC have advanced
disease at time of diagnosis, and 35% of patients treated with curative intent will develop
metastatic disease [1,2].

During the last two decades, a great improvement in the cure and the prognosis of
metastatic CRC (mCRC) has been observed, due to the advances in molecular biology
in addition to the introduction of active chemotherapy and target-oriented agents [34].
The molecular characterization of human CRC has been object of extensive investigation
in the past years and the Cancer Genome Atlas Network pointed out that, excluding the
hypermutated cancers, CRCs are characterized by considerably similar patterns of genomic
alterations. Twenty-four genes were found to be significantly mutated, and most of them
belong to three major signaling pathways: Wnt and TGFf3, PI3K and RTK/RAS, and
p53 [5].

In particular, two pathways have been investigated in a clinical perspective: the
Epidermal Growth Factor Receptor (EGFR) and the Vascular Endothelial Growth Factor-
(VEGEF) cascades [6]. The anti-EGFR agents, cetuximab and panitumumab were shown to
increase the overall survival (OS) in phase IIl randomized trials with anticancer activity lim-
ited to the RAS wild-type mCRC population [7-9]. In fact, mutations in RAS genes predict
a lack of response to these agents in either first- or second-line settings [10]. Consistently,
RAS mutations have been related to a worse prognosis in mCRC patients [10].

Moreover, the anti-VEGF molecules bevacizumab, aflibercept, and ramucirumab have
improved mCRC outcomes in several phase III studies [11-13]. It is universally accepted
that the exposure of mCRC patients to all active drugs during the clinical course of the
disease prolongs survival; this represents a strong rationale for sequential therapeutic
strategies [14]. Chemotherapy schedules containing fluoropyrimidines, oxaliplatin, and
irinotecan (either in doublet or in triplet combinations) together with targeted agents (ce-
tuximab, panitumumab, or bevacizumab), depending on RAS mutational status, represent
the standard of care in mCRC first-line treatment [15,16].

Recent evidence suggests that the prognosis of mCRCs and the activity of first-line reg-
imens is also affected by the primary tumor site, with the right-side mCRCs characterized
by a worst prognosis and RAS wild-type mCRCs arising in left colon being more sensitive
to EGFR-based therapy compared to RAS wild-type mCRCs arising in right colon [17-19].
BRAF mutations are found in 8-12% of cancers, with BRAFV®"E accounting for more than
90% of mutations in BRAF-mutated cancers [20,21]. It is known that BRAF mutations are
responsible for worse prognosis and therapy resistance, representing, at the same time, a
potential target for new drugs and combinations [22-24].

In fact, recent data from a phase III trial demonstrated longer survival in BRAF
mutant mCRC patients treated with combination of three agents, Encorafenib, Binimetinib,
and Cetuximab compared to chemotherapy plus cetuximab [25]. Furthermore, a high
tumor mutation burden has emerged as a marker of responsiveness to immunotherapy in
several cancers [26,27]. In 2017, based on practice-changing phase I-1I data, the US FDA
approved the immune checkpoint inhibitors, pembrolizumab and nivolumab as second-
line treatments of mCRCs that are mismatch-repair-deficient (AMMR) or have high levels
of microsatellite instability (MSI-H) [28-30]. By contrast, immune checkpoint inhibitors
are ineffective in mismatch-repair-proficient (pMMR), microsatellite-stable (MSS), and low
levels of microsatellite instability (MSI-L) tumors [28].

The choice of second-line schedule depends on the previous regimen, RAS/BRAF /MSI
status, treatment aim, and patient profile [31]. Evidence from randomized phase III
studies indicated that the continuous inhibition of tumor angiogenesis with bevacizumab,
aflibercept, or ramucirumab beyond the first progression to bevacizumab may improve
survival [32]. In addition, anti-angiogenic agents showed interesting second-line activity
in combination with chemotherapy in patients treated with anti EGFR agents in first-line.
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Fewer data are available regarding the use of anti-EGFR drugs beyond progression
to an anti-EGFR based first-line therapy; thus, second-line anti-EGFR monoclonals are
generally used in RAS wild-type tumors after the failure of first-line bevacizumab-based
therapy [30,33]. Emerging data are available in BRAF mutated and MSI-H mCRC, and
novel strategies have been recently added to the Oncologist’s portfolio of drugs in the
management of these patients.

Finally, as defined by gene expression profiling approaches, mCRC has been divided
into four distinct consensus molecular subtypes (CMSs). The four subtypes are CMS1, with
MSI-H and immune activation (14%); CMS2, with canonical CRC alterations (37%); CMS3,
with metabolic dysregulation (13%); and CMS4, with mesenchymal features (23%) [22,34].
Those subtypes reflect distinct biological states and have been shown to be both prognostic
for OS and predictive for benefit from cetuximab and bevacizumab in the CALGB 80405
and AIO-FIRES3 trials.

Patients classified as CMS1 appear to derive more benefit from bevacizumab, while
those classified CMS2 appear to derive more benefit from cetuximab [35,36]. Therefore, in
this intricate scenario, a therapeutic sequential strategy using the most effective combina-
tions of chemotherapy and target agents both in first- and second-line settings is desirable
to maximize patient outcomes. In this article, we present all second-line therapeutic options
for mCRC, showing the mechanism of action of each molecule and phase III trial data.
Furthermore, we discuss the potential rationale supporting the use of sequential strategies,
using the available agents after first-line therapy.

2. Antiangiogenic Drugs in mCRC Second-Line Therapy

Currently, bevacizumab, aflibercept, and ramucirumab are the anti-angiogenic drugs
approved by regulatory authorities in mCRC second-line therapy, in combination with stan-
dard chemotherapy. The mechanisms of action and clinical indication of these molecules
are summarized in Table 1.

Table 1. Target agents approved in mCRC second-line treatment.

Drug Type of Molecule Mechanism of Action 2nd Line Labelling
Bevacizumab Humanized MoAb Binding VEGF-A Plus standard CHT
Aflibercept Recombinant VEGEFR decoy binding Plus FOLFIRI in OXA
ercep Fusion Protein VEGF-A/B; PIGF pretreated
. Fully Human . Plus FOLFIRI in OXA + FP
Ramucirumab MoAb Binding VEGFR2 + BEV pretreated
. Human-Mouse T .
Cetuximab Chimeric MoAb Binding EGFR Plus IRT in RAS wt
Panitumumab Mﬁ’/[?;?an Binding EGFR Plus FOLFIRI in RAS wt
Threonine and
Encorafenib Serine kinase BRAF gene Inhibition Plus CET in BRAFVO00E m¢

Inhibitor

MSI-H or dMMR FP, OXA

Pembrolizumab Humanized MoAb Binding PD-1

and IRI pretreated
. . Fully Human .. MSI-H or dMMR FP, OXA
Nivolumab MoAb Binding PD-1 and IRI pretreated

MoAb: Monoclonal Antibody; CHT: chemotherapy; OXA: oxaliplatin; FP: fluoropyrimidines; BEV: bevacizumab;
wt: wild type; MSI-H: microsatellite instability-high; AMMR: mismatch repair deficient; and * approved alone or
plus ipilimumab.

