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Object: STAS is associated with poor differentiation, KRAS mutation and poor
recurrence-free survival. The aims of this study are to evaluate the ability of intra- and
perinodular radiomic features to distinguish STAS at non-contrast CT.

Patients and Methods: This retrospective study included 216 patients with pathologically
confirmed lung adenocarcinoma (STAS+, n = 56; STAS−, n = 160). Texture-based features
were extracted from intra- and perinodular regions of 2, 4, 6, 8, 10, and 20 mm distances
from the tumor edge using an erosion and expansion algorithm. Traditional radiologic
features were also analyzed including size, consolidation tumor ratio (CTR), density, shape,
vascular change, cystic airspaces, tumor–lung interface, lobulation, spiculation, and satellite
sign. Nine radiomic models were established by using the eight separate models and a total
of the eight VOIs (eight-VOI model). Then the prediction efficiencies of the nine radiomic
models were compared to predict STAS of lung adenocarcinomas.

Results: Among the traditional radiologic features, CTR, unclear tumor–lung interface,
and satellite sign were found to be associated with STAS significantly, and the AUCs were
0.796, 0.677, and 0.606, respectively. Radiomic model of combined tumor bodies and all
the distances of perinodular areas (eight-VOI model) had better predictive efficiency for
predicting STAS+ lung adenocarcinoma. The AUCs of the eight-VOI model in the training
and verification sets were 0.907 (95%CI, 0.862–0.947) in the training set, and 0.897 (95%
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CI, 0.784–0.985) in the testing set, and 0.909 (95%CI, 0.863–0.949) in the external
validation set, and the diagnostic accuracy in the external validation set was 0.849.

Conclusion: Radiomic features from intra- and perinodular regions of nodules can best
distinguish STAS of lung adenocarcinoma.
Keywords: lung, adenocarcinoma, radiomics, spread through airspaces, machine learning
INTRODUCTION

In 2015, theWorld Health Organization (WHO) formally proposed
a new mode of invasion of lung cancer: spread through air spaces
(STAS), defined as “micropapillary clusters, solid nests or single cells
spreading within air paces beyond the edge of the main tumor” (1).
STAS can be considered the same as other more common invasive
growth patterns, such as vessels or pleural infiltration (2). It is
associated with poor differentiation, K-RAS mutation, and poor
recurrence-free survival (RFS). Free-floating tumor cells or tumor
clusters can survive in the alveolar cavity for a long time. Studies
have confirmed (3–5) that STAS is an important prognostic
indicator for early lung adenocarcinoma, and the way to reduce
the recurrence rate of early lung cancer after STAS is to change
localized resection to a lobectomy and postoperative adjuvant
chemotherapy. Therefore, if STAS can be detected before surgery,
it can provide important information for the choice of resection
method and whether adjuvant chemotherapy is given to patients
with early lung adenocarcinoma after surgery. Current studies (6, 7)
have shown that frozen pathological sections before surgery cannot
diagnose STAS, and there is also a lack of reliable CT signs for
preoperative diagnosis.

At present, radiomics studies for STAS are mainly based on
feature extraction and modeling of the main body of the lesion,
while STAS is mainly spread around the edge of the lesion. We
speculated that the perinodular area may possess some valuable
information to improve the efficiency of intranodular radiomic
analysis. Therefore, this study attempted to evaluate whether the
radiomics features of the combination of intra- and perinodular
areas together were more predictive of STAS than the
intranodular radiomic model or the morphological analysis of
CT signs alone.
PATIENTS AND METHODS

Patients
A total of 512 patients with primary lung adenocarcinoma
confirmed by surgical resection and pathology were collected
continuously and retrospectively at our institution from January
2017 to May 2020. The interval between CT scan and surgery is
within 2 months. Patients with the following criteria were excluded:
atypical hyperplasia and adenocarcinoma in situ (n = 172), lack of
preoperative non-contrast CT images or obvious CT artifacts
(n = 37), previous lung surgery or preoperative adjuvant
chemotherapy (n = 32), pathological diameter >5 cm (n = 38),
and mucinous adenocarcinoma and mucinous carcinoma (n = 17).
2

There were 216 patients in the final cohort (males, 125), which
included 56 STAS+ and 160 STAS− adenocarcinomas. This
retrospective study was approved by the institutional review
committee and the requirement for informed consent was waived.

