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Discovery of under immunized spatial
clusters using network scan statistics
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Abstract

Background: Clusters of under-vaccinated children are emerging in a number of states in the United States due to
rising rates of vaccine hesitancy and refusal. As the measles outbreaks in California and other states in 2015 and in
Minnesota in 2017 showed, such clusters can pose a significant public health risk. Prior methods have used
publicly-available school immunization data for analysis (except for a few, which use private healthcare patient
records). School immunization data has limited demographic information—as a result, such analyses are not able to
provide demographic characteristics of significant clusters. Further, the resolution of the clusters identified by prior
methods is limited since they are typically restricted to disks or well-rounded shapes.

Methods: We use realistic population models for Minnesota (MN) and Washington (WA) state, which provide a
model of activities for all individuals in the population. We combine this with school level immunization data for
these two states, to estimate vaccine coverage at the level of census block groups. A scan statistic method defined
on networks is used for finding significant clusters of under-immunized block groups, without any restrictions on
shape. Further we provide the demographic characteristics of these clusters.

Results: We find 2 significant under-vaccinated clusters in MN and 3 in WA. These are very irregular in shape, in
contrast to the circular disks reported in prior work, which rely on the SatScan approach. Some of the clusters
found by our method are not contained in those computed using SatScan, a state-of-the-art software tool used in
similar studies in other states.

Conclusions: The emergence of under-immunized clusters is a growing concern for public health agencies
because they can act as reservoirs of infection and increase the risk of infection into the wider population. Higher
resolution clusters computed using our network based approach and population models provide new insights on
the structure and characteristics of such clusters and enable targeted interventions.
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Background
There have been several outbreaks of vaccine preventable
diseases in the US, such as a large measles outbreak in
Minnesota in 2017 and a multi-state measles outbreak
linked to an amusement park in California in 2015. Such
outbreaks have been linked to decreasing vaccination
coverage—and while vaccination coverage for the measles,
mumps and rubella vaccine (MMR) remains high on aver-
age, there are regions with significantly low coverage. For

instance, according to the Centers for Disease Control
and Prevention (CDC), 95% of children in kindergarten in
the US have had 2 doses of MMR vaccine, which is a high
enough rate to reach herd immunity. However, several
past studies have identified spatial clusters with signifi-
cantly lower than average vaccination rates for MMR and
other vaccines, increasing their susceptibility to outbreaks
and creating a public health risk for the communities sur-
rounding these clusters e.g., [1–4].
Identifying the factors associated with under immu-

nized clusters is important because it can help to more
accurately identify and characterize populations that
may be vulnerable to outbreaks of vaccine-preventable
diseases. One of the most comprehensive analysis of
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such factors associated with under immunized clusters
was by Lieu et al. [1]—they use detailed data from Kaiser
Permanente of Northern California (KPNC), a managed
care provider, to identify various demographic factors
such as race and income, which characterize under-
immunized MMR clusters in Northern California. This
data contains a lot of detail about patients in the KPNC
network, but this methodology cannot be easily ex-
tended to other states where such data are not available,
and one has to rely on school level immunization data
(e.g., as used in [4]), which is often the only data avail-
able. Additionally, the patient data used in [1] only
covers less than half the population, which might lead to
certain biases.
Spatial scan statistics provides a rigorous method for

identifying statistically significant clusters [5], and have
been used in many past studies, such as [1, 4, 6]. The
standard use of this approach (using the SatScan soft-
ware) involves scanning the entire region using a circular
shaped window (which is a spatial window, defined using
Euclidean distance) to find a cluster that optimizes a
maximum likelihood objective; this has been extended
to other shapes, such as ellipses. However, because of
the restriction in shapes, this approach does not find
high resolution irregularly shaped regions—if “real” clus-
ters do not have the prescribed shape, SatScan will miss
them or only partially catch them. We note that Dela-
mater et al. [7] developed a methodology to combine
school immunization data with a gravity based popula-
tion mobility model; however, they do not use scan sta-
tistics for identifying significant clusters.
Our goal is to use publicly available school level

immunization data to identify high resolution under im-
munized clusters (see [8] for more details on the avail-
ability of such data). Our specific objectives are: (1)
develop a methodology to integrate school level
immunization data with detailed population models to
construct a block group level immunization rate model,
and (2) identify high resolution statistically significant
clusters, which may be irregularly shaped, and give new
insights into the regions of concern beyond what SatS-
can can provide.

