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ABSTRACT

Tumor tissues are heterogeneous with different cell
types in tumor microenvironment, which play an im-
portant role in tumorigenesis and tumor progression.
Several computational algorithms and tools have
been developed to infer the cell composition from
bulk transcriptome profiles. However, they ignore the
tissue specificity and thus a new resource for tissue-
specific cell transcriptomic reference is needed for
inferring cell composition in tumor microenviron-
ment and exploring their association with clinical
outcomes and tumor omics. In this study, we devel-
oped SCISSOR™ (https://thecailab.com/scissor/), an
online open resource to fulfill that demand by inte-
grating five orthogonal omics data of >6031 large-
scale bulk samples, patient clinical outcomes and
451 917 high-granularity tissue-specific single-cell
transcriptomic profiles of 16 cancer types. SCIS-
SOR™ provides five major analysis modules that en-
able flexible modeling with adjustable parameters
and dynamic visualization approaches. SCISSOR™ is
valuable as a new resource for promoting tumor
heterogeneity and tumor–tumor microenvironment
cell interaction research, by delineating cells in the
tissue-specific tumor microenvironment and charac-
terizing their associations with tumor omics and clin-
ical outcomes.

GRAPHICAL ABSTRACT

INTRODUCTION

With the advancement of transcriptome analysis, tumor re-
search has made breakthrough progress. RNA sequencing
(RNA-seq) has been widely applied to profile transcrip-
tome in tumor biopsies to investigate transcriptomic dys-
regulation, detect new biomarkers and guide therapeutic
treatment (1). However, this traditional bulk tissue anal-
ysis only captures the average gene expression in a tis-
sue and masks the variation between cells. Besides tumor
cells, various types of cells exist and function in tumors, in-
cluding infiltrating inflammatory cells, tumor stromal cells,
blood vessel cells and other associated tissue cells. Together
with extracellular factors, these cells create a unique tumor
microenvironment (TME) and play important roles in tu-
morigenesis and tumor progression (2). Evidence has sug-
gested that these important roles of TME cells are tissue-
specific (3). For example, resident myofibroblast-like stellate
cells specifically contribute to carcinogenic mechanisms in
pancreas and liver tumors (4). Moreover, tumor metasta-
sis fits the ‘seed and soil’ theory that the metastasis of tu-
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mor cells is directed by the interaction between the cancer
cells (‘seed’) and the host organ (‘soil’) (5). For accommo-
dating metastatic tumor cells, the microenvironment of the
distant organ can be induced and transformed into a tissue-
specific niche (6). Therefore, it is critical to delineate the
cells in the tissue-specific TME to understand the cancer
mechanisms. Currently, single-cell RNA-seq (scRNA-seq)
provides an unprecedented opportunity by profiling tran-
scriptome in individual single cells. Using scRNA-seq, land-
scapes of immune cells and their phenotypic mapping have
been studied in various tissues, including liver, breast and
acute myeloid leukemia (7–9). However, the high economic
and labor cost of scRNA-seq and its requirement of living
cells obstruct the application in clinical settings (10).

Theoretically, the observed gene expression in a bulk tis-
sue is a linear proportional summation of that in its cell sub-
populations. Therefore, the proportions of tumor and TME
cells can be estimated from bulk tumor transcriptomic data
by deconvolution referencing to cell-type specific expression
profiles. This approach overcomes the above limitations in
bulk RNA-seq or scRNA-seq and enables cost- and effort-
efficient sorting of TME cells. Several deconvolution meth-
ods have been proposed, including the non-negative least-
squares (NNLS) method (11) that was originally applied
to deconvolve the blood microarray data (12). Based on
NNLS, post-modified methods such as quadprog (13) and
limSolve (14) were developed and used in different tissues,
including brain and heart (15–17). Alternatively, CIBER-
SORT used support vector regression to infer 22 immune
cell abundances from microarray and RNA-seq transcrip-
tomic data, which has been widely used in tumor research
(18). Later, MuSiC enabled the deconvolution with multi-
subject single-cell expression reference using weighted non-
negative least-squares regression (19). With cell composi-
tions inferred from bulk tissue measurement, valuable on-
line resources, including TCIA (20), PRECOG (21) and
TIMER (22), were further developed to characterize infil-
trating immune cells in tumor tissues. However, the decon-
volution and cell proportion inference in these resources
are based on one set of cell transcriptome profile references
such as the 22 immune cell types in CIBERSORT and 6
immune cell types in TIMER. This strategy could intro-
duce bias and lead to erroneous conclusions (23), because
the transcriptome profiles of immune cells vary in differ-
ent tissues (24). Also, their analyses are limited to tumor-
infiltrating immune cells, without the capacity to study the
full spectrum of TME cells, including immune cells, epithe-
lial cells, fibroblasts, blood vessels and others.