To evaluate the performance of the best radiomic model, we
used 46 consecutive external data from another hospital as the
testing set in accordance with the aforementioned inclusion
criteria. The inclusion and exclusion criteria of the external set
were consistent with that of the cohort collected in our center.
The external data included 15 STAS+ adenocarcinoma (eight
men; mean age, 52 ± 8.7 years) and 31 STAS− adenocarcinoma
(21 men; mean age, 54 ± 7.6 years).

CT Acquisition and Morphologic
Evaluation
CT images were acquired from General Electric (LightSpeed
VCT; Waukesha, Wis) or Siemens (Definition Flash, Erlangen,
Germany). CT parameters were as follows: tube voltage, 120
kVp; tube current, 150–200 mAs; pitch, 0.984:1 or 1.0;
reconstructed thickness and interval, 1.25 mm or 1 mm. All
images were reviewed and measured with a standard lung
window (window width, 1500 HU; window level, −500 HU)
and a mediastinal window (window width, 350 HU; window
level, 50 HU).

The size of the entire lesion was defined as the average of long
and short axial diameters. The consolidation tumor ratio (CTR)
was defined as the proportion of the maximum consolidation
diameter divided by the maximum tumor diameter. The CT
morphologic features were evaluated as follows: nodule density
(solid, part solid, or pure ground glass), location (upper or not),
and shape (round to oval, irregular), vascular change (normal,
convergent or dilated), cystic airspaces, tumor-lung interface
(clear or unclear), lobulation, spiculation, and satellites around
the lesion. Morphological analysis was performed by two
radiologists with 10 and 20 years of experience in chest
radiologic diagnosis (LQ and ML), and they were blinded to
the pathological results. Any disagreements between them were
resolved by reaching a consensus.

Pathological Analysis
Surgically resected specimens were fixed with formalin and
stained with hematoxylin–eosin. According to the 2015 WHO
classification (1), STAS was defined as micropapillary clusters,
solid nests, or single cells spread within the air spaces beyond the
edge of the main tumor. Tumor cells that spread through the
mucus were distinguished from STAS and excluded from
our study.
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Data Preparation for Radiomics
Digital Imaging and Communications in Medicine (DICOM)
images were downloaded from the picture archiving and
communication system (PACS). An open-source medical image
processing and navigation software (3D Slicer, version 4.8.0;
National Institutes of Health; http://www.slicer.org) were used
for pixel-level labeling of pulmonary nodules by one radiologist
with 10 years of experience in lung cancer diagnosis; then, the
labeling results were confirmed by another radiologist with 20
years of CT diagnostic experience. The structures of blood vessels,
bronchi, and pleura outside the nodules were excluded as much as
possible, and the three-dimensional VOIs of the tumors
were constructed.

A total of 216 cases were manually labeled and reviewed,
and the volume VOI of the lesion and all the CT data were
exported in NII format for subsequent analysis. Each case
was accompanied by a STAS label without any additional
information, such as sex, age, location, morphological features.
We randomly divided 80% of each of the two groups as training
data sets (n = 172, 46 in STAS+ group, 126 in STAS− group) and
the rest as verification data sets (n = 44, 10 in STAS+ group, 34 in
STAS− group). The training set was used to train the designed
group model, and the verification set was used to evaluate the
accuracy of the model.