Methods
We construct an immunization rate model at the census
block group resolution. The steps involve integrating
activity-based populations for Minnesota (MN) and
Washington (WA) with school immunization data col-
lected by the health departments in these states.

Activity-based model and demographics
Following the approach of [9, 10], we use a population
model that represents the entire population of MN and
WA, with complete demographics and activities for each

person, activity times, and locations. This representation
integrates over one dozen public and commercial data-
sets. We briefly summarize the steps of the process here
and refer to [9, 10] for complete details. As a first step, a
synthetic representation of each person in the popula-
tion is constructed who, when aggregated to a block
group level, are statistically equivalent to individuals in
the U.S. census block group.
Next, daily activities are assigned to individuals within

a household using activity and time-use surveys, and
methods from transportation science. Finally, activity loca-
tions are determined using methods from transportation
studies and detailed land use data. In particular, this model
has school locations for all school aged children. The
resulting population—referred to as an “activity-based
population”— is statistically equivalent to the census; we
refer to [9, 11–14] for details on validation. The popula-
tion models developed using this approach have been used
in a number of studies on epidemic spread and public
health policy planning [9, 10, 12, 15–18].
Here, we use activity-based models constructed using

the 2010 census data. These models have rich demo-
graphic characteristics; in our study, we focus on age
and income. We divide the population by age into four
categories: Pre-school (ages 0–5), school (ages 6–17),
adults (ages 18–65), and senior (ages 65+). These groups
represent 7, 19, 67, and 7% of the population, respect-
ively. We also group the population by annual
household income into low ($0 —$25, 000), medium
($25 000 —$75,000), and high ($75,000+), which represent
20, 45, 35% of the population, respectively. We use the
same categories for the state of Washington.

School immunization data
We describe here the publicly available school
immunization data that we use in our analysis for MN
and WA. In this paper, we only focus on the
immunization rates for the MMR vaccine for middle
school children, namely, 7th grade in the case of Minne-
sota and 6th grade in the case of Washington, since any
children who get delayed immunizations (i.e., those do
not get the school-entry vaccine requirements by elem-
entary school, but do so in later years), are likely to be
covered in this data.

Minnesota
We use data collected by the Minnesota Department of
Health (MDH) for the school year 2015–2016, as re-
ported in their Annual Immunization Status Report
(AISR).1 The data contains immunization statistics for
7th-grade students in all public and private schools
across the state, except for schools with fewer than 5
children—these are not available because of privacy—
and schools that did not respond to MDH. Initially,
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there are 872 schools in the MDH report, and after re-
moving schools with fewer than 5 children (114) and
schools that did not report (12), we are left with 712
schools. The relevant fields for this study are 1) total
enrollment and 2) percentage of students who have
received two doses of the MMR vaccine. From this data,
we compute the number of unvaccinated and under-
vaccinated2 children in a school as

ðtotal enrollmentÞ �
 
1−

%vaccinated
100

!

We use the vaccination rates from the AISR to assign
an immunization status to each children in the
activity-based model. In order to perform this assign-
ment (Section 2.3), we need to find a mapping between
schools in the MDH data and synthetic schools in our
population model. However, the data reported by MDH
only lists school names and their corresponding school
districts. We need a full address for each school, in
addition to the name, in order to find the corresponding
school in the activity-based model. Addresses were ob-
tained from the Minnesota Department of Education
website or, when not available on the website, by manual
search using Google Maps.

Washington
Immunization data for Washington was obtained from
the Washington State Department of Health (WDH)
website.3 The report contains entries for 6th-grade stu-
dents in 2615 public and private schools across the state,
for the school year 2016–2017. However, a majority of
the schools did not have enrollment data (137) or had a
reported enrollment of zero students (1441). We dis-
carded these entries as well as all the schools with less
than 5 students (138) to obtain a total of 899 schools.
The WDH data does include full addresses for each
school, allowing us to skip one step in data collection
and manual labeling. Then, the immunization data is
used to model immunization rates, as described in the
next subsection.

Modeling immunization rates in the activity-based
population
The objective here is to estimate the immunization rate
for MMR for each census block group. We note that the
school immunization data does not immediately give us
these estimates, since a school serves children from
many block groups, typically the closest ones. We only
consider children who are not home schooled. Our
method involves the following steps.