In this study, we developed a new publicly available web
server resource, Single Cell Inferred Site Specific Omics
Resource for Tumor Microenvironments (SCISSOR™), for
inferring tissue-specific TME cell composition from bulk
transcriptomic data and investigating interactions between
TME cell composition and tumor omics and clinical out-
comes. By integrating The Cancer Genome Atlas (TCGA)
large-scale bulk multimodal data and high-granularity
single-cell transcriptomic data of a broad range of cancer
types, SCISSOR™ provides a new opportunity to charac-
terize tissue-specific TME cells and brings new insight into
mechanisms of tumor development systematically and com-
prehensively (25).

MATERIALS AND METHODS

Single-cell transcriptomic data

We searched for scRNA-seq data for 33 TCGA cancer
types in PubMed and GEO (Gene Expression Omnibus)
databases and found 46 previously published studies. We
filtered out 22 datasets with data of <1000 cells [except for
the colon cancer dataset GSE81861 (26), which is of interest
for our colon cancer research] or unavailable online. After
removing studies without reported cell types, we finally ob-
tained publicly available large-scale scRNA-seq datasets for
16 cancer types, including GSE81861 (26) (colon cancer),
GSE103322 (27) (head and neck squamous cell carcinoma),
GSE114725 (28) (breast cancer), GSE84465 (29) (glioblas-
toma), GSE125449 (30) (cholangiocarcinoma), GSE116256
(31) (acute myeloid leukemia), GSE72056 (32) (melanoma),
GSE131907 (33) (lung adenocarcinoma), GSE154763 (34)
(with data for seven cancer types: pancreatic adenocarci-
noma, uterine corpus endometrial carcinoma, esophageal
carcinoma, ovarian serous cystadenocarcinoma, kidney re-
nal papillary cell carcinoma, lymphoid neoplasm diffuse
large B-cell lymphoma and thyroid carcinoma), GSE140228
(35) (liver hepatocellular carcinoma), GSE123139 (36) (two
datasets for melanoma), CRA001160 (37) (pancreatic duc-
tal adenocarcinoma), E-MTAB-6149 and E-MTAB-6653
(38) (lung adenocarcinoma), datasets from Young et al.
(39) (kidney cancer) and heiDATA (40) (nodal B-cell lym-
phomas).

Bulk transcriptomic data

RNA-seq raw counts of TCGA bulk tumor samples
were collected from Broad GDAC Firehose (https://gdac.
broadinstitute.org/). We downloaded and preprocessed the
data of cancers that have scRNA-seq data available, which
cover 6031 samples across 16 different cancer types. The raw
counts were used for deconvolution to estimate the propor-
tions of cell types in bulk samples. Counts per million on
the log2 scale were used in association analysis.

Deconvolution

In SCISSOR™, MuSiC and CIBERSORTx were utilized to
infer cell proportions of tumor and TME cells in TCGA tu-
mor samples from RNA-seq data by referencing to tissue-
specific single-cell transcriptome profiles obtained from the
aforementioned scRNA-seq studies. A detailed introduc-
tion to these two methods is provided in the Supplemen-
tary Data. As different methods may provide different re-
sults, we recommended users report both results and use
them for cross-validation. To accommodate the limitation
of cell numbers for CIBERSORTx’s web server (https://
cibersortx.stanford.edu/), we applied a downsampling strat-
egy on datasets with over 3000 cells, by randomly selecting
3000 cells for analysis. The robustness of this cell sampling
strategy was validated by its high correlation (r > 0.99 for
most tests) in cell proportion estimation with bootstrap re-
sampling of 50 times (Supplementary Figures S1 and S2),
in two independent datasets. SCISSOR™ calculated the pro-
portion of each cell type within TME by letting the summa-
tion of proportions of TME cells equal to 1. To better com-
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ply with the assumption of linear model fitting, we also pro-
vided two transformations to cell proportions: the arcsine
square root transformation and the logit transformation. In
the GSE81861 dataset of colon cancer, we observed a cell
type undefined in its original study, which showed strong
similarities to cancer cells based on our analysis. We believe
that the ‘undefined’ cell type is also cancer cells and did not
include it in the analysis.

Tumor purity estimation

In SCISSOR™, the tumor purity can be obtained from
the proportion of cancer cells estimated by deconvolution
based on scRNA-seq data. Additionally, SCISSOR™ imple-
mented other methods, including ABSOLUTE (41), ESTI-
MATE (42), IHC (43), CPE (43) and LUMP (43), which
were available in R package TCGAbiolinks (44). A detailed
introduction to each method is provided in the Supplemen-
tary Data.