Intra- and Perinodular Segmentation
After the intranodular mask was annotated, a program was
written to expand to the surrounding area within the lung
tissue to capture the perinodular region up to a maximum
distance of 20 mm. The modeling steps and radiomic analysis
process are as follows and shown in Figure 1:

(1) The manually annotated three-dimensional (3D) volume of
interest (VOI) was taken as the core area (marked as VOI

core), and lung segmentation was used to exclude areas outside
the lung tissue to prepare for obtaining the perinodular area;
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(2) Effective features were screened by feature engineering and
then modeled by Adaboost. Python 3.6.1 (https://www.
python.org) was used to write the erosion and expansion
algorithm program to capture the perinodular area, and then
the intranodular mask was subtracted from the expanded
mask to obtain perinodular areas from the tumor surface. The
different distances of 3D regions of interest from the tumor
surface were obtained as 2, 4, 6, 8, 10, 20 mm (marked
as VOI2 mm, VOI4 mm, VOI6m m, VOI8 mm, VOI10 mm, and
VOI2 0mm, respectively);

(3) By using the method of step (2), the marginal regions of each
3 mm inside and outside the contour of the VOIcore were
annotated representing the 3 mm area of the tumor shell plus
the 3 mm peripheral area including the tumor–lung interface
(marked as VOItumor–lung).

Finally, we obtained a total of eight different VOI areas, which
were combined with the mask of lung segmentation, and the
extrapulmonary regions were excluded (Figure 2).
Feature Extraction and Analysis
The PyRadiomics software package (http://www.radiomics.io/
pyradiomics.html) was used to extract imaging features from
each VOI, including first-order features, morphological features,
gray co-occurrence matrix (GLCM), gray run matrix (GLRLM),
gray area size matrix (GLSZM), gray co-occurrence matrix
(GLDM) texture features, and wavelet frequency domain
texture features. Then, 851 features were extracted from each
VOI, and a total of 6,808 imaging features (https://pyradiomics.
readthedocs.io/en/latest/features.html#) were calculated for each
CT image input, and the Z-score was standardized. To eliminate
the influence of sample class imbalance on training, the synthetic
minority class oversampling technique (Synthetic Minority
Oversampling Technique, SMOTE) was used to maintain the
balance between positive samples and negative samples. Because
the dimension of the feature space is very high, we compared the
FIGURE 1 | Flowchart of radiomics procedure in this study.
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similarity of each set of feature pairs. The Pearson correlation
coefficient (Pearson Correlation Coefficient, PCC) was used to
evaluate the correlation degrees of the extracted imaging features,
which could reflect the linear correlation degree of the two
variables. PCC is defined as the entropy of covariance and
standard deviation between two characteristic variables. The
calculation formula is as follows:

rxy =
Cov X,Yð Þ

sxsy
=
E X − mxð Þ Y − my

� �� �

sxsy
misi

Among them, X and Y are the two characteristic variables; µi
and si were respectively.

If the PCC of a set of feature pairs was greater than 0.99, one
of them was removed. After the dimension reduction of the
Pearson correlation coefficient, the feature dimension of the
feature space was reduced, and each feature was independent
of each other. Before establishing the model, we used the
recursive feature elimination method (recursive feature
elimination, RFE) to evaluate the prediction efficiency of the
selected features and further screened out the features with
predictive value.

The goal of RFE is to select features based on classifiers by
recursively considering smaller feature sets. AdaBoost was used
as the classifier in this study. The basic principle of the Adaboost
algorithm is to combine multiple weak classifiers into a strong
classifier. AdaBoost is sensitive to noise and outliers, which can
also avoid overfitting. Here, we used the decision tree as the basic
classifier. To determine the superparameters of the model (such
as the number of features), five-fold cross-validation was used for
the training data set. Superparameters were set based on the
performance of the model on the validated dataset.
Frontiers in Oncology | www.frontiersin.org 4
Nine radiomic models were established by using the eight
separate models (VOI2 mm, VOI4 mm, VOI6 mm, VOI8 mm,
VOI10 mm, VOI20 mm, and VOItumor–lung) and a total of the eight
VOIs (eight-VOI model). Then the prediction efficiencies of the nine
radiomic models were compared. First, the extracted features were
grouped according to different categories, including first-order
features and morphological features, texture features (GLCM,
GLRLM, GLSZM, and GLDM), and wavelet frequency features,
and each set of features was used for modeling separately. Then, all
the radiomic features were used for modeling. The grid search was
used to select model hyperparameters, and the best hyperparameters
were reversely selected based on the AUC in the validation set. For
each model, 50% discount cross-validation was used for training.
The probabilities of model prediction in the training and verification
sets in each iteration were recorded, and the mean value of the
probability recorded in each iteration when each data point was used
as the training set or verification set was calculated as the result of the
training set or verification set of the model.