1. After obtaining addresses for all the schools, we
perform an inexact string matching based on the

Levenshtein distance [19] to find pairs of schools in
the activity-based model and the MDH data. We
were able to find 641 schools in the model that
matched to one of the 712 schools in the MDH re-
port, both in name and in location, as verified using
the addresses. Let A denote the set of schools in the
activity-based model, and let B⊆A be those whose
name matched with some school in the MDH data.

2. The activity-based model has many more schools,
3107 in total. After the initial string-based assign-
ment, we match the remaining schools (i.e., those
in A−B) to the geographically closest school in the
set B, for which we found a string match. For ex-
ample, for the school “BLUE EARTH AREA SR.” in
the MDH data, we find a school with the same
name in the activity-based model (string match).
We did not find a string match for the synthetic
school “BLUE EARTH AREA ALP”, so this school
gets the same vaccination rate as the nearest neigh-
boring school in the model, which happens to be
“BLUE EARTH AREA SR.” Figure 1 shows a box
plot of the distances from schools in A to the corre-
sponding mapped one in the MDH data.

3. The activity-based population has an assignment of
each child v to a school S(v), which also includes
home schools. For each child v, who is not home-
schooled, we estimate a probability (denoted by
p(v)) of getting both doses of MMR to be the
immunization rate in the school S(v).

4. Finally, we aggregate the population by census block
group. The expected number of immunized
children in block group b is Σv∈C(b) p(v), where
C(b) is the set of children with home address in b.
The immunization rate in the block group b is the
average probability of children in b being
vaccinated, i.e., Σv∈C(b) p(v)/|C(b)|. The statewide
vaccination rate is 96.2%.
In performing the distance-based matching, we im-
pose a rule that a public school cannot be matched
to a private school and vice versa, with the goal of
accounting for differences in demographic proper-
ties and immunization practices in public and pri-
vate schools. We do highlight that the distance-
based matching is a somewhat crude approximation
in the absence of other data, with the potential for
losing demographic information, and this is a limi-
tation of the study.
We follow the same process for the WDH data.
There are 2,813 schools in the activity-based model,
and we were able to find a string-match for 571 of
those to some school in the WDH report. Distance-
based matching was used to assign immunization
rates to the remaining schools. We obtained a state-
wide vaccination rate of 95.7%. Table 1 summarizes
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the number of schools in the MDH and WDH re-
ports, the number of schools in the activity-based
model, and the matches to obtain an immunization
rate for each school. We note that there is a signifi-
cant mismatch in the number of schools in the ac-
tivity based population and the data from MDH
and WDH. This is likely to be a combination of
multiple reasons, including: (1) Potentially missing
schools in the data from MDH and WDH: for in-
stance, schools with schools with fewer than five
children, and home school information is missing;
(2) The population model is based on 2010 census
data (as discussed in Section 4.2), which might have
had more schools, and (3) It is possible that some
of the schools in the activity based population are
not middle schools (home schooled children are in-
cluded in the model).

Statistical analysis using network scan statistics
We use the methods of scan statistics [5, 20, 21] to iden-
tify statistically significant geographical clusters with a
high proportion of under-immunized children—this ap-
proach formalizes anomaly detection as a hypothesis
testing problem, and has been used for detecting anom-
alies or “hotspots” in spatial data [22–24]. We use an ex-
tension of this approach to networks, which has been
used for anomaly detection in network data [25–27].

Specifically, we consider a network G = (B, E) defined
on the set of block groups, i.e., each block group b is a
node in the set B.
Two block groups b, b′ ∈ B are connected by an edge,

(b, b′) ∈ E, if they share a boundary. Thus, G denotes
the adjacency graph of the block groups. We say that a
subset C⊂ B is a connected subgraph if the graph
H(C, E′) formed by considering only the edges (b, b′)
∈ E with b, b′ ∈ C is connected. We consider such
subgraphs, since this allows us to consider clusters of
arbitrary shapes, whereas most applications of scan
statistics in spatial data restrict the clusters to have
some fixed regular shape. We note that a cluster of
block groups that is topologically shaped as a circle is
also a connected subgraph, with respect to the above
definition. Therefore, this notion strictly generalizes
the clusters considered in SatScan.
For each block group b ∈ B, we have two counts: (i)

pop(b), which is the baseline count of 7th grade children in
MN (6th grade in WA), and (ii) unimm(b), which is the es-
timated number of under-immunized 7th grade in MN
(6th grade in WA) children (also referred to as the “event
count”). Following our notation defined earlier, we
have unimm(b) = Σv∈ C(b)(1− p(v)). We use the Poisson
version of the Kulldorff scan statistic [5], where the
null hypothesis H0 is that the event counts for all
nodes b are generated proportionally to their baseline