TME cell composition, multi-omics and survival association
testing

SCISSOR™ investigates the association between cancer
prognosis and multi-omics data in tumors. Copy number
aberration, mutation, miRNA-seq and protein expression
measurements for each tumor sample were downloaded
from Firehose. Also, clinical records for each patient were
downloaded, including common variables such as age, sex
and vital status, as well as variables that were known to be
associated with specific cancers, such as smoking and alco-
hol history in pancreatic adenocarcinoma and esophageal
carcinoma. The mutation status of the gene has been identi-
fied by TCGA. As for the CNAs (copy number alterations),
we downloaded level 3 data and used R packages Genomi-
cRanges (45) and Homo.sapiens (46) to locate CNA detec-
tion to genes. CNAs were categorized into deletion, normal
and duplication by comparing segment mean to −0.2 and
0.2. For miRNAs, we downloaded level 3 miRNA expres-
sion data and performed log transformation. miRDB (47)
was employed to identify miRNAs interacted with mRNAs
of interest, and miRNAs with prediction scores over 50 were
considered as significant candidates. Level 3 protein expres-
sion data were mapped to genes using database UniProtKB
(48) and quantile normalization was applied.

SCISSOR™ provides statistical testing on associations
between cell type proportion in TME with cancer prognosis
and multi-omics. Appropriate models were used for differ-
ent data types, respectively. For a specific gene, we used the
Cox regression to evaluate the prognostic value of TME cell
proportion, multi-omics and other clinical covariates by

ln
(

h (t)
h0 (t)

)
= βp + γ x + δz,

where the independent variable is the hazard function with
time and vital status. h(t) is the conditional hazard func-
tion at time t. h0(t) is the baseline hazard, which represents
the hazard when all covariates are equal to zero. p, x and
z are matrices of covariates in all samples, where p rep-
resents proportions of interested TME cell types, x repre-
sents omics data including mRNA, miRNA, protein, mu-

tation or CNAs, and z represents covariates of clinical fea-
tures and tumor purity. The coefficients, hazard ratio (HR),
confidence interval (CI) and P-value can be calculated in
SCISSOR™ modules. Also, Kaplan–Meier (KM) plots with
CI and log-rank P-value were used to visualize the survival
difference between groups of interest.

To test the associations between TME cell proportions
and qualitative omics measurements adjusting for tumor
purity, we used multiple linear regression and calculated the
adjusted effect size, CI and P-value for qualitative omics. We
modeled

p = γ x + δz,

where p is the proportion of a TME cell type as the response
variable and x indicates a vector of omics data from mRNA,
miRNA, protein, mutation or CNAs. We recoded mutation
to 0 and 1 for wild-type and mutated status, and CNA sta-
tus to −1, 0 and 1 for deletion, normal and duplication. z
stands for a vector of tumor purity as a covariate to ad-
just for. Box plots were used to visualize the distribution
of genomic aberrations (mutations and CNAs) in different
TME cells. Dot plots were also used to visualize the effect
size of mutation or CNA and its CI, which were adjusted
for tumor purity in multiple linear regression. The associa-
tions between cell type proportions and continuous mRNA,
miRNA and protein expression were shown by scatter plots.
We also calculated the correlations between cell type pro-
portions and omics measurements. To adjust for tumor pu-
rity, partial Pearson correlation coefficients controlling for
tumor purity were calculated by R package ppcor (49).

Gene set enrichment analysis

To identify molecular functions associated with TME cell
composition, we performed gene set enrichment analysis on
identified TME associated genes. PANTHER (50) and GO
(Gene Ontology) (51) databases were used for this purpose.

Web server and application construction

SCISSOR™ framework was constructed using R 3.6.1 and
R shiny package. The web server was built on a CentOS
Linux 7 server, with six CPUs and 16 GB memory in the
environment of Jetstream (52,53). We will maintain and fur-
ther develop the web server for at least 5 years.