The effectiveness of CT-based imaging radiomics in
predicting STAS was evaluated by using the area under the
receiver operating characteristic curve (ROC) metric. The area
under the curve (AUC), sensitivity, specificity, accuracy, positive
predictive value (PPV), and negative predictive value (NPV)
were calculated under the critical value of maximizing the
Youden index. We also estimated the 95% confidence interval
of 1,000 samples by bootstrapping. Significance was defined as
probability values less than 0.05 (p-value < 0.05).
Statistical Analysis
Statistical analysis was performed by SPSS software (version 22.0,
IBM SPSS Statistics, Armonk, NY, USA). Quantitative data were
FIGURE 2 | Intra- and perinodular segmentation. Erosion and expansion algorithm programs were used to capture the perinodular area, and then the intranodular
mask was subtracted from the expanded mask to obtain perinodular areas from the tumor surface. (A) Plan CT image shows subpleural solid nodules in the upper
lobe of the right lung; (B) lung tissue segmentation mask: perinodular area was dilated within this area to remove the extrapulmonary structures; (C) manual labeling
to obtain the original 3D region of interest as the core area (VOIcore), which was used as a seed to expand outward within the lung tissue mask. (D–I) The different
distances of 3D regions of interest from the tumor surface were obtained at 2, 4, 6, 8, 10, and 20 mm (marked as VOI2–20 mm); (J) the marginal regions of each
3 mm inside and outside the contour of VOIcore were annotated (VOItumor–lung).
June 2021 | Volume 11 | Article 654413
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expressed asmean ± standard deviation. The clinical, pathological,
and CT traditional morphological features of STAS+ and STAS−
groupswere comparedusingShapiro–Wilk test orMann–Whitney
U test. Chi-square test was used to compare the differences of
classified variables.

ROC curves were drawn to compare the diagnostic efficiencies
of different CT signs. MedCalc software (Version19.0.2) was used
to calculate the diagnostic efficacy of classification variables for
STAS, and the ROC curve of the histological model was tested by
DeLong to compare whether the efficiency difference among the
models was statistically significant.
RESULTS

Clinical Data and Traditional
Imaging Features
The basic clinical data and CT morphological characteristics of
the two groups are shown in Table 1. Among the 216 patients
Frontiers in Oncology | www.frontiersin.org 5
with lung adenocarcinoma (male, 58.9%; mean age, 56 ± 11
years), 56 patients were confirmed to be STAS+ pathologically
(male, 62.5%; mean age 55 ± 9 years), and 160 patients were STAS−
(male, 56.3%, mean age, 56 ± 10 years). Among all patients enrolled,
78 patients (36.1%) underwent sublobectomy, and 138 (63.9%)
underwent lobectomy or pneumonectomy. There was no significant
difference in age, sex, or the proportion of heavy smokers between
the two groups. The proportion of patients who underwent
sublobectomy in the STAS− group was slightly higher than that
in the STAS+ group (p = 0.044).

There was a significant difference in the histological subtypes of
lung adenocarcinoma between the STAS+ and STAS− groups
(p < 0.0001): papillary, micropapillary, and solid types were
predominant in STAS+ adenocarcinoma, while lepidic and
acinar subtypes were more common in the STAS− group. In
addition, the incidence of pleural invasion was higher, and the
incidence of EGFR mutation in STAS+ lung adenocarcinoma
was lower than that in STAS− adenocarcinoma. The incidence
of pleural invasion and EGFR mutation was higher in
STAS+ adenocarcinoma.
TABLE 1 | The basic clinical data and CT morphological characteristics of the two groups.