Fig. 1 Distribution of the matching distances in MN

Table 1 Number of schools in the immunization data and the activity-based model

State School type Schools in immunization data Schools in activity based model String matches Distance matches

Minnesota Public 433 2588 390 2198

Private 279 519 131 388

Washington Public 682 2245 509 1736

Private 217 568 62 506
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counts, i.e., (1− μ) ∙ pop(b), where μ is the state-wide
immunization rate.
Under the alternative hypothesis H1(C) for a cluster C,

the event counts for nodes outside C, i.e., in B−C are
(again) generated with rate proportional to the baseline
counts, but for the nodes within C, the counts are gener-
ated at a higher rate than expected. The scan statistic F
(C) is defined as a generalized log-likelihood ratio, and
the objective is to find clusters that maximize this statis-
tic. In the classical spatial scan approach, which is imple-
mented in the popular SatScan software [28], the
maximization is done over circular and elliptical regions.
Optimization over clusters of arbitrary shape is com-

putationally much more challenging. We will use the ap-
proach of [29], which efficiently searches over all
connected clusters of a certain size and provably finds
one with the maximum log-likelihood score. The restric-
tion on the cluster size serves as a regularization con-
straint, while also making the problem computationally
more tractable. We note that there are many other po-
tential approaches for finding such clusters, e.g., greedily
picking significant block groups, and connecting them
subsequently. However, it is shown in [29] that ap-
proaches such as this do not perform very well, in gen-
eral. Monte Carlo sampling is used to determine the
p-value for each cluster—accounting for multiple hy-
pothesis testing— and we consider the top few signifi-
cant clusters. We compare our results with the clusters
discovered using SatScan.
Many extensions of scan statistics allowing arbitrary

shapes have been proposed, e.g., [30, 31]. We also note
that there is some risk of finding spurious or very
“patchy” clusters, when constraints on the allowed
shapes are relaxed. In particular, an “octopus” effect has
been reported [30], where clusters with high even counts
are connected by narrow paths on a network. We ex-
plore this possibility through simulations in the Appen-
dix. We find that if the target cluster is very different
from the background population, the maximum
log-likelihood cluster has a high overlap with the target.
On the other hand, if the true cluster is not very signifi-
cant, the maximum log-likelihood solutions might differ
quite a bit. This is related to, but not as extreme as the
octopus effect. We hypothesize that the constraint on the
solution size and the optimality guarantee in the method
of [29] prevents reaching the degenerate cases reported in
[30]. For a more detailed discussion of the advantages and
limitations of scan statistics, we refer to [5, 27, 31].

Characterization of under-immunized block groups
To characterize the block groups that are a part of the
anomalous clusters of under-immunized children, we per-
form separate logistic regression analysis for MN and WA
using all the block groups in each state. The response

variable in the regression is whether the block group is a
part of the under-immunized clusters or not. It takes value
1 if it is a part of one of the under-immunized clusters
and 0 if it is not. The independent variables we considered
are average age in the block group, number of workers per
capita, average household income in block group, average
household size, number of children in age group 0-5 years
and the total income of the block group. These variables
were selected because data for them are available as part
of the census data.
The raw feature list considered other demographics as

well such as the number of school aged children 6-18
years, number of adults between 19-65 years, number of
people older than 65 years, and the total population size
of the block group. However these variables were corre-
lated with the number of children 0-5 years, and hence
were removed to avoid the problem of multi-collinearity.
The regression analysis identifies the list of statistically

significant demographics that contribute to the probability
of a block group being a part of the under-immunized
cluster. If we can identify these features in a robust man-
ner, public health officials can utilize this information to
design actionable and targeted policies.