2.1. Bevacizumab

Bevacizumab is a humanized monoclonal antibody binding VEGF-A, which is able
to prevent the interaction with its receptor Vascular Endothelial Growth Factor Receptor-
2 (VEGEFR-2) [37]. It represents a cornerstone in mCRC first-line therapy, in combina-
tion with irinotecan-, oxaliplatin-, and fluoropyrimidine-based doublet and triplet sched-
ules [11,38—40]. Notably, the role of bevacizumab has been investigated in mCRC second-
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line treatment after failure of either anti-EGFR or bevacizumab-based regimens. The ECOG
3200 study randomly assigned 829 patients to receive either FOLFOX 4 plus bevacizumab,
FOLFOX 4 or bevacizumab alone as second-line therapy for mCRC in patients previously
treated with irinotecan- and fluoropyrimidine-based regimens for advanced disease.

The OS was significantly longer in the FOLFOX 4 plus bevacizumab arm compared
to FOLFOX 4 and single agent bevacizumab (Table 2). Major grade 3—4 toxicities in the
FOLFOX 4 plus Bevacizumab arm were represented by hypertension, bleeding, neuropathy,
and vomiting [41]. Two observational studies (BRITE and ARIES) suggested that the use
of post-progression bevacizumab may result in better outcomes [42,43]. Based on these
results, a prospective, intergroup, randomized, open-label, phase III study (ML18147)
was designed.

Patients with mCRC, Eastern Cooperative Oncology Group (ECOG) Performance
status (PS) 0-2, who had progressed within 4 weeks to a bevacizumab plus standard
first-line chemotherapy (flouropyrimidine plus either oxaliplatin or irinotecan) and who
were not candidates for primary metastasectomy were included in this trial. At the time of
enrolment, patients were randomized to receive treatment with fluoropyrimidines plus
irinotecan or oxaliplatin with or without bevacizumab. The second-line regimen was
chosen according to the first-line schedule (i.e., patients who received first-line irinotecan
were switched to second-line oxaliplatin and vice versa).

The primary end-point was OS; the secondary end-points were Progression Free
Survival (PFS), OS from the start of first-line treatment, response rate (RR), and safety.
Eight-hundred-twenty patients were randomly assigned to bevacizumab plus chemother-
apy (n = 409) or chemotherapy alone (1 = 410) with an intention-to-treat population of
819 patients. The median OS was superior in the bevacizumab plus chemotherapy treat-
ment arm compared to chemotherapy alone.

Consistently, the median PFS was significantly longer in the bevacizumab beyond
progression versus chemotherapy alone group. The response rate (RR) was similar in the
two groups (Table 2), whereas a higher disease control rate (DCR) was obtained in the
bevacizumab arm compared to chemotherapy alone (68% vs. 54% respectively; p < 0.0001)
in a post hoc analysis.

The median OS from the start of the first-line treatment was retrospectively doc-
umented, and no differences were observed between bevacizumab plus chemotherapy
(23.9 months) and chemotherapy alone (22.5 months; p = 0.17). Safety analysis indicated
no substantial differences between the two study groups [44]. A very similar study (BEBYP
trial) was performed in 19 Italian centers; however, the announcement of ML18147 results
led to its premature interruption. A partial results publication furnished data consistently
aligned with the ML18147 trial findings [45].

2.2. Aflibercept

Aflibercept is a humanized recombinant fusion protein that binds to VEGF-A, VEGF-
B, and Placental Growth Factor (PIGF), thus, inhibiting interaction with their specific
receptors [46]. This agent acts as a decoy receptor deriving from the fusion of VEGFR-1
and VEGFR-2 extracellular domains with Fc part of human IgG1 [46]. The particular
technology and structure allow a more complete angiogenesis blockade than other anti-
angiogenic agents, also influencing the cross talk between tumor microenvironment and
pro-angiogenic factors [47].

VELOUR was an international, double-blinded, phase III trial in which 1226 patients
with mCRC, who had progressed to oxaliplatin-based first-line treatment, were randomized
to receive either combination of FOLFIRI plus aflibercept or FOLFIRI plus placebo. The
primary end-point of this study was the OS; secondary end-points were PFS, RR, and safety.
Notably, patients early relapsed during oxaliplatin-based adjuvant chemotherapy, as well
as bevacizumab pre-treated patients were included in this study. FOLFIRI plus aflibercept
significantly increased the median OS compared to FOLFIRI plus placebo; PFS was also
longer in the aflibercept plus FOLFIRI group.
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The addition of aflibercept to FOLFIRI almost doubled the RR respect of FOLFIRI plus
placebo (Table 2). Major grade 3—4 toxicities in the aflibercept arm were diarrhea (19.3%),
hypertension (19.3%), stomatitis and ulcerations (13.7%), neutropenia (36.7%), asthenic
condition (16.9%), infections (12.3%), thromboembolic events (9.7%), proteinuria (7.9%)
and gastrointestinal perforation (0.5%) [12]. A further analysis by Ruff et al. observed a
progressive increase in OS difference between the two study groups over the course of
time. In this analysis, a 4.4-month difference in favor of aflibercept-based treatment at 24
months was demonstrated [48].

The efficacy of aflibercept-based treatment was maintained also in elderly patients
(>65 years), and it was independent from prior bevacizumab treatment in a predefined
analysis [49,50]. The benefit of aflibercept plus FOLFIRI schedule was also consistent
in further post hoc analysis evaluating the time of progression from first-line therapy
(<9 months versus >9 months) in oxaliplatin plus bevacizumab pre-treated patients [51].
In a post hoc analysis excluding patients that recurred during or within 6 months of
completing adjuvant treatment, the gain in OS within aflibercept arm increased from 1.4 to
1.9 months [52].

The median OS from the start of first-line treatment until death was significantly higher
in aflibercept plus FOLFIRI versus placebo plus FOLFIRI group (25.95 versus 22.87 months,
respectively), whereas rapid relapsers were excluded [53]. Chau et al. attempted to identify
the better efficacy subgroup in the VELOUR ITT population by using prognostic factors.
Patients with no fast relapse from adjuvant treatment, ECOG PS 0, and any number of
metastatic sites or ECOG PS 1 with <2 metastatic sites showed better OS, PFS, and RR [54].
Notably, a biomarker analysis performed in the VELOUR study population evaluated the
role of the mutational status of K-RAS exon 2, extended RAS, and BRAF in order to identify
subgroups of patients with differential treatment effects.

None of the mutation subgroups showed a significant interaction; in particular, a
major benefit was demonstrated in BRAF mutant patients with the addition of aflibercept.
The same analysis showed that tumor sidedness did not affect the aflibercept efficacy [55].
Following the VELOUR results, the Aflibercept Safety and Quality of Life Program (ASQoP)
international, multicenter, open-label, single arm phase IlIb/IV study was performed.
Safety of the treatment was the primary end-point, and health-related quality of life was
the secondary end-point. Globally, this study showed a similar safety profile of aflibercept
plus FOLFIRI combination in a real-life population [56].

2.3. Ramucirumab

Ramucirumab is a fully human IgG1 monoclonal antibody that binds the VEGFR-2
extracellular domain preventing the interaction between all VEGF ligands and their recep-
tor [57]. This drug represents another option in second-line therapy for mCRC patients
who had progressed to a bevacizumab plus oxaliplatin first-line treatment [58]. The inter-
national, multicenter, double-blinded, randomized, phase III study RAISE evaluated the
efficacy of second-line ramucirumab plus FOLFIRI versus placebo plus FOLFIRI in mCRC.

One-thousand-seventy-two patients with ECOG PS 0-1, known K-RAS exon 2 muta-
tions, progressed during or within 6 months from the last dose of first-line combination
therapy of bevacizumab plus oxaliplatin and fluoropyrimidines were enrolled. Patients
with poorly controlled hypertension, thromboembolic events within 12 months form ran-
domization, or during first-line therapy and grade 3—4 bleeding or proteinuria events
during first-line treatment were excluded. Region, K-RAS mutation status, and time to dis-
ease progression after starting first-line treatment were considered as stratification factors.