Total (n = 216) STAS+ (n = 56) STAS− (n = 160) z value p-value

Age (years) 56 ± 11 55 ± 9 56 ± 10 1.772 0.100
Male, n [%] 125 [58.9] 35 [62.5] 90 [56.3] 0.815 0.415
Heavy smoke, n [%] 67 (31) 16 [28.6] 51 [31.9] 0.460 0.646
Surgery 2.011 0.044*
Sublobar resection, n [%] 78 [36.1] 14 (25) 64 (40)
Lobectomy or pneumonectomy, n [%] 138 [63.9] 42 (75) 96 (60)
Pathology <0.0001****
Predominant histologic subtypes
Lepidic, n [%] 35 [16.2] 0 35 [21.9]
Acinar, n [%] 80 (37) 5 [8.9] 75 [46.9]
Papillary or micropapillary, n [%] 58 [26.9] 31 [55.4] 27 [16.9]
Solid, n [%] 33 [15.3] 16 [28.6] 17 [10.6]
Cribriform, n [%] 10 [4.6] 4 [7.1] 6 [3.8]
Vascular invasion (+), n [%] 57 [26.4] 16 [28.6] 41 [25.6] 2.207 0.332
Pleural invasion (+), n [%] 50 [23.1] 24 [42.8] 26 [16.3] 19.49 <0.0001****
EGFR mutation (+), n [%] 97 [41.1] 15 [26.8] 83 [51.9] 13.16 0.001**
Morphological features
Size (mm) 19.7 ± 6.2 20.2 ± 6.1 17.6 ± 6.7 173.5 0.186
CTR 0.7 ± 0.3 0.8 ± 0.3 0.5 ± 0.3 90.5 <0.0001****
Nodule density 11.35 0.010**
pGGN, n [%] 15 [6.9] 0 15 [9.4]
mGGN, n [%] 106 [4.6] 24 [7.1] 82 [3.8]
SN, n [%] 95 [26.4] 32 [28.6] 63 [25.6]
Location 3.862 0.145
Upper lobes, n [%] 109 [50.5] 24 [42.9] 85 [53.1]
Non-upper lobes, n [%] 107 [49.5] 32 [57.1] 75 [46.9]
Shape 104.4 <0.0001****
Round or oval, n [%] 81 [37.5] 29 [51.8] 52 [32.5]
Irregular, n [%] 135 [62.5] 27 [48.2] 108 [67.5]
Vascular change, n [%] 179 [82.9] 44 [78.6] 135 [84.4] 3.052 0.217
Cystic airspaces, n [%] 78 [36.1] 13 [23.2] 65 [40.6] 7.780 0.020*
Edge features, n [%]
Unclear tumor–lung interface, n [%] 90 [41.7] 38 [67.9] 52 [32.5] 24.60 <0.0001****
Lobulation, n [%] 98 [45.4] 22 [39.3] 76 [47.5] 3.206 0.020
Spiculation, n [%] 119 [55.1] 36 [64.3] 83 [51.9] 4.744 0.093
Satellites, n [%] 20 [9.3] 14 (25) 6 [3.8] 25.61 <0.0001****
June 20
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STAS, spread through air spaces; EGFR, epidermal growth factor receptor; CTR, consolidation tumor ratio; pGGNs, pure ground glass nodules; mGGNs, mixted ground glass nodules;
SNs, solid nodules. Significant level marks: *p < 0.05, **p< 0.01, ****p< 0.0001.
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No difference was observed in the average diameter of the
lesions between STAS+ and STAS− tumors, but the CTR of
STAS+ tumors was greater than that in STAS− tumors (0.8 vs
0.5, p < 0.0001), and the proportion of solid nodules was higher
in STAS+ cases (28.6 vs 25.6%, p = 0.01). Among the traditional
morphological features, STAS+ lung adenocarcinoma showed
more round or oval nodules, unclear tumor–lung interface and
satellite focus (p < 0.0001), while STAS− lesions showed more
cystic airspaces (p < 0.020).

Diagnostic Efficiency of Traditional
Imaging Features
CTR achieved an AUC of 0.796 (a sensitivity of 0.915 and a
specificity of 0.686) for predicting STAS, and the optimal critical
value was 0.88. Among the traditional morphological CT
features, “unclear tumor–lung interface” and “satellite sign”
achieved higher diagnostic performance to predict STAS with
AUCs of 0.677 and 0.606, respectively. The AUCs of “solid
nodule”, “irregular shape”, and “vacuole sign” were all less than
0.6, and the accuracy was less than 60% (Table 2).