Results
We discuss our results for under immunized MMR clusters,
and we describe the size, location, and demographic charac-
teristics of the clusters. We consider the clusters at a statis-
tical significance level of p < 0.05, and compare with those
found using SatScan. Finally, we use a regression analysis to
explain the block groups involved in the significant clusters.

Under-vaccinated clusters: Size and location
Minnesota
We discover 2 significant under-vaccinated clusters in
Minnesota. In Table 2, we report the size of the clusters in
terms of number of block groups, total children, and un-
vaccinated children. In the first cluster, the vaccination
rate is only 81.2%; in contrast, recall that the statewide
average is over 96.2%. The second cluster has above 90%
vaccination rate, but it affects a larger population and a
larger geographical region. The third cluster is marginally
significant but has an alarmingly low vaccination rate of
only 72.9%—although it affects a smaller set of children.
In Fig. 2, we show the two significant clusters over a

map of MN with each marker corresponding to a block
group (top) and as polygons (bottom). We notice some
differences between both clusters. The most significant
cluster—with vaccination rate 81%—covers the Twin
Cities of of St. Paul and Minneapolis—a dense, urban re-
gion—and it is compact in shape. The second cluster, on
the other hand, spans a more rural area west of Minne-
apolis, and it extends over a much larger geographical
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region. In the next subsection, we analyze, the demo-
graphic properties of these two clusters.

Washington
For Washington state, we discover 3 significant clusters
(Table 3). The vaccination rate in these regions varies

from 78.2% to 85.4%; in contrast, the statewide rate is
95.7%. The number of unvaccinated children is much
lower than in the Minnesota clusters.
When drawn over a map of Washington (Fig. 3), we

see that the significant clusters span different parts of
the state instead of being concentrated on a single area.

Table 2 Under-vaccinated clusters in Minnesota

# Block Groups # Children # Unvaccinated (Expected) Vac. Rate (%) p

187 3567 668 (136.84) 81.2 0.001

167 4301 390 (165.00) 90.9 0.018

16 233 63 (8.93) 72.9 0.052

Fig. 2 Top two significant clusters in MN (top right and top left) are shown. Each dot on the map is a block group. The same clusters are shown
as block group polygons on the bottom right and left, with each marker corresponding to a block group. First cluster in Minnesota covers the
city of St. Paul (top left and bottom left) and the second cluster covers the rural block groups west of Minneapolis (top right and bottom right)
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In particular, the clusters are associated with major
metropolitan areas—Seattle, Bellingham, and Vancou-
ver—and then span out to rural regions.

Demographic properties
We compare the distributions of demographic properties
within the significant clusters with the corresponding
statewide distributions.

Minnesota
We observe notable differences between the most sig-
nificant cluster and the entire state in terms of income
distribution (Fig. 4 (right)). In the cluster, the percentage
of low-income households is 6 points higher than the
statewide distribution, whereas there is a decrease of 8
percentage points in the high-income population. The
over-representation of low-income households is inter-
esting, considering that this cluster spans a major metro-
politan area. On the other hand, the age distribution in
the cluster does not deviate from the statewide average.
In the second cluster, we find that the high-income

households are over-represented by 11 percentage points,
with an even decrease on low and medium income house-
holds, though this difference may be attributed to the

location of the cluster—mostly over Minneapolis. Again,
we do not observe differences in the age distribution.

Washington
Our observations are similar in the three clusters discov-
ered in Washington state (Fig. 5). The most significant
cluster has an over-representation of high-income
households, while the second cluster has more
low-income households than in the statewide distribu-
tion. High-income households are over-represented by
roughly ten percentage points in the most significant
cluster and low-income households are overrepresented
by four points in the second most significant cluster.
This is not surprising as the former cluster is, for the
most part, concentrated in the suburbs around Seattle.
There is a slight increase in school-age population in the
Seattle and Vancouver clusters.