RESULTS

TME cells play important roles in tumorigenesis and tu-
mor progression tissue-specifically (3) and SCISSOR™ ful-
fills the need for a user-friendly and efficient scientific gate-
way for comprehensively studying the tissue-specific associ-
ations among tissue-specific tumor omics, TME cell com-
position and cancer prognosis. Our resource covers 16 dif-
ferent cancer types and integrated multi-omics data of 6031
tumor bulk tissues and scRNA-seq data from over 451 917
cells in tumors. It provides analyses on multiple omics, in-
cluding mRNA expression, miRNA expression, protein ex-
pression, mutation and copy number aberration, and clin-
ical features, including age, gender, race, histological type,
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pathological stage and others collected by TCGA. SCIS-
SOR™ provides five major modules, including Overview,
Survival, Gene–TME cell correlation with two submodules
for gene expression and genetic aberration, Genome-wide
TME–omics association and Deconvolution (see Graphical
abstract). Each module enables flexible modeling with ad-
justable parameters and dynamic visualization approaches.
Figures in PDF format are also available for download. In
the Survival, Gene–TME cell correlation and Genome-wide
TME–omics association modules, the processed data can
be downloaded in TXT, CSV and JSON formats. Detailed
descriptions for each module are provided below. In this
study, MuSiC deconvolution and tumor purity estimated
from scRNA-seq data were mainly applied. The results of
other deconvolution and tumor purity estimation methods
are also summarized in tables.

Overview module

The Overview module profiles the distribution of TME cell
composition in each tumor sample. With the cancer type of
user’s interest, SCISSOR™ will automatically load prepro-
cessed bulk transcriptomics and other omics data as well as
clinical data. Also, matched and processed single-cell data,
deconvolution methods and tumor purity estimation meth-
ods will be provided to users for customized inference of
TME cell composition and tumor purity in their analyses.
According to user-defined parameters, a heatmap will be
produced for visualizing the variation and similarity of the
TME cell type proportion in tumor samples, which is use-
ful for the identification of potential subtypes of tumors
and clusters of TME cell types. Also, the distribution of
cell type proportion among samples will be provided in box
plots. In the application study of COAD, we inferred TME
cell proportions using MuSiC and observed enterocyte-like
cells, T cells, macrophages and fibroblasts were correlated
by clustering analysis (Figure 1A). The correlation between
enterocyte-like cells and immune cells was aligned with the
finding of Stettner et al. (54) that nitric oxide produced by
enterocytes was protective against colitis by acting as part
of the innate immune response.

Survival module

Emerging evidence showed that heterogeneous TME cells,
like infiltrating immune cells and cancer-associated fibrob-
lastic cells, correlated with cancer clinical prognosis (55). We
developed a ‘Survival’ module in SCISSOR™ to enable a dy-
namic platform for evaluating the prognostic association of
omics measurements and TME cell composition. With the
gene of interest, a flexible framework of multivariate Cox
proportion hazard (CoxPH) model will be applied for as-
sessing the hazard effects of any single or combination of
cell type proportions, omics data and clinical features. It is
worth noting that tumor purity, also known as the propor-
tion of cancer cells in tumor samples, is a significant con-
founding factor in tumor research and has been recognized
as a challenge in omics studies (56). It could confound the
associations between TME cell composition and interested
omics and clinical outcomes; thus, SCISSOR™ considered
tumor purity as a covariate in the association model. Tu-

mor purity estimation by multiple existing methods, includ-
ing ABSOLUTE, ESTIMATE, IHC, CPE and LUMP, was
provided in SCISSOR™, and alternatively, it can be inferred
from the proportion of cancer cells by bulk tissue decon-
volution based on tissue-specific single-cell transcriptomics.
Results including coefficients, the HR, CI and the P-value
will be output. The survival difference between high-risk
and low-risk groups will be visualized by KM plots. By de-
fault, high-risk and low-risk groups will be identified by the
median of expression value, mutation and CNA status, or
the median of TME cell type proportion. We also provided
a slider for users to easily identify high-risk and low-risk
groups by the upper and lower X percentiles. Log-rank P-
value and CI will also be calculated and displayed in KM
plots.

To provide a demo application, we utilized SCISSOR™ to
investigate the prognostic value of TME cell composition
in COAD. We adjusted the association testing for age, gen-
der, race and tumor purity in multivariate Cox regression.
SCISSOR™ found that lower tumor purity was associated
with a worse survival outcome (CoxPH model, HR = 0.071,
P-value = 0.042), which is consistent with previous reports
(57,58). Also, KM curves and the log-rank test indicated
a significant association of enterocyte-like cells’ proportion
with a favored survival outcome (P-value = 0.017, Figure
1B). This implies consistency with the finding of Sadanan-
dam et al. (59) that enterocytes were enriched in a subtype
of colorectal cancer, and such enterocyte subtype showed a
significantly better prognosis than the stem-like subtype.