Feature Selection, Model Construction,
and Validation
There was no significant difference between the training set
and verification set of the main clinical data (i.e., age, sex, size,
CTR, and pathological subtypes) in the STAS+ and STAS−
groups. Therefore, it is considered that the case distribution of
the training set and verification set is balanced, which is
suitable for establishing and verifying the histological
analysis model.

The results of the diagnostic efficiencies of the nine radiomic
models are shown in Table 3. We extracted 851 features in each
model and compared the AUCs in the training and testing
datasets respectively. The VOIcore model achieved the best
diagnostic efficiency among the eight separate radiomic models
and the AUCs of the training and testing sets were 0.843 (95% CI,
0.772–0.908) and 0.835 (95% CI, 0.682–0.963), respectively, and
the diagnostic accuracy in the validation set was 0.818. The
performances of eight separate radiomic models were
significantly lower than that of eight-VOI model. The eight-
VOI model achieved the best results by using all feature
modeling (Table E1). All 6,808 imaging features were modeled
jointly, and 20 radiomic features were incorporated in the model
after feature selection (Figure 3). The AUCs of the eight-VOI
model were 0.907 (95%CI, 0.862–0.947) in the training set, 0.897
(95%CI, 0.784–0.985) in the testing set, and 0.909 (95%CI,
Frontiers in Oncology | www.frontiersin.org 6
0.863–0.949) in the external validation set, and the diagnostic
accuracy in the external validation set was 0.849 (Figure 4).

The modeling performance of a single texture feature was the
worst, and the modeling effects of any other single feature type
were relatively poor. Compared with the VOIcore model, eight-
VOI model was generally improved, and the wavelet features had
the greatest contribution.

Figure 5 shows the results of modeling using 6,808- and 851-
dimentional features extracted in eight-VOI model and VOIcore
model, respectively. The best performance of VOIcore model was
obtained by using all three types of feature modeling. Compared
with the VOIcore model alone, the best performance of eight-VOI
modeling method was 7.4 and 2.8% higher in the AUC and
accuracy of the verification set, respectively. Among the 20
radiomic features of the eight-VOI model (Table E2), there
were five VOIcore features, two VOI2 mm and VOI4 mm features,
three VOI6 mm and VOI8 mm features, and two VOI20 mm features
(Figure 4). The perinodular features accounted for 75% of
the total effective features, which suggests that the radiomic
features of perinodular tissues were crucial to predict
STAS+ adenocarcinoma.
DISCUSSION

This study analyzed the predictive value of traditional imaging
features, radiomic features of the tumor body and the
surrounding areas in the differential diagnosis of STAS+ lung
adenocarcinoma. In this study, we extracted the perinodular
areas around the tumor at different distances by using the
erosion and expansion algorithm for the first time and
compared the diagnostic efficiencies of intra- and perinodular
radiomic models in the diagnosis of STAS.

We found that radiomic model of combined tumor bodies
and different distances of perinodular areas had better predictive
efficiency for predicting STAS+ lung adenocarcinoma (the
verification set AUC was 0.835, and the accuracy was 0.818),
which was 7.4 and 2.8% higher than that of the tumor body
model alone. This study explored the performance of different
types of radiomic models and found that the wavelet frequency
domain feature model was effective in predicting STAS, and the
radiomic model combining the three types of features had the
best predictive performance. We suggest that radiomics could
effectively predict STAS in lung adenocarcinoma. In addition,
this study found that radiomic features had better predictive
effectiveness compared to traditional morphological features. It
TABLE 2 | Diagnostic performances of traditional radiologic features of STAS+ lung adenocarcinoma.

AUC Sensitivity Specificity Accuracy PPV NPV

Solid nodule 0.589 0.61 0.57 0.60 0.34 0.80
Irregular shape 0.404 0.48 0.33 0.37 0.20 0.64
Cystic airspaces 0.413 0.23 0.59 0.50 0.17 0.69
Unclear tumor-lung interface 0.677 0.68 0.68 0.68 0.42 0.86
Satellites 0.606 0.25 0.96 0.78 0.70 0.79
June 2021 | Vo
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may be a promising imaging biomarker for predicting STAS
before surgery and may be helpful for surgeons to choose correct
operation method to reduce the postoperative recurrence rate.