The OS was the primary study end-point; PFS, RR, DCR, safety, and quality of life
evaluation were secondary end-points. Both median OS and PFS were superior in the
ramucirumab plus FOLFIRI versus placebo plus FOLFIRI group. No differences in RR were
observed in the two study groups (Table 2). Major grade 3—4 toxicities in the experimental
arm were diarrhea (11%), fatigue (12%), neutropenia (38%), bleeding /hemorrhage (3%),
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and hypertension (12%). Despite that this study was not statistically powered for subgroup
analysis, the ramucirumab benefit was consistent in all subgroups [13].

A pre-specified analysis showed that K-RAS wild-type patients had a significant
OS increase in the ramucirumab plus FOLFIRI arm compared to placebo plus FOLFIRI
(14.4 versus 11.9 months respectively; HR 0.82; p = 0.049). Conversely, a smaller but not
statistically significant benefit was observed in K-RAS mutant patients. The correlation
between first-line time to progression (TTP) and ramucirumab benefit was also investigated,
and no OS benefit in <6 months first-line TTP patients was observed. Patients who had
>6 months first-line TTP achieved a longer but not significant OS in the ramucirumab arm
versus control (14.3 versus 12.5 months, respectively).

These results may be influenced by the under-power of this study for subgroups
evaluation. Age-based analysis (<65 versus >65) showed a similar survival advantage
with ramucirumab in both groups [59]. Post hoc analyses of RAISE patients evaluated
the association of RAS/RAF mutational status and the site of the primary tumor (left
versus right) with efficacy parameters. Notably, the ramucirumab plus FOLFIRI schedule
improved patient outcomes, regardless of the RAS/RAF mutational status and the primary
tumor site.

Ramucirumab treatment provided a numerically substantial, although not statistically
significant, benefit in BRAF-mutated tumors, possibly due to the small sample of BRAF
mutated patients [60]. Further exploratory post-hoc analyses of RAISE data showed that
patients with treatment-emergent neutropenia had longer OS compared with those without
and patients with low versus high baseline absolute neutrophil count also had longer
OS [61]. Interestingly, the survival benefit was independent from the baseline CEA levels
(high > 10 vs. low < 10) [62].

3. Anti-EGFR Drugs in mCRC Second-Line Treatment

Two monoclonal antibodies (i.e., cetuximab and panitumumab) have been approved
in mCRC second-line treatment with the limitation to RAS wild-type patients. The mecha-
nisms of action and clinical indications of these molecules are shown in Table 1.

3.1. Cetuximab

Cetuximab is a chimeric IgG1 monoclonal antibody that targets the extracellular
domain of the EGFR and blocks ligand-induced tyrosine-kinase downstream signaling. This
molecule also exerts its effect by its immunomodulatory activity via antibody-dependent
cell-mediated cytotoxicity (ADCC). Cetuximab stimulates ADCC activity when its constant
region (Fc) binds to a Natural Killer cell receptor (CD16/FcyRIlla) leading their own lytic
activity on tumor cells [63]. The combination of cetuximab and chemotherapy represents a
standard of care in mCRC first-line treatment in RAS wild-type patients according to the
results of phase Il randomized trials, especially in tumors arising in the left colon [7,19,64].

The role of cetuximab has been also investigated in second-line mCRC therapy. The
BOND phase III study randomized 329 mCRC refractory patients, who had progressed to
at least one prior therapy to receive either cetuximab plus irinotecan or cetuximab alone.
Combination treatment showed significant benefit in PFS and RR, with no differences in OS
(Table 2) [65]. Second-line cetuximab in combination with irinotecan in refractory mCRC
patients also showed a significantly higher PFS and response rate compared to irinotecan
alone in the EPIC phase IIl randomized trial. No difference in the median OS was observed
between the two study arms (Table 2) [66]. Both in BOND and EPIC studies, most relevant
grade 3—4 toxicities related to Cetuximab treatment were represented by skin rash, diarrhea,
hypomagnesemia, and associated electrolyte imbalance.

The role of cetuximab treatment beyond the progression to cetuximab-based first-line
therapy was investigated in a phase II study. The CAPRI trial evaluated 340 K-RAS wild-
type patients who had received first-line therapy with FOLFIRI plus cetuximab. At the time
of progression, 153 patients were randomized to receive second-line treatment with either
FOLFOX plus cetuximab or FOLFOX alone. In the ITT population, the median PFS was
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6.4 versus 4.5 months in FOLFOX plus cetuximab and FOLFOX-alone arms, respectively
(HR 0.81,95% CI 0.58-1.12; p = 0.19).

Accordingly, no significant difference in the median OS between the two study groups
was observed (17.6 vs. 14.0 in combination regimen and FOLFOX alone, respectively;
HR 0.86, 95% CI 0.61-1.20; p = 0.41). RR in the FOLFOX plus cetuximab arm was 21.6%
vs. 12.7% in FOLFOX group. A further Next Generation Sequencing (NGS) retrospective
analysis on 22 genes involved in EGFR-pathway was performed in order to evaluate the
impact of K-N-RAS, BRAF or PIK3CA mutations on patient outcomes.

NGS analysis was done in 117 of 153 patients, and a trend in better outcomes (PFES,
OS and RR) was observed in K-N-RAS, BRAF, and PIK3CA quadruple wild-type patients
treated with FOLFOX plus cetuximab. A detrimental effect of FOLFOX plus cetuximab
was observed in patients harboring at last one mutation in these genes. Continuation of ce-
tuximab beyond first progression was not associated with an increased toxicity profile [67].

3.2. Panitumumab

Panitumumab is a fully human monoclonal IgG2 antibody that binds to the extracellu-
lar domain of EGFR inhibiting ligand-induced downstream signaling [68]. A combination
of panitumumab and chemotherapy in RAS wild-type populations is a standard of care in
mCRC first-line therapy [9]. A randomized phase III trial evaluated the benefit of adding
panitumumab to FOLFIRI versus FOLFIRI alone in 1186 mCRC patients who had pro-
gressed to a fluoropyrimidine-based first-line therapy. Patients were prospectively tested
and analyzed for K-RAS mutational status. OS and PFS were the co-primary study end
points in K-RAS wild-type and mutant patients, respectively.

No differences in OS and PFS were observed in K-RAS mutant population within the
two study arms, without detrimental effects. Panitumumab plus FOLFIRI significantly
increased PFS versus FOLFIRI alone but not OS in K-RAS wild-type patients. In this
population, RR was higher in panitumumab plus FOLFIRI arm compared to FOLFIRI alone
(Table 2) [69]. The combination of panitumumab and irinotecan in mCRC patients pro-
gressed to a first-line fluoropyrimidine therapy was also investigated in the PICCOLO trial.

In this study, 1198 mCRC patients without molecular selection were randomly al-
located in panitumumab plus irinotecan or irinotecan alone treatment arms. The study
protocol was amended in order to allow stratification according to K-RAS mutational status.
The final analysis was performed in 460 K-RAS wild-type patients previously untreated
with anti-EGFR molecules. The addition of panitumumab to irinotecan showed a signifi-
cant improvement in PFS and RR versus irinotecan alone (Table 2) [70]. The panitumumab
toxicity profile was characterized by a higher incidence of skin rash and diarrhea.