To validate the analysis of SCISSOR™, we study a gene
EPHB2, which was found to be positively associated with
the survival outcome in COAD [CoxPH model, HR = 0.45,
P-value = 0.035 from Jubb et al. (60); HR = 0.43, P-value <
0.001 from Martinez-Romero et al. (61)]. The Gene–TME
cell correlation module of SCISSOR™ (shown below) found
a negative correlation between TME T-cell proportion and
EPHB2 gene expression (Pearson coefficient r = −0.37, P-
value < 0.001, Table 1), which is aligned well with the pre-
vious finding (62,63) that EphB/ephrin-B could suppress
T-cell activation (64). Consistent associations were found
in analyses adjusted for tumor purities estimated from five
out of six methods (Table 1). Further, SCISSOR™ vali-
dated the prognostic value of EPHB2 (multivariate CoxPH
model, HR = 0.696, P-value = 0.016) in COAD, with the
effect from age, gender, race, TME cell proportion and tu-
mor purity adjusted. The prognostic effect of EPHB2 was
consistently detected using different deconvolution and tu-
mor purity estimation methods (Table 2), and the survival
curves were significantly differentiated by the median of
EPHB2 expression (log-rank test, P-value = 0.029, Fig-
ure 1C). By analyzing omics data, we found the miRNA
hsa-mir-424, which was predicted to target at EPHB2 in
miRDB (47), was significantly associated with COAD prog-
nosis (CoxPH model, HR = 1.765, P-value = 0.010, Ta-
ble 2). This identification supports the previous report of
Kandhavelu et al. (65) that hsa-mir-424 potentially targets
10 colon cancer hallmark genes. Moreover, Oba et al. (66)
found that the chromosome deletion in EPHB2 could lead
to loss of function. This result was also validated by the as-
sociation of EPHB2 expression with its CNA and COAD
prognosis in SCISSOR™ (CoxPH model, HR = 1.985,
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Figure 1. Application of Overview module and Survival module on COAD study. (A) The heatmap of a two-way hierarchical clustering analysis consisting
of the cell proportions (column) deconvolved from bulk transcriptomic data of tumor samples (row). Red color represents a relatively high proportion of
cell type, while blue color indicates a relatively lower proportion. (B–D) The KM plots of the gene EPHB2, miRNA mir-155 and CNA status of EPHB2,
with the P-value of the log-rank test and CI shown by shade.

P-value = 0.022, log-rank P-value = 0.063, Figure 1D).
Similar results were also observed with other deconvolu-
tion and tumor purity estimation methods (Table 2). Col-
lectively, these results showed the value of SCISSOR™ and
also validated the prognostic association of EPHB2 expres-
sion and potential related regulatory programs.

Gene–TME cell correlation module

Genes interact with TME cell composition at different omic
dimensions (67–70). To investigate the associations between
the proportion of tissue-specific cell types and omics mea-
surements, we designed the Gene–TME composition cor-
relation module. This module enables the identification of
TME cell markers as well as genetic factors involved in
tumor–TME interactions. It provides two submodules: the
expression correlation module for quantitative omics mea-
surements (mRNA, miRNA and protein expression) and
the gene aberration module for qualitative omics measure-
ments (mutation and copy number aberration).

Expression correlation submodule

Evidence has shown that mRNA, miRNA and protein
could be valuable biomarkers for cancer (71); thus, we devel-

oped three components for studying them respectively and
comprehensively in this submodule. With omics data of a
specific tissue or cancer type, TME cell proportion estima-
tion and inferred tumor purity, users can investigate the in-
teraction of a particular gene, miRNA or protein with the
proportion of cell types of their interest in TME. Scatter
plots with the fitted curves, Pearson correlation coefficients
and P-values will be provided for association evaluation.
SCISSOR™ will also calculate partial Pearson correlation
coefficients and P-value to adjust the confounding effect
from tumor purity.

We tested whether SCISSOR™ can detect the association
between T cells and CD4, which codes a glycoprotein on the
surface of immune cells such as T cells and macrophages.
SCISSOR™ indeed found a significant and strong correla-
tion between CD4 gene expression with T-cell proportion
without (r = 0.81, P-value < 0.001) or with adjustment for
tumor purity estimated from single-cell transcriptomic data
(r = 0.49, P-value < 0.001, Figure 2A). Consistent results
were also found by different tumor purity estimation meth-
ods (Table 1). Also, we studied mir-155, which is required
for optimal T-cell activation and reinforcement of T-cell re-
sponse (72). With tumor purity adjusted, SCISSOR™ found
mir-155 expression positively correlated with T-cell propor-
tion (adjusted partial r = 0.52, P-value < 0.001, Table 1,
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Table 1. Associations between EPHB2, CD4 and hsa-mir-155 expression with T-cell proportion in COAD using different tumor purity estimation and
deconvolution methods