The majority of studies (6, 8, 9) used in diagnosing STAS+
adenocarcinoma have focused solely on the analysis of
traditional radiologic features and tumor body texture analysis.
Our findings were in consensus with Kim et al. (10), who showed
that CTR was independently associated with STAS in lung
adenocarcinoma (AUC, 0.77; cutoff value, 90%), and none of
the other CT features was associated with STAS. de Margerie-
Mellon et al. (11) found that STAS+ adenocarcinoma had a
higher proportion of solid components. In our cohort, the AUC
and cutoff values were 0.796 and 0.88, respectively, which
suggests that even small solid lesions are more likely to spread
through air spaces than larger subsolid tumors with higher
percentage of ground glass components. This is in line with
Frontiers in Oncology | www.frontiersin.org 7
the recommendations of the National Comprehensive Cancer
Network guidelines for the treatment of non-small-cell lung
cancer, which suggests that subsegmental resection is feasible
for small nodules with ground glass composition greater than
50% on CT (12). We found that other imaging signs could also
predict STAS in lung adenocarcinoma, including unclear tumor–
lung interfaces, satellite signs and vacuole signs, but their
predictive power was lower than that of CTR. Studies (13, 14)
(15) on CT morphologic analysis of lung cancer showed that an
irregular or cloudy surface on CT scan was highly associated with
the presence of at least a feature of aggressive local spread, and
there was an obvious relationship between the smooth and clear
appearance of lung nodules on CT scan and smooth microscopic
appearance, which was equivalent to the absence of aggressive
local spread (16). Although we found that STAS+ lung
adenocarcinoma had a higher probability of satellites near the
main tumor, this macroscopic sign has nothing to do with STAS,
which is a microscopic sign and cannot be recognized by CT
scanners at present (Figure 6). Therefore, the predictive CT signs
reported in the current research are all indirect signs, and
incalculable misdiagnosis and overdiagnosis are inevitable
using such qualitative CT features to predict STAS.

Radiomics refers to extracting a large number of quantitative
features from all kinds of images through predefined statistical
formulas and then forming a specific model through the steps of
data preprocessing, feature screening, statistical calculation, and
so on (16). Studies have shown that radiology has great potential
in distinguishing invasive lung cancer, and predicting treatment
response (17, 18), recurrence, and metastasis (19, 20), but there
A B D

E F G H

C

FIGURE 3 | ROC graphs in the eight-VOI and VOIcore Models. (A–D) showing the ROC curves of the training and validation sets obtained by using first-order
features and morphological features (A), texture features (B), wavelet frequency domain features (C) and all three kinds of features (C) of the VOI core Model;
(E–H) showing the ROC curves of those in eight-VOI model.
TABLE 3 | Diagnostic performances of the eight separate models and the 8-VOI
model.

Radiomic Model AUC train AUC test

VOI2 mm 0.861 0.762
VOI4 mm 0.841 0.826
VOI6 mm 0.88 0.778
VOI8 mm 0.846 0.801
VOI10 mm 0.821 0.828
VOI20 mm 0.851 0.834
VOItumor–lung 0.856 0.837
VOIcore 0.843 0.835
Eight-VOI model 0.907 0.897
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are few studies on the preoperative prediction of STAS in lung
adenocarcinoma. Chen et al. (9) suggested that radiomic features
of the tumor body could effectively predict STAS of stage I lung
adenocarcinoma preoperatively, thus assisting in the formulation
of the best surgical plan. Jiang et al. (21) found that the AUC
value of the radiomics model in predicting STAS was 0.754
Frontiers in Oncology | www.frontiersin.org 8
(sensitivity, 0.880; specificity 0.588). However, these studies
were based on the extraction and analysis of intranodular
radiomic features and were not combined with those of
perinodular features.