4. Braf Inhibitors in mCRC

The BRAFVYE mutation is the more common BRAF mutation in CRC and is respon-
sible for a poor prognosis, resulting in nearly a two-fold increase in mortality relative
to wild-type BRAF in the metastatic setting [71]. Usually, BRAF"*"F mutations are as-
sociated with a right-sided primary tumor, advanced age, female sex, high tumor grade,
and precursor sessile serrated adenomas [72]. BRAFV®0E CRC is also associated with
the CpG island methylator phenotype (CIMP status), which may result in the epigenetic
inactivation of MLH1, inducing a mismatch repair deficiency (AIMMR) and, consequently, a
MSI phenotype [73].

Among BRAFV6%E mCRC patients, approximately 20% exhibit deficient dMMR [72].
More than 200 BRAF uncommon (non-V600E) mutations have been identified, with a
combined incidence ranging from 1.6% to 5.1%. The prognosis of these patients appears
to be similar to those with wild-type BRAF mCRC [74]. Although BRAF inhibitors have
been practice-changing in the treatment of BRAF-mutated melanoma, they demonstrated a
surprising and striking lack of efficacy as single agents in patients with colorectal cancer
harboring BRAF VO0OE mutations [75,76].
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The knowledge that the biology is more complex and heterogeneous in CRC than
in melanoma is supported by several preclinical data suggesting that, differently from
melanoma, CRC cell lines express high levels of activated EGFR, which convey a reactiva-
tion of MAPK pathway following BRAF inhibition [77,78]. In preclinical studies, anti-EGFR
therapy with either small molecule inhibitors (i.e., erlotinib) or monoclonal antibodies (i.e.,
cetuximab) rendered cell lines sensitive to the BRAF inhibitors. Furthermore, there are
additional pathways involved in the resistance to BRAF inhibitors in BRAF-mutated CRC
cells and, among others, the PI3K/AKT signaling pathway and the crosstalk between Wnt
and MAPK pathways [79,80].

These preclinical data suggest that both EGFR activation and aberrant PI3K signaling
as well as interaction with the Wnt pathway may underlie the limited therapeutic activity of
BRAF inhibitor monotherapy in patients with BRAF-mutated mCRC [81]. Therefore, com-
bining drugs targeting both MAPK and Wnt pathways may also be an effective strategy in
managing BRAF-mutated mCRC [82,83]. One of the major strategies investigated in the last
few years is represented by the combination of BRAF inhibitors and anti-EGFR antibodies.

Fifteen patients with BRAFVE mCRC were treated with vemurafenib (BRAF in-
hibitor) and panitumumab, and 10 of 12 evaluable patients showed some tumor regres-
sion with two patients showing a partial response and stable disease lasting more than
6 months [84]. Thus, a newer combination treatment, including the addition of targeted
agents to chemotherapy, was subsequently evaluated. The combination of irinotecan and
cetuximab with or without vemurafenib was studied in 106 patients with BRAFV%%F mCRC
in a phase II study (SWOG 1406). This study demonstrated that the triplet regimen was
characterized by better PFS and ORR (17% versus 4%; p = 0.05) with a disease control rate
of 65% versus 21% [85].

Preclinical models showed that the pharmacological inhibition of BRAF leads to
the suppression of ERK-dependent negative feedback mediators that, in turn, results in
RAS and other RAF kinase activation. Consequently, the combination of BRAF and MEK
inhibitors may overcome this mechanism of resistance, resulting in a strong suppression
of this pathway. In a phase I/1I clinical trial, 142 mCRC patients were enrolled into three
different treatment arms, including a triplet arm containing dabrafenib (BRAF inhibitor),
trametinib (MEK inhibitor), and panitumumab (EGFR inhibitor), as well as two doublet
arms of panitumumab with either dabrafenib or trametinib.

The confirmed response rate was 21% in the triplet arm and 10% in the panitu-
mumab/dabrafenib arm. No response was observed in the panitumumab/trametinib
arm. This study confirmed the activity of targeted treatments for BRAFV*"E CRC and
the relevance to obtain a simultaneous and more potent inhibition on MAPK axis [86].
Encorafenib is a highly selective ATP-competitive small molecule RAF kinase inhibitor,
which suppresses the RAF/MEK/ERK pathway in tumor cells expressing the BRAFV600E
mutation (Table 1).

As for vemurafenib, no responses were observed with encorafenib monotherapy [87].
Promising results were observed in a dose-escalation trial with encorafenib and cetux-
imab in 26 BRAF-mutated CRC patients. The RR was 23.1%, 14 patients achieved stable
disease, the clinical benefit rate was 54%, and the median PFS was 3.7 months [88]. In
the following phase II trial, 102 mCRC patients who had received at least two prior
therapies were randomized to receive encorafenib plus cetuximab with or without the
PIK3A inhibitor alpelisib.

A pre-specified PFS analysis comparing the triplet to the doublet showed a median
PFS of 5.4 and 4.2 months and confirmed ORR of 27% and 22%, respectively. Interim
OS analysis (triplet vs. doublet) showed a median OS of 15.2 months with the triplet
combination, while the OS was not reached in patients receiving the doublet [89].

The BEACON study is a phase III trial in 665 patients with BRAF"%E metastatic
CRC who have received more than one line of prior treatment and that were randomized
(1:1:1) to a triplet arm of encorafenib, binimetinib (MEK inhibitor), and cetuximab, an enco-
rafenib and cetuximab arm, or an investigator choice arm of either irinotecan/cetuximab or
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FOLFIRI/ cetuximab. The study included a safety lead-in phase with triplet treatment prior
to initiation of the randomized component of the study. Thirty patients were enrolled in the
safety lead-in phase, the overall RR was 48%, and the median PFS and OS were 8.0 months
and 15.3 months, respectively.

The triplet regimen was well tolerated with five dose-limiting toxicities observed
(two serous retinopathy, one reversible left ventricular ejection fraction decrease, and
two cetuximab-related infusion reactions) [90]. Given the very encouraging preliminary
response data, this regimen was granted a Breakthrough Therapy designation by the U.S.
FDA and was also added to the NCCN guidelines as a first-line treatment option for
BRAFV0E CRC. At the final analysis of this trial, the primary endpoints were reached,
with a median OS of 9.0 months in the triplet-therapy group and 5.4 months in the control
group, with ORR of 26% and 2%, respectively.

Patients who received the doublet therapy achieved a median OS of 8.4 months and
ORR of 20%, with a risk reduction of death of 40% compared with the control group.
Consistently, PFS was longer in patients receiving triplet (4.3 months) or doublet therapy
(4.2 months), compared with the control group (1.5 months)—Table 2. Overall, grade 3
to 4 adverse events were observed in 58% of patients in the triplet-therapy group, 50% of
patients in the doublet-therapy group, and 61% of patients in the control group.

As expected, the MEK tyrosine kinase inhibitor-class toxicities were reported in
patients treated with the triplet-therapy but with a low incidence. The most common
toxicities in the encorafenib plus binimetinib plus cetuximab arm were represented by
gastrointestinal-related and skin-related events, including diarrhea, nausea, vomiting,
and acneiform dermatitis. Low hemoglobin level or anemia was a common laboratory
abnormality [25].

According to the updated results from the BEACON CRC trial, triplet and doublet
therapy confirmed their superiority over standard chemotherapy, showing a median OS
of 9.3 for both the triplet and the doublet regimens versus 5.9 months for the standard
chemotherapy regimen. In addition, a longer maintenance of quality of life was observed
in patients treated in the encorafenib plus cetuximab and the binimetinib plus encorafenib
plus cetuximab arms compared to those who received the standard chemotherapy.