Comparison to SatScan
In Fig. 6, we show the most significant cluster in Minne-
sota discovered using the network-based scan statistics
(left), as well as the most significant cluster discovered
using SatScan (right). Both clusters cover the same area
of Minnesota—the Twin Cities—however, we obtain a
better fit of the under-vaccinated region. The SatScan
cluster has a likelihood ratio score of 436.27, compared

Fig. 3 Undervaccinated clusters in Washington state are centered in major cities. Each subfigure on the top corresponds to a cluster. The bottom
parts of the plot are showing the same clusters drawn as polygons

Table 3 Under-vaccinated clusters in Washington state

# Block Groups # Children # Unvaccinated (Expected) Vac. Rate (%) p

51 974 179 (40.9) 81.6 0.001

44 500 109 (21.0) 78.2 0.012

51 1048 153 (44.0) 85.4 0.042
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to 577.80 in the one that we discover—i.e., our cluster is
more significant. Furthermore, the vaccination rate in
the left cluster is lower, 81% compared to 88%.
We also find that SatScan has difficulty detecting re-

gions of irregular shape, such as the “U”-shaped cluster
in Minnesota (Fig. 7). Using SatScan, this cluster is ap-
proximated by two smaller circular regions; this hinders
the ability of public health officials to allocate resources
efficiently throughout the cluster and to interpret the re-
sults of the analysis.
Another weakness of only looking for regions of a pre-

determined shape—i.e., circles—is the potential to over-
estimate the statistical significance of the clusters. Recall
that statistical significance of the scan statistic is
assessed via Monte Carlo simulation. This simulation
gives us the minimum likelihood ratio score that a clus-
ter should have to be considered significant at some
level—0.05, 0.01, etc. However, this threshold is much
lower if we make the prior assumption that the
under-vaccinated clusters are circular.
In Table 4, we show the likelihood ratio scores of the 6

clusters that SatScan detected as significant with p < 0.05.

Specifically, these clusters were flagged because they have
scores above 11.11, which was the threshold for signifi-
cance established through Monte Carlo simulation. Only
four of these clusters would be significant at p < 0.01. On
the two rightmost columns of the table we report the
threshold for significance established with network scan
statistics.
We note that this threshold is much higher, and only the

top cluster discovered by SatScan (Fig. 6) would be declared
significant at either the 0.05 or 0.01 level. To summarize, it
is perfectly reasonable to look for regions of a fixed shape if
we have some prior knowledge about what the clusters of
interest look like. However, if in reality there are
under-vaccinated regions of arbitrary shape, we will be
prone to overestimating the significance of the predeter-
mined shapes.
Similarly, we observe differences in the significance as-

signment from both methods in Washington (Fig. 8). The
most significant region we find spans western Red-mond,
whereas SatScan declares the Bellingham cluster to be the
most significant. In fact, SatScan misses the Redmond block
groups completely.

Fig. 5 The age (left) and income (right) distributions for the significant clusters and the entire state of Washington

Fig. 4 The age (left) and income (right) distributions for the significant clusters and the entire state of Minnesota
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Characteristics of the under-immunized block groups
Recall that we perform a logistic regression to predict
whether a block group is part of the under-immunized
clusters or not (the response variable). We report the re-
sults in Table 5. In Minnesota, all demographics except
the total income of the block group are statistically signifi-
cant in explaining the likelihood of a block group being a
part of an anomalous under-immunized cluster. However,
the magnitude of the impact from household income and

the number of children between ages 0-5 years is almost
negligible. Average age in the block group, number of
workers per capita, and the average size of the household
are all negatively correlated with the response variable.
In Washington, age, workers per capita, household in-

come, and total income in the block group are all statis-
tically significant in explaining the response variable.
Age, workers per capita, and household income are
negatively correlated whereas total income is positively

Fig. 7 Second significant cluster in Minnesota using network scan statistics (left) and SatScan (right). SatScan has to approximate irregularly-
shaped regions with circles

Fig. 6 Most significant cluster in Minnesota using network scan statistics (left) compared to SatScan (right). By searching for arbitrary shapes, we
capture a cluster with lower vaccination and higher statistical significance
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correlated to the response variable. Again, the impact of
household income and the total income on the outcome
is almost negligible.
The two variables that are consistently significant

and influential in both MN and WA are the average
age in the block group and the number of workers
per capita. Both have a negative influence on the re-
sponse variable. A possible explanation for the nega-
tive relationship with average age is that, as the
average age in block group increases, there are fewer
children left to be labeled under-immunized, which
reduces its chances of being in an anomalous clus-
ter. In the case of the number of workers per capita,
a higher number of workers may imply a higher
level of education in the block group, which may
imply a higher likelihood of vaccinating children in
workers’ families.