EPHB2 CD4 hsa-mir-155

Deconvolution Tumor purity r r’ P r r* P r r’ P

CIBERSORTx Absolute −0.07 − 0.06 0.39 0.22 0.19 <0.01* 0.33 0.34 <0.01*
Estimate 0.08 0.11 0.05* 0.08 0.06 0.31 0.31 0.30 <0.01*
CPE − 0.07 − 0.03 0.61 0.22 0.16 0.01* 0.33 0.28 <0.01*
IHC − 0.07 − 0.06 0.29 0.22 0.23 <0.01* 0.33 0.33 <0.01*
LUMP − 0.07 − 0.05 0.44 0.22 0.11 0.07 0.33 0.26 <0.01*
Sc-Est 0.08 0.09 0.10 0.08 0.11 0.06 0.31 0.32 <0.01*

MuSiC Absolute − 0.30 − 0.22 <0.01* 0.81 0.74 <0.01* 0.44 0.42 <0.01*
Estimate − 0.37 − 0.13 0.02* 0.81 0.36 <0.01* 0.40 0.58 <0.01*
CPE − 0.30 − 0.19 <0.01* 0.81 0.68 <0.01* 0.44 0.37 <0.01*
IHC − 0.30 − 0.32 <0.01* 0.81 0.81 <0.01* 0.44 0.43 <0.01*
LUMP − 0.30 − 0.25 <0.01* 0.81 0.77 <0.01* 0.44 0.36 <0.01*
Sc-Est − 0.37 0.05 <0.01* 0.81 0.49 <0.01* 0.40 0.52 <0.01*

Note: HR and P-value were calculated by Cox regression adjusting for age, gender, race, cell type proportions and tumor purity. r’: partial correlation
adjusting for tumor purity. * indicates significance (P<0.05). CNA: copy number aberration, normal versus deletion. Sc-Est: single-cell estimation.

Table 2. Associations between EPHB2 expression, hsa-mir-424 expression and EPHB2 CNA with survival outcome in COAD using different tumor purity
estimation and deconvolution methods

EPHB2 hsa-mir-424 EPHB2 CNA

Deconvolution Tumor purity HR P HR P HR P

CIBERSORTx Absolute 0.914 0.603 1.692 0.027* 1.521 0.251
Estimate 0.749 0.044* 1.605 0.031* 1.892 0.041*
CPE 0.808 0.174 1.543 0.052 1.963 0.028*
IHC 0.815 0.192 1.528 0.056 1.794 0.046*
LUMP 0.851 0.317 1.489 0.073 1.689 0.101
Sc-Est 0.752 0.055 1.597 0.031* 1.820 0.045*

MuSiC Absolute 0.809 0.236 1.729 0.015* 1.353 0.393
Estimate 0.680 0.010* 1.687 0.017* 1.971 0.023*
CPE 0.721 0.044* 1.665 0.019* 1.921 0.032*
IHC 0.727 0.050 1.631 0.024* 1.904 0.031*
LUMP 0.778 0.129 1.600 0.028* 1.711 0.086
Sc-Est 0.696 0.016* 1.765 0.010* 1.985 0.022*

Note: HR and P-value were calculated by Cox regression adjusting for age, gender, race, cell type proportions and tumor purity. * indicates significance
(P<0.05). CNA: copy number aberration, normal versus deletion. Sc-Est: single-cell estimation.

Supplementary Figure S3). Given the important role of T
cells in immune surveillance of tumors, this observation
was aligned with the reported association of mir-155 ex-
pression with immune response and favorable prognosis in
melanoma patients (72).

Genetic aberration submodule

To explore the association between TME cell composition
and genetic aberrations, we developed two components for
mutation and CNA separately. In the ‘Mutation’ compo-
nent, SCISSOR™ sorts genes according to frequencies of
their somatic mutation so that users can easily identify po-
tential tumor driver genes. Box plots will be produced for vi-
sualizing the distribution of mutation status (mutation and
wild type) or CNA status (deletion, normal and duplica-
tion) in each cell type. An adjusted effect size will be calcu-
lated using multiple linear regression with tumor purity as
a covariate (see the ‘Materials and Methods’ section).

In application, we found APC was the most frequently
somatically mutated gene in COAD. In higher purity tu-
mors, it is more likely to observe mutation of APC (P-value
= 0.020, Figure 2D). This result is supported by the find-

ings that the mutation of APC can lead to colon cancer
by inducing familial adenomatous polyposis, a significant
hereditary predisposition indicator for colon adenocarci-
noma (73), and by activating the Wnt signal transduction
pathway (74,75). Interestingly, SCISSOR™ detected more
mutations of APC in tumors with lower T-cell proportions
than those with higher T-cell proportions (P-value = 0.016,
Figure 2D). This could be an outcome of previous findings
that the loss of function of APC is associated with reduced
T-cell differentiation and lower cytokine production like IL-
10 (76), which could lead to the suppression of T-cell func-
tion and the promotion of inflammation, and further cause
adenocarcinoma progression (77).