Although most studies have defined STAS as micropapillary
clusters, solid nests, or individual cells around the main body of
A

B D

C

FIGURE 5 | (A, B) was the result of modeling using 6,808-dimensional features extracted in eight-VOI Model, and (C, D) was the result of using 851-dimensional
features extracted only in VOIcore model.
FIGURE 4 | The eight-VOI radiomic model achieved the best diagnostic performance. The AUCs of the eight-VOI model were 0.907 (95%CI, 0.862–0.947) in the
training set, 0.897 (95%CI, 0.784–0.985) in the testing set, and 0.909 (95%CI, 0.863–0.949) in the external validation set, and the diagnostic accuracy in the external
validation set was 0.849.
June 2021 | Volume 11 | Article 654413

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Qi et al. Radiomics on STAS Diagnosis
the tumor, its distance from the main body of the tumor has not
been clearly defined (22). Various studies use the distance from
the first alveoli outside the edge of the tumor, or several alveolar
cavities from the main body of the tumor, or at least 0.5 mm
from the edge of the main body of the tumor to define STAS.
Masaik et al. (23) found that STAS positivity and a cutting-edge
distance smaller than 10 mm were important risk factors for
recurrence of early lung adenocarcinoma after wedge resection.
Dai et al. (24) found that the maximum distance between the
tumor island and the edge of the tumor in STAS+ lung
adenocarcinoma was 1.35 cm. However, in a previous
morphological study of STAS+ adenocarcinoma, we found that
tumor cell clusters in stage I lung adenocarcinoma could spread
to the alveolar cavity of the adjacent lobe through the congenital
defect of the interlobar fissure.

Therefore, in this study, radiomic features at different
perinodular distances within 20 mm were extracted and
combined with modeling analysis. It was found that the
combined intra- and perinodular model was more effective in the
predictive performance of STAS+ lung adenocarcinoma than the
intranodular model alone; the AUC and accuracy in the verification
set were increased by 7.4 and 2.8%, respectively, and the prediction
efficiencies of the two radiomics models were higher than those of
Frontiers in Oncology | www.frontiersin.org 9
traditional morphological features. Zhuo et al. (25) predicted STAS
by combining morphological and radiomic features around the
tumor to predict STAS. The radiomic model was established by
using point localization and region growth methods to extract 5, 10,
and 15 mm distances from the tumor surface, but for tumors close
to the chest wall and mediastinum, this method could not avoid
areas outside the lung tissue. For irregular lung adenocarcinoma,
simple spherical dilatation would cause an uneven extraction area
around the tumor. In this study, we wrote a program to capture the
perinodular area and exclude extrapulmonary tissues; the radiomics
model combining intra- and perinodular areas predicted an AUC of
0.835 and an accuracy of 0.818, which was lower than that of Zhuo
et al. (25) (AUC = 0.99).

Our study proved that the combined radiomics model can
significantly enhance the predictive performance of STAS. In this
study, we explored the performance of different types of radiomic
features and found that the radiomic model of grayscale texture
features performed worst, and the intra- and perinodular model
combining three types of features had the best predictive
performance, which showed that imaging features can
effectively predict the expression of STAS in lung cancer.

Our study had some limitations. First, manipulation or
stapling devices during operation may artificially cause STAS,
FIGURE 6 | STAS in a 47-year-old man with invasive adenocarcinoma. Baseline coronal (A) and axial (B) CT images show a solid nodule in the upper lobe of the
left lung. (C) Photomicrograph shows multiple tumor cells spread though alveolar spaces (green arrows). (D) They are nestlike and distrusted in the alveolar cavity
around the tumor (black arrows).
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which is impossible to avoid in our study. Second, considering
that pathologists are not trained to look for these cells in the lung
parenchyma beyond the edge of the tumor, STAS is mostly
overlooked on microscopic review. Finally, the combination of
clinical semantics may further improve the performance of
our model.

In conclusion, we introduced a machine learning approach
that demonstrates the utility of combining texture features of
intranodules and their surrounding lung parenchyma on non-
contrast chest CT images to discriminate STAS+ and STAS−
lung adenocarcinoma. Incorporation of different perinodular
texture features with intranodular texture improved the
predictive ability of the radiomics model to distinguish STAS+
adenocarcinoma before surgery.
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