Interestingly, there were no significant differences in the median time to deterioration
in quality of life according to the two chemotherapy-free treatment groups [91,92]. Based
on these results, on June 2020, the European Medicines Agency (EMA) approved the
combination of encorafenib and cetuximab in adult patients with mCRCs harboring the
BRAFY®0E mutation who had received prior systemic therapy.

5. Immune-Checkpoint Inhibitors in mCRC

CRC can be categorized into two discrete subgroups based on the mutational burden:
tumors that have a dAMMR-MSI-H status and a high mutational burden (>12 mutations
per 106 DNA bases) and tumors that have a pMMR-MSI-L status with a much lower
mutational burden (<8.24 mutations per 106 DNA bases) [93]. Defective DNA mismatch
repair can be detected either by the lack of immunohistochemical staining of the MMR
proteins (i.e., MLH1, MSH2, MSH6, or PMS2) or by PCR-identified alterations in the lengths
of microsatellites between the tumor and the corresponding normal tissue or blood.

MSI-H is the hallmark of tumors in patients with Lynch syndrome; however, the
development of dAMMR-MSI-H is a sporadic event owing to somatic defects in MMR
gene function, most commonly the hypermethylation of the MLH1 promoter. Importantly,
dMMR-MSI-H tumors are heavily infiltrated by immune cells, i.e., CD8+ tumor-infiltrating
lymphocytes (TILs), T helper 1 (TH1) CD4+ TILS, and macrophages, and have a mi-
croenvironment that is rich in type I interferons in comparison with other CRCs [94,95].
Approximately 15% of all CRCs are dMMR-MSI-H [96].

The presence of AMMR-MSI-H disease is prognostic, as stage 2 dAMMR-MSI-H tumors
have a lower risk of recurrence than stage 2 pMMR-MSI-L ones [97]. Stage 4 dAMMR-
MSI-H tumors constitute only 2—4% of all mCRCs. Patients with dAMMR-MSI-H mCRC
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have a dismal prognosis, but the expression of PD1, PDL1, and CTLA4 is substantially
upregulated in their cancers [28,98,99]. These observations suggested that dMMR-MSI-H
CRCs might respond well to an immune checkpoint blockade. In initial studies published
between 2010 and 2013, immune checkpoint inhibitors demonstrated very limited clinical
activity in non-selected CRC.

Nivolumab, an anti-PD1 antibody (Table 1), was evaluated in 19 patients, and, initially,
no responses were reported; however, one patient, with a dMMR-MSI-H status, had a
response at 21 months, and, after retreatment, this patient achieved a complete response
that lasted >3 years [100,101]. A phase II trial of the anti-PD1 antibody pembrolizumab
(Table 1) was reported in 2015, in which three separate cohorts of patients were treated:
dMMR-MSI-H mCRCs, pMMR-MSI-L mCRCs, and dMMR-MSI-H non-CRCs. Of the
10 patients with AMMR-MSI-H CRC, four had a partial response and five had a stable
disease at 20 weeks.

At that time point, the median PFS and OS were not yet reached in the dMMR-MSI-H
cohort but were 2.2 months and 5.0 months, respectively, in the pPMMR-MSI-L cohort [28].
In updated results, the response rate was 50% (95% CI 31-69%), and the disease control
rate was 89% in the 28 patients with AMMR-MSI-H tumors. At 24 months, PFS was 61%,
and overall survival was 66%. None of the 18 patients with pMMR-MSI-L CRC responded.
This study demonstrated the benefit of immune checkpoint blockade in AMMR-MSI-H
tumors [102,103] (Table 2).

In CheckMate 142 trial, another PD1 inhibitor, nivolumab, was tested in 74 patients
with AMMR-MSI-H mCRC. At a median follow-up of 12 months, 31% of patients achieved
an investigator-assessed objective response, and 69% of patients a disease control for
>12 weeks. The median PFS was 14.3 months, the 12-months PFS was 50% and the
12 months-OS was 73% [104]. The combination of nivolumab with ipilimumab was also
evaluated in this trial. Among the 30 patients enrolled, 9 patients (33%) achieved an
objective response, and 14 patients (52%) achieved disease stabilization [105].

The updated results of the CheckMate 142 trial in the complete cohort of 119 patients
demonstrated an objective response rate of 55% and a tumor burden reduction from the
baseline in 77% of patients. At that time point, the median PFS was not yet reached, and the
9-month and 12-month PFS results were 76% and 71%, respectively. The median OS was
not reached, and the 9-month and 12-month OS results were 87% and 85%, respectively.

Treatment with combined nivolumab and ipilimumab resulted in an increased rate
of drug-related immune-related adverse events: 32% of patients experienced grade 3—4
treatment-related toxicities compared to 20% of patients treated with nivolumab alone [106,107]
(Table 2). On the basis of the compelling data in dAMMR-MSI-H CRCs, the FDA granted
accelerated approval to pembrolizumab in May 2017 and to nivolumab in July 2017 for the
second-line treatment of patients with dAMMR-MSI-H CRC.

Recently, practice-changing data of a phase IIl randomized study (KEYNOTE-177 trial)
were published. This trial was conducted at 192 sites in 23 countries. Patients (1 = 307) with
MSI-H mCRC were randomly assigned in a 1:1 ratio to first-line pembrolizumab at a dose
of 200 mg every 3 weeks or to the investigator’s choice of chemotherapy. The choices of
chemotherapy were as follows: mFOLFOX6, mFOLFOX6 plus bevacizumab; mFOLFOX6
plus cetuximab; FOLFIRI, FOLFIRI plus bevacizumab; or FOLFIRI plus cetuximab.

Treatment was continued for a maximum of 35 treatments with pembrolizumab or
until disease progression, development of unacceptable toxic effects, illness, or a decision
from the physician or patient to withdraw from the trial. At the second interim analysis,
after a median follow-up of 32.4 months, pembrolizumab was superior to chemotherapy
with respect to PFS (median, 16.5 vs. 8.2 months; hazard ratio, 0.60; p = 0.0002). The
estimated restricted mean survival after 24 months of follow-up was 13.7 months (range
12.0 to 15.4) as compared with 10.8 months (range 9.4 to 12.2). Data on the overall survival
are still evolving (66% of required events had occurred) and remain blinded until the final
analysis.
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Table 2. mCRC second-line phase II and phase III pivotal trials.