Genome-wide association module

The ‘genome-wide association’ module was developed to
enable a systematic investigation of tumor immunology and
tumor–TME interaction by identifying transcriptome-wide
TME-associated genes. For a particular TME cell type,
SCISSOR™ can identify and summarize the top 100 posi-
tively and negatively genes correlated with the cell propor-
tion, and visualize these correlations in a heatmap.
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Figure 2. Application of Gene–TME cell correlation module, genetic aberration module and expression correlated module on COAD study. (A) Correlation
plots of the CD4 expression with TME T-cell proportion in the Gene–TME cell correlation module. Pearson correlation coefficients and P-values are shown
in plots. The result adjusting for tumor purity is also shown in the bottom panel. (B, C) The GO biological processes enriched by the top 100 positively
and negatively correlated genes, respectively, which were recognized through the expression correlated module. (D) The distribution of T-cell proportion
in tumors with mutated or wild-type APC in the genetic aberration module.

In this study, we applied SCISSOR™ and identified genes
that were most associated with TME cells of COAD. Hi-
erarchical clustering and heatmap of detected associations
showed that macrophages, T cells and fibroblasts were
closely related (Supplementary Figure S4). Gene set enrich-
ment analysis found that the top 100 genes that were posi-
tively correlated with TME T cells were enriched in the GO
biological process of the immune system (Figure 2B, Table
3), while the negatively correlated genes were interestingly
enriched in the biological process of cell metabolism (Fig-
ure 2C, Table 4).

Deconvolution module

SCISSOR™ also provides a platform for inferring tissue-
specific TME cell proportions from users’ private bulk tran-
scriptome datasets with raw counts. The deconvolution
method MuSiC and cell type transcriptome profile refer-
ence from single-cell transcriptomics specific to cancers of
colon, breast, brain, bile duct, kidney, liver, lung, pancreas,
head and neck, skin and blood are currently available for
use. Other deconvolution methods and more tissue-specific

transcriptome profile references will be continuously added
to our web server. Moreover, SCISSOR™ provides a user-
friendly interface and will automatically send results to
users by email.

DISCUSSION

Large-scale association studies of omics data, TME cell
composition and tumor prognosis are highly needed for
understanding the important role of TME in tumor pro-
gression. Here, we introduced a new web server resource
for tissue-specific deconvolution of TME cell proportion
from bulk transcriptomic data and characterization of
the association of TME cell composition with tumor
prognosis and omics, with five comprehensive modules,
a flexible modeling framework, and processed data of
large-scale omics and high-granularity single-cell transcrip-
tomics. SCISSOR™ fills the gap of large-scale TME cell
sorting by integrating TCGA bulk RNA-seq data of various
types of tumors with tissue-specific scRNA-seq data and es-
tablishes the first online open-access resource for inferring
the proportion of tissue-specific cell types from bulk expres-
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Table 3. Top 20 enriched biological processes of the top 100 positively correlated genes with T-cell proportion in TME of COAD

Pathway GeneRatio FDR adjusted P-value

Immune system process (GO:0002376) 1.83% 6.94E−15
Leukocyte activation (GO:0045321) 3.32% 7.58E−14
Cell activation (GO:0001775) 3.04% 9.12E−14
Immune response (GO:0006955) 2.13% 1.28E−13
Regulation of immune system process (GO:0002682) 2.29% 2.01E−13
Positive regulation of immune system process (GO:0002684) 2.75% 5.73E−11
Myeloid leukocyte activation (GO:0002274) 3.58% 3.10E−09
Regulation of immune response (GO:0050776) 2.39% 9.33E−09
Defense response (GO:0006952) 2.12% 1.02E−08
Lymphocyte activation (GO:0046649) 4.35% 2.05E−08
Regulation of response to stimulus (GO:0048583) 1.20% 4.25E−08
Response to biotic stimulus (GO:0009607) 1.99% 7.23E−08
Positive regulation of immune response (GO:0050778) 2.85% 1.06E−07
Immune effector process (GO:0002252) 2.28% 1.15E−07
Response to external biotic stimulus (GO:0043207) 1.97% 1.53E−07
Activation of immune response (GO:0002253) 3.40% 1.54E−07
Response to other organism (GO:0051707) 1.97% 1.58E−07
Leukocyte activation involved in immune response (GO:0002366) 3.02% 2.69E−07
Cell activation involved in immune response (GO:0002263) 3.00% 2.82E−07
Positive regulation of response to stimulus (GO:0048584) 1.54% 2.94E−07

GeneRatio: Gene ratio is calculated as the number of selected genes in the pathway, divided by the total number of genes in the reference dataset that make
up the pathway.

