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We study the instantaneous