Study [Ref.] Pts Study Arms RR (%) PFS (Months) HR (95% CI) OS (Months) HR (95% CI)
22.7 vs. 8.6 vs. 7.3 vs. 4.7 vs. 0.61 129 vs. 10.8 vs. 0.75
E3200 [41] 829 FOLFOX4 + BEV vs. FOLFOX4 vs. BEV 33 2.7 NA) 10.2 NA)
p < 0.0001 p < 0.0001 p <0.0011
5.7 vs. 4.1 0.68 11.2 vs. 9.8 0.81
ML18147 [44] 820 BEV + CHT vs. CHT alone 6vs. 4 p < 0.0001 (059-078) b < 0.0062 (0-69-0.94)
21vs. 17 6.8 vs. 5.0 0.70 15.5 vs. 14.1 0.77
BEBYP [45] 185 CHT + BEV vs. CHT p=0.124 p=0.010 (0.52-0.95) p=0.043 (0.56-1.06)
19.8 vs. 11.1 6.90 vs. 4.67 0.758 13.50 vs. 12.06 0.817
VELOUR [12] 1226 AFL + FOLFIRT vs. PBO + FOLFIRI p < 0.0001 p < 0.0001 (0.661-0.869) p < 0.0032 (0.713-0.937)
134 vs. 12,5 5.7 vs. 4.5 0.793 11.7 vs. 13.3 0.844
RAISE [13] 1072 RAM + FOLFIRT vs. PBO + FOLFIRI p =063 p =0.0005 (0.697-0.903) p <0.0219 (0.730-0.976)
16.4 vs. 4.2 4vs. 26 0.692 10.7 vs. 10 0.975
EPIC [66] 1298 IRT+CET vs. IRI p =0.0001 p =0.0001 (0.617-0.776) p=071 (0.854-1.114)
. 229 vs. 10.8 41vs. 15 0.54 8.6vs. 6.9 0.91
BOND [65] 329 IRT+CET vs. CET p =0.007 p=0.001 (0.42-0.71) p=048 (0.68-1.21)
35vs. 10§ 59vs. 39§ 0.73 145vs. 125§ 0.85
STUDY 181 [69] 1186 FOLFIRI + PAN vs. FOLFIRI < 0.000] = 0.004 (©.55-0.90) Y012 (©.70-1.08
34 vs. 12 not available " 0.78 10.9 vs. 104 1.01
PICCOLO [70] 460¢ IRT+PAN vs. IRT p < 0.0001 p=0015 (0.65-0.95) p=091 (0.83-1.23)
43 vs. 4.2 vs. " 9.0vs. 8.4 vs. "
BEACON [25] 665  ENC + BIN + CET vs. ENC + CET vs. FOLFIRI + CET 20 V% 20vs. 2 15 0-40 5.4 0.60
p <0.001 (0.31-0.52) (0.45-0.79)
p <0.001 p <0.001
KEYNOTE ** 164 [102,103] 124 PEMBRO 33 41 NA 314 NA
CHECKMATE 142 ** [106] 119 NIVO + IPI 55 NR NA NR NA

Pts: patients; BEV: Bevacizumab; CHT: Chemotherapy; AFL: Aflibercept; PBO: Placebo; RAM: Ramucirumab; CET: Cetuximab; IRI: Irinotecan; PAN: Panitumumab; ENC: Encorafenib; BIN: Binimetinib;
PEMBRO: Pembrolizumab; NIVO: Nivolumab; IPI: Ipilimumab. ® Number of previous treatments (%): one line: (20.7%), two lines (36.5%), and three lines (42.9%); § Only wild type KRAS population; C
Subgroup of patients with KRAS ¢.12-13, 61 wild-type tumors and no previous EGFR targeted therapy; " Median PFS in months is not available; * HR for the doublet arm; NA: not available; NR: not reached; and
**: Phase II non-randomized studies.
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An overall response was observed in 43.8% of the patients in the pembrolizumab
group and 33.1% in the chemotherapy group. Among patients with an overall response,
83% in the pembrolizumab group, as compared with 35% of patients in the chemotherapy
group, had ongoing responses at 24 months. Treatment-related adverse events of grade 3
or higher occurred in 22% of the patients in the pembrolizumab group, as compared with
66% (including one patient who died) in the chemotherapy group.

Immune-mediated adverse events and infusion reactions occurred in 47 patients (31%)
in the pembrolizumab group as compared with 18 (13%) in the chemotherapy group. Grade
3 or 4 events of interest occurred in 14 patients (9%) and 3 patients (2%), respectively, with
colitis (3%) and hepatitis (3%) most common in the pembrolizumab group [108].

6. Sequential Second-Line Strategies in Metastatic CRCs

Current evidence shows that second-line therapies may have a positive impact on
mCRC survival [109]. Therefore, it is important to identify therapeutic strategies, in order to
(i) optimize the use of available drugs, maximizing long-term efficacy, (ii) reduce toxicities,
and (iii) assure a better quality of life to mCRC patients. There are no strong biomarkers
that may directly influence therapeutic second-line choices. Therefore, treatment strategies
should be based on patient-related factors (age, PS, comorbidity, and preferences) and
disease-related factors (tumor aggressiveness, disease burden, presence of symptoms,
RAS/BRAF mutational status, and MSI-H). However, a major driver in second-line decision
making is the regimen used in first-line. Thus, in the subsequent paragraphs, alternative
strategies will be discussed starting from the option used as the first-line therapy.

6.1. Second-Line after Progression to Beavacizumab-Based First-Line Treatment

First-line bevacizumab-based therapy represents the standard of care in RAS mutant
mCRCs independently form the site of primary tumor and, more recently, has been pro-
posed as more effective strategy in right-side mCRCs independently from RAS mutational
status, based on the evidence that right-side, KRAS wild-type tumors have a lower benefit
with first-line anti-EGFR agents [17,19]. Different therapeutic options are available today
at the time of disease progression after bevacizumab-based first-line treatment, and they
depend on RAS mutational status.

In RAS wild-type patients not pre-treated with an anti-EGFR antibody (mostly right
side mCRCs), the combination of chemotherapy with cetuximab or panitumumab could
represent an option (Figure 1). Notably, there are no clinical phase III studies showing a
clear and significant OS advantage for anti-EGFR drugs in this setting. Nevertheless, Amer-
ican (NCCN) and European (ESMO) Guidelines for mCRC management recommend of
anti-EGFR drugs in combination with chemotherapy in RAS wild-type patients progressed
to bevacizumab first-line treatment [15,16].

Moreover, ESMO Guidelines underline that second-line OS benefits for anti-EGFR
agents are comparable with those achieved in later lines. Conversely, the Italian Association
for Medical Oncology (AIOM) Guidelines do not recommend the use of anti-EGFR agents
as second-line therapy [110]. In this scenario, there is lack of data about the use of anti-
EGFR molecules in combination with oxaliplatin in second-line treatment. In fact, phase
III studies with cetuximab and panitumumab have been performed with irinotecan-based
schedules (Table 2).

Alternatively, chemotherapy alone or in combination with antiangiogenic molecules
represents an available option both in RAS wild-type non-candidate for anti-EGFR drugs
and RAS mutant patients. In particular, chemotherapy alone could be reserved for those
patients who experienced limiting toxicities during bevacizumab treatment or patients
unfit for combination therapy with doublets plus target agents (Figure 1). In such a context,
a major issue is the selection of the second-line antiangiogenic agent (bevacizumab beyond
progression or aflibercept/ramucirumab) in patients progressing first-line bevacizumab-
based therapy.
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Figure 1. Second-line therapeutic options after disease progression to a doublet + Bevacizumab first line therapy.
PD: progression disease; BEV: Bevacizumab; CHT: chemotherapy; wt: wild-type; mut: mutant; IRI: Irinotecan; FP: fluo-
ropyrimidines; AFL: Aflibercept; OXA: Oxaliplatin; RAM: Ramucirumab; FP: fluoropyrimidines; ICI: immune-checkpoint
inhibitors; US: United States; CET: Cetuximab; ENC: Encorafenib.

The current knowledge from clinical trials suggests that mCRC patients may benefit of
sustained angiogenesis inhibition also beyond first progression [111]. Use of continuative
anti-VEGF treatments might induce less resistance to chemotherapy by creating a suitable
environment for genetically stable endothelial cells [112]. The use of bevacizumab plus
chemotherapy beyond first progression is supported by a biological background, and the
results of the ML18147 trial showed an OS and PFS advantage compared to chemotherapy
alone (Table 2).