Table 4. Top 20 enriched biological processes of the top 100 negatively correlated genes with T-cell proportion in TME of COAD

Pathway GeneRatio FDR adjusted P-value

Peptide biosynthetic process (GO:0043043) 7.09% 1.39E−20
Translation (GO:0006412) 7.29% 2.48E−20
Gene expression (GO:0010467) 2.33% 4.38E−19
Ribonucleoprotein complex biogenesis (GO:0022613) 6.02% 1.66E−18
Amide biosynthetic process (GO:0043604) 5.49% 2.39E−18
Peptide metabolic process (GO:0006518) 5.40% 3.11E−18
Cellular nitrogen compound metabolic process (GO:0034641) 1.76% 3.93E−18
Cellular nitrogen compound biosynthetic process (GO:0044271) 2.73% 5.58E−18
Cellular macromolecule biosynthetic process (GO:0034645) 2.54% 2.52E−16
Ribosome biogenesis (GO:0042254) 6.93% 2.92E−16
SRP-dependent cotranslational protein targeting to membrane (GO:0006614) 16.67% 3.88E−16
Macromolecule biosynthetic process (GO:0009059) 2.48% 4.58E−16
Cotranslational protein targeting to membrane (GO:0006613) 15.84% 6.81E−16
Nuclear-transcribed mRNA catabolic process (GO:0000956) 9.69% 1.18E−15
Protein targeting to ER (GO:0045047) 14.41% 2.30E−15
Translational initiation (GO:0006413) 11.89% 3.38E−15
Establishment of protein localization to endoplasmic reticulum (GO:0072599) 13.91% 3.39E−15
Viral transcription (GO:0019083) 13.79% 3.63E−15
mRNA catabolic process (GO:0006402) 8.80% 4.70E−15
Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay
(GO:0000184)

13.33% 5.33E−15

GeneRatio: Gene ratio is calculated as the number of selected genes in the pathway, divided by the total number of genes in the reference dataset that make
up the pathway.

sion data. We demonstrated the value of SCISSOR™ by ap-
plication studies on the prognostic effect of EPHB2 and its
mapped miRNA hsa-mir-424 and CNA in COAD, and the
association between CD4 and hsa-mir-155 with T-cell pro-
portion, etc.

SCISSOR™ detected a negative association between
metabolism-related genes in tumor with T-cell proportion
in TME, which brings new insight and hypothesis of can-
cer metabolism and immunity interactions. The negative
correlation between T-cell proportion in TME and the
metabolism process in tumors may be related to nutrient
competition and hypoxia within the TME. The expansion
of both tumor cells and immune cells requires aerobic gly-
colysis (78), which may cause competition for metabolic re-

sources. Indeed, studies indicated that tumor cells compete
for glucose resources from neighboring cells to maintain
their metabolism (79). This might affect the proliferation
and activation of T cells as glucose is a critical substrate for
T cells to play an active anti-tumor role (80). Moreover, the
hypoxia in tumors induces glucose utilization and lactate
release in cancer cells (81), and continuous exposure to ex-
tracellular lactic acid can strongly inhibit the expansion of
T cells, consequently decreasing the immune activity (82).
Further investigation was required to characterize this po-
tential negative association between T-cell composition and
metabolism in tumors.

SCISSOR™ currently provides scRNA-seq datasets for
16 cancer types, and will maintain and expand the database
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with newly generated datasets. One of the limitations of our
studies could be the incomplete identification of cell sub-
types in each single-cell transcriptomic study. To address
this challenge, we will analyze the latest scRNA-seq stud-
ies and update the hosted database frequently. The current
study is based on datasets from different studies. The vari-
ations in study design, experiment and analysis platform
brought difficulties in cross-study comparisons. In future
studies, we will collaborate with experts in the research of
each cancer type and re-analyze the data in the same anal-
ysis framework. Also, several scRNA-seq datasets were fil-
tered out by the current exclusion criteria due to the miss-
ing cell type information. We will re-annotate those studies
and include them in SCISSOR™. In addition, the downsam-
pling strategy used in SCISSOR™ may lead to random se-
lection bias; more efficient methods will be searched and im-
plemented for utilizing all information. Despite these limi-
tations, SCISSOR™ is valuable as a new resource for pro-
moting tumor heterogeneity and tumor–TME interaction
research.
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