Discussion
Major findings
First, we discuss the structure of the clusters we find.
Our results indicate existence of block group clusters

with significant under-immunization rates for MMR,
both in Minnesota and Washington. These clusters are
generally small, have irregular shape, and they are not
identified by the SatScan method—although they overlap
with the clusters identified by SatScan. Additionally, the
clusters we report have higher likelihood score and gen-
erally lower immunization rates than those reported by
SatScan, which signals a higher potential threat from
these clusters. Further, by imposing a prior assumption
that clusters are circular, SatScan over-estimates the stat-
istical significance of circular regions. Thus, our results
demonstrate the additional insights that can be obtained
by considering irregularly-shaped clusters using scan sta-
tistics on a network representation. In particular, if “real”
clusters do not have the prescribed shape, which is likely
to be the case, SatScan will miss them or only partially
identify them. The higher resolution clusters can also
make it easier to intervene in a targeted manner, and al-
locate public health resources more optimally.
Next, we consider the demographic characteristics of

the populations within the clusters we find. The age dis-
tributions in the top two clusters in MN and the top

Fig. 8 Significant under-vaccinated clusters discovered using network scan statis-tics (left) and SatScan (right) in Washington state. Blue diamond
markers correspond to the most significant cluster, followed by red circles, purple squares, and green stars

Table 4 Statistical significance of circular clusters is overestimated

Likelihood Ratio Threshold for Significance

Top clusters Likelihood SatScan 0.05 SatScan 0.01 ColCodeNP 0.05 ColCodeNP 0.01

11.11 13.00 69.89 142.02

1 436.27 ✓ ✓ ✓ ✓

2 69.20 ✓ ✓ ✗ ✗

3 27.16 ✓ ✓ ✗ ✗

4 14.59 ✓ ✓ ✗ ✗

5 12.65 ✓ ✗ ✗ ✗

6 11.62 ✓ ✗ ✗ ✗
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three clusters in WA do not show any notable differ-
ences from the statewide distributions. However, they
show significant differences with respect to income dis-
tributions, but these are not consistent among the clus-
ters. Note that these observations are about the
population within the individual clusters.
Our regression analysis considers a different quantity,

namely, whether a specific block group is contained in
any of the significant under immunized clusters. Our
analysis shows that two variables, namely, the average
age and the number of workers per capita in a block
group, are predictors for the block group to be con-
tained in a significantly under-immunized cluster. The
fact that age is a significant factor might seem inconsist-
ent with the cluster-level observation stated above. We
emphasize that the regression analysis is considering a
different quantity from the within cluster distributions,
so this is certainly plausible. However, more research is
needed to understand the robustness of these obser-
vations, and the likely causes. Finally, we note that
the school immunization data by itself does not have
rich demographic information to enable such analyses.
The first component of our methodology, namely the
integration of an activity based detailed population
model with school immunization data gives an indi-
vidual level immunization model, which enables such
an analysis.

Limitations
Our study is focused on 6th and 7th grade children. The
results might be different when we consider other age
groups, and would be an interesting research question as
well. There are potentially several sources of missing
data and inconsistencies and uncertainty in the datasets
we use. Uncertainties in the activity based population
model have been identified in earlier studies on infec-
tious diseases [9, 10, 12]. The population matches census
at a block group level, so we expect the spatial

resolution we have considered will limit the impact. The
biggest source of inconsistency is that the school
immunization data is for 2015-2016, whereas the activity
based population is based on the 2010 census data.
There is also an inconsistency between the number of
schools listed in the MDH and WDH datasets, and
the population data. There might be multiple reasons
at play here, as discussed below (sources of uncer-
tainty), and in Section 2.3. The methodology we de-
velop here can be applied without any changes once
an updated activity based population is constructed.
We note that other agent based populations have
been used for studying measles outbreaks [32], but
the specific methodology is different from [9, 10, 12],
which is the basis of our work.
Some of the sources of uncertainty with respect to

the school immunization data are: (1) data for
schools with fewer than five children is not available,
(2) there is no data on home schooled children, and
(3) charter schools are likely being overrepresented
by our matching method. Charter schools generally

Fig. 9 Planted circular under-vaccination cluster in Minnesota (left) and discovered clusters using network scan statistics when the number of
under-vaccinated children inside the cluster is twice (center) and 10 times (right) larger than the statewide rate