The advantage in survival was maintained independently of age, ECOG PS, first-line
chemotherapy schedule, first-line PFS (< or >9 months), and KRAS mutations. Never-
theless, no differences in response rate were observed, and the OS calculated from the
beginning of first-line treatment was similar in the two study arms. The ML18147 trial
excluded patients with first-line PFS of less than 3 months as well as patients receiving
less than 3 consecutive months of first-line bevacizumab. Exploratory subgroup analysis
suggested a major benefit for bevacizumab beyond-progression in patients with first-line
PFS > 9 months (HR 0.73, 95% CI: 0.58-0.92).

Differently, the subgroup treated with bevacizumab beyond progression with a first-
line PFS < 9 months showed only a trend toward a better OS (HR 0.89, 95% CI: 0.73-1.09) [41].
These results suggest that the use of bevacizumab beyond first progression could be a valid
therapeutic option in patients with slowly progressive disease who received a significant
benefit during bevacizumab-based first-line therapy (Figure 1).

Sustained VEGF inhibition induces resistance through activation of different pro-
angiogenic ligands like PIGF and VEGEF-D that are increased following progression on
bevacizumab treatment [113,114]. Consistently, PIGF shares structural homology with
VEGF-A, but stimulates angiogenesis via interaction with VEGFR-1 [115]. These mecha-
nisms support the use of alternative antiangiogenic molecules, like aflibercept or ramu-
cirumab, after progression to a bevacizumab first-line therapy (Figure 1). Aflibercept
is characterized by a peculiar mechanism of action that allows a wider spectrum of an-
giogenesis blockade and may help to overcome resistances to a bevacizumab first-line
treatment [47].

The VELOUR phase III trial showed that second-line combination of FOLFIRI plus
aflibercept increased OS, PFS, and RR compared to FOLFIRI plus placebo in mCRC patients
pre-treated with oxaliplatin. Patients enrolled in the VELOUR study were “less-selected”
with respect to the ML18147 trial patients. The VELOUR population included first-line
“early progressors” (PFS < 3 months), patients relapsed within 6 months of completing
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oxaliplatin-based adjuvant therapy, and patients having <3 consecutive months of first-line
bevacizumab. Only 30% of VELOUR patients were pre-treated with bevacizumab, and a
pre-specified subgroup analysis confirmed the survival advantage for the aflibercept arm
regardless of prior bevacizumab exposure.

A further post hoc analysis, in the bevacizumab pre-treated population, showed that
FOLFIRI plus aflibercept was superior to FOLFIRI plus placebo in terms of OS and PFS
independently of first-line PFS (< or >9 months). The use of aflibercept showed benefit
regardless of RAS and BRAF mutational status. Therefore, aflibercept after progression to a
bevacizumab-based first-line therapy could be used in rapid as well as slow “progressors”,
in patients who need tumor shrinkage or symptoms control, despite the age and RAS
mutational status, with the limitation to oxaliplatin pre-treated patients (Figure 1).

Finally, the opportunity to shift from bevacizumab to aflibercept was also supported
by a biomarker analysis performed on the plasma samples of VELOUR patients. Nine
biomarkers implicated in angiogenesis or bevacizumab resistance were tested on 553 pa-
tients of whom 169 had received prior bevacizumab. VEGF-A and PIGF were significantly
increased in bevacizumab-pretreated patients (five-fold and two-fold higher levels in the
prior bevacizumab versus no prior bevacizumab group, respectively) [116,117].

The latest drug that could be employed in bevacizumab pre-treated patients is ramu-
cirumab, which targets angiogenesis by blocking VEGFR-2 and preventing the interaction of
all VEGF ligands and the consequent receptor activation [57]. The RAISE phase III trial con-
firmed a significant improvement of median OS and PFS without an effect on RR with the
combination of FOLFIRI plus ramucirumab compared to FOLFIRI plus placebo in patients
who had received oxaliplatin, fluoropyrimidines, and bevacizumab as first-line treatment.

Ramucirumab plus FOLFIRI was shown to improve outcomes regardless of age, ECOG
PS, or KRAS status. Patients with <6 months TTP during first-line therapy received less
benefit from this combination. However, the OS and PFS gain observed in the RAISE study
appeared to be not different from bevacizumab or aflibercept in the same setting. Interest-
ingly, serum biomarkers analysis carried out in the RAISE study patients, identified high
VEGF-D level as a potential, predictive biomarker of response to FOLFIRI + Ramucirumab
second line treatment [118].

Ramucirumab plus FOLFIRI is available in the United States, while in Europe it
has been approved by European Medicine Agency, but it is not reimbursed in all the
countries. The cost-to-effectiveness ratio represents an important issue to consider at
the time of second-line therapeutic choice and should be incorporated into the decision-
making process. In the context of mCRC antiangiogenic second-line options, ramucirumab
has showed a survival benefit similar to bevacizumab and aflibercept but has a higher
cost [119].

6.2. Second-Line Therapy in Ras Wild-Type Tumors Treated with Anti-Egfr First-Line Therapy

First-line cetuximab- or panitumumab-based therapy is the gold standard in RAS
wild-type mCRCs despite the site of the primary tumors, even though the magnitude of
its activity is stronger in tumors arising in the left colon [17,120]. In such a context, the
selection of the second-line therapy after failure of anti-EGFR monoclonals in first-line
does not represent a major issue (Figure 2). Indeed, data supporting use of EGFR inhibitors
beyond progression are very limited and, consequently, international guidelines uniformly
support second-line anti-angiogenic agents [15,16].

As reported in previous paragraphs, either bevaicizumab or aflibercept and ramu-
cirumab combined with chemotherapy were shown to provide clinical benefit in RAS
wild-type mCRCs treated with first-line anti-EGFR agents [12,13,44]. Unfortunately, no
selection criteria are available to choose the best antiangionenic agent in this setting.
Therefore, the major drivers in decision making are the backbone chemotherapy used in
first-line (i.e., Ramucirumab is allowed only in patients pretreated with oxaliplatin and
bevacizumab; aflibercept is allowed only in patients pretreated wit oxaliplatin), the toxicity
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profile of antiangiogenic agents, and patient-related factors, such as age, comorbidity, and
preferences.
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Figure 2. Second-line therapeutic options after disease progression to a doublet + anti-EGEFR first line therapy. PD:

progression disease; BEV: Bevacizumab; CHT: chemotherapy; wt: wild-type; FP: fluoropyrimidines; AFL: Aflibercept;
OXA: Oxaliplatin; FP: fluoropyrimidines; ICI: immune-checkpoint inhibitors; US: United States; CET: Cetuximab; ENC:

Encorafenib.

6.3. Second-Line Therapy after First-Line Triplet Chemotherapy Plus Bevacizumab

The randomized phase III TRIBE study enrolled 508 patients with untreated mCRCs
and showed that the combination of triplet chemotherapy (FOLFOXIRI) combined with
bevacizumab significantly improved the RR (65% versus 53%, p = 0.006), PFS (12.1 months
versus 9.7 months, HR 0.75, p = 0.003), and OS (29.8 months versus 25.8 months, HR 0.80,
p = 0.030) compared to FOLFIRI plus bevacizumab [40]. Thus, FOLFOXIRI plus beva-
cizumab is currently regarded as a standard first-line option in mCRCs, especially as a
neoadjuvant treatment in fit patients with initially unresectable diseases or in patients with
good ECOG PS and a poor prognosis tumor (i.e., right colon or BRAF-mutated tumors).

A major concern regarding FOLFOXIRI-based therapy is whether the up-front combi-
nation of all three cytotoxic agents may limit disease control with second-line treatments.
Indeed, literature data suggest that initial FOLFOXIRI treatment does not impair the possi-
bility to obtain further objective responses and delay tumor progression with second-line
treatments containing the same agents used in first-line. In TRIBE trial, second-line treat-
ments were administered in 166 patients in the FOLFOXIRI plus bevacizumab arm, 23%
of them receiving an oxaliplatin-containing second-line treatment (7% oxaliplatin doublet
plus bevacizumab, 7% FOLFOXIRI plus bevacizumab, 8% oxaliplatin doublet alone, and
1% FOLFOXIRI alone).

Bevacizumab beyond disease progression was administered to 30% of patients in com-
bination with FOLFOXIRI (8% of cases) or with doublet oxaliplatin- or irinotecan-based
chemotherapy. Thirty-one percent of patients received an anti-epidermal growth factor
receptor monoclonal antibody as second-line treatment in combination with irinotecan-
based doublet. Extremely intriguing is the evidence supporting the re-challenge of FOL-
FOXIRI in second-line setting after first-line triplet chemotherapy. Recently, a phase
III, randomized TRIBE-2 trial, investigated two different approaches with bevacizumab
beyond progression.

This study randomized 679 mCRC patients to receive either first-line FOLFOX-6 plus
bevacizumab followed by second-line FOLFIRI plus bevacizumab or first-line FOLFOXIRI
plus bevacizumab followed by reintroduction of the same regimen after progression. The
primary endpoint of the study was PFS2, defined as the time from randomization to
disease progression on any treatment given after first disease progression or death. Data
from this trial suggest a significant advantage by upfront FOLFOXIRI plus bevacizumab
in terms of PFS2 (19.1 vs. 16.4 mos, HR 0.74, 95% CI 0.62-0.88, p < 0.001), RR (62% vs.
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50%, OR 1.61, 95% CI 1.19-2.18, p = 0.002) and first-PFS (12.0 vs. 9.8 mos, HR 0.75, 95%
CI0.63-0.88, p < 0.001).

A significant OS benefit for patients in the experimental arm was also observed
(27.6 vs. 22.6 mos, HR: 0.81, 95% CI: 0.67-0.98, p = 0.033) [121,122]. Altogether, these
data support the use of upfront FOLFOXIRI plus bevacizumab. Thus, in this setting,
appropriate second-line options include the reintroduction of the same agents after disease
progression or doublet chemotherapy regimens combined with bevacizumab or anti-EGFR
monoclonals depending on RAS mutational status, patient comorbidity, and first-line
toxicities (Figure 3).

TRIPLET + BEV
(Ras wt or mut)

PD

SECOND LINE OFTIONS

CHT ALONE
Use alternative
CHT schedule

Prs unfit for anti-
VEGF or anti-
EGFR dmas

ANTI-EGFR + CHT BEV + FOLFOXIRI BEV « CHT AFL + FOLFIRI RAM + FOLFIRI ICI
Use alternative CHT Pts it for trplet Mostly RAS Wt or mut RAS Wt or mut MSI-H pts (US
schedule FOLFIRI oaly)

RAS Wit or mut
RAS Wt RAS Wt or mut CET+ENC
Pretreated with FP BRAF mutated
Unfit fior
antiangiogenic dug

Figure 3. Second-line therapeutic options after disease progression to a triplet + Bevacizumab first line therapy. PD: progres-
sion disease; BEV: Bevacizumab; CHT: chemotherapy; wt: wild-type; mut: mutant; IRI: Irinotecan; FP: fluoropyrimidines;
AFL: Aflibercept; OXA: Oxaliplatin; RAM: Ramucirumab; FP: fluoropyrimidines; ICI: immune-checkpoint inhibitors; US:
United States; CET: Cetuximab; ENC: Encorafenib.

7. Current Strategies and Future Perspectives

Over the last decades, mCRC patient survival increased from 6 months in the absence
of active schedules to more than 30 months using the most effective combinations of
chemotherapy and target agents. In this landscape, it has been demonstrated that the
use of all active drugs is key to maximizing the benefits and prolonging survival. The
continuous evolution of mCRC molecular characterization as well as the identification
of prognostic and predictive biomarkers also led clinicians to more tailored therapeutic
choices. Moreover, the introduction of new regimens/agents in second-line treatment has
made more challenging the individualization of a correct sequential strategy.

Continuing angiogenesis suppression beyond first progression or the introduction of
an antiangiogenic agent after first-line anti-EGFR monocolonals are, at present, optimal
options in second-line settings. Less convincing is the clinical benefit obtained by anti-
EGFR agents in RAS wild-type mCRCs (mostly right side tumors) treated with first-line
bevacizumab-based therapy. In the absence of head-to-head clinical trials between second-
line options and biomarkers predictive for response to antiangiogenic drugs, the capability
of medical oncologists to select an appropriate therapy is currently based on (a) the patient
profile and preferences; (b) disease characteristics; (c) treatment aims; (d) safety profile;
and (e) cost-effectiveness.

The recent introduction of upfront triplet chemotherapy combined with bevacizumab
represents another challenge for the rational selection of second-line therapy. However,
increasing data suggest that upfront triplet chemotherapy does not limit the possibility to
obtain disease control in second-line upon reintroduction of the same regimen or doublet
chemotherapy plus a target agent.
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In the perspective to optimize therapy selection and improve patient outcomes, the
recent data obtained in specific molecular subgroups are extremely relevant, i.e., BRAF-
mutated or MSI-H mCRCs. BRAF-mutated mCRCs represent a cohort of patients with poor
prognosis and limited effective therapeutic options. While the selection of the appropriate
sequential strategy in these patients is still controversial, the recent data in favor of the
combination of BRAF inhibitors and anti-EGFR agents are extremely promising.

Consistently, the outbreak of MSI-H as a predictive biomarker of response to immune-
checkpoint inhibitors opens the perspective to identify a further subgroup of mCRC
patients that does not benefit from first-line chemotherapy plus targeted agents but rather
from anti-PD1 agents. While there are no data in support of a sequential therapeutic
strategy in MSI-H mCRCs, doublet/triplet chemotherapy plus biological agents are, at
present, the standard second-line therapy in this setting.

Finally, treatment personalization and rationale sequential therapy design require the
clinical characterization of novel predictive biomarkers. In such a context, novel actionable
targets are under preclinical/clinical validation with the aim to further customize thera-
peutic options and develop novel systemic agents targeting specific oncogenic pathways.
HER? amplification, NTRK rearrangements, Wnt signaling, and POLE mutations, among
others, represent promising targets to develop novel effective anticancer agents [123-126].

Consistently, several studies have investigated new potential biomarkers of response
to cetuximab in patients harboring KRAS mutations. In particular, subjects carrying the
non-functional receptor KIR2DS4 showed longer OS compared with carriers of the full-
length variant. Similarly, a higher disease control rate was described in KRAS-mutated
patients carrying the FcyRIIa H131 allele [127].

Furthermore, epigenomics with DNA methylation profiling and transcriptomics rep-
resent innovative strategies to characterize novel predictive/prognostic signatures. In such
a context, several studies are ongoing with the aim to evaluate the usefulness of patient
gene expression profiles and CMS subtypes in treatment choice [128]. Similarly, DNA
methylation biomarkers for outcome prediction and treatment decision are still under
validation in CRC, based on the preliminary evidence that the hypermethylation of specific
subsets of genes may predict poor outcomes and the likelihood of response to specific
therapeutic strategies.
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