Table 5 Logistic regression analysis. The response variable is
whether the block group is a part of the under-immunized
clusters or not. The independent variables are average age in
the block group, number of workers per capita, average
household income, average household size, number of children
in age group 0–5 years and the total income of the block group

Variables Minnesota Washington

Coefficient p-value Coefficient p-value

avg. age −0.161 <: 001 *** −0.029 0.026 *

workers per capita −7.28 <: 001 *** −4.45 <: 001 ***

avg. household income 1.088e-05 0.0012 ** −7.416e-06 0.08 *

avg. household size −0.91 <: 001 *** 0.167 0.32

# of children 0–5 yrs. −3.742e-03 0.012 * −5.762e-04 0.62

total income 5.911e-09 0.19 1.804e-08 <: 001 ***
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have little to no nursing staff and lack technological
resources, which impacts their immunization data
quality.

Conclusions
The emergence of under immunized clusters is a grow-
ing concern for public health agencies. Higher resolution
clusters computed using our network based approach
can provide additional insights on the structure and
characteristics of such clusters. The integration of an ac-
tivity based population with publicly available data, such
as school immunization records, can potentially be use-
ful in other analyses. We note that our analysis has been
done with the publicly available school immunization
data, and does not reflect any official conclusions of the
public health departments of MN or WA.

Endnotes
1http://www.health.state.mn.us/divs/idepc/immunize/

stats/school/
2We do not distinguish between children who have re-

ceived one dose and children who have received no dose.
3https://www.doh.wa.gov/DataandStatisticalReports/

HealthBehaviors/Immunization/SchoolReports/
DataTables

Appendix
Sensitivity of Network Scan Statistics for Circular
Clusters
By allowing the network scan statistics method to scan

over regions of arbitrary shape, it is possible to discover
elongated and “U”-shaped clusters that would be misre-
presented if we were to constrain the shape. However,
we note that when the target cluster is in fact circular,
the network scan statistic approach discovers larger re-
gions centered around the target. This behavior has been

documented before in a comparative study of algorithms
for scan statistics optimization [31].
As an example, we inject a circular cluster in the block

group network of Minnesota. Figure 9 (left) shows the
block groups in the target cluster in red. For this experi-
ment, we set the statewide unvaccination rate at α=0.038.
Inside the cluster, we use multiples of the statewide vaccin-
ation rate: 2α , 3α , 5α , 7α , 10α. We refer to the multiply-
ing factor as the signal strength. In all cases, the network
scan statistics approach finds a cluster that overlaps with
the target. However, for a signal strength of 2 and 3, the dis-
covered cluster has about twice the size of the target. For a
signal strength of 5 and above, we observe high overlap
with the target. These observations are summarized in Fig.
10 (left), where we show the overlap—size of intersection
divided by size of union—between the target and discov-
ered regions. Further investigating this discrepancy, we see
that with the network approach, we always discover clusters
with a higher log-likelihood score—i.e., more evidence of
being anomalous—than the target cluster. As shown in Fig.
10 (right), the discrepancy is more noticeable at the lower
signal strength levels, which correlates with the low overlap
at these levels.
In summary, using network scan statistics, we are able to

recover regions with higher log-likelihood scores than what
is obtained by constraining the search to circular shapes
only. Finding higher scores is a desirable property, since
these scores translate to more support for the alternative
hypothesis of an anomalous cluster (Section 2.4). However,
as we saw above, score optimization by itself may lead to
spurious results, which is a limitation the scan statistics
methodology in general. In practice, if there is a good rea-
son to believe that the target anomaly is of a given shape—
i.e., a circle or a square—the best way to proceed is to
optimize the likelihood score and conduct a significance
test on clusters of this shape only, as observed in [31].
When a given shape is not a reasonable assumption, but

Fig. 10 Left: Overlap between the discovered cluster and the target circular cluster for different signal strength levels. At low signal strength, the
network scan statistic approach finds cluster with poor overlap with the target. Right: Log-likelihood scores of the true and discovered clusters. At
low signal strength, the larger regions found using network scan statistics also have notably higher scores than the real region
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there is knowledge about the expected size or radius of the
anomaly, network scan statistics with a size constraint
would be a better alternative. Finally, based on the results
from Fig. 10, when using network scan statistics, one may
choose to be skeptic of discovered clusters with rates lower
than 3 times the rate of the entire region under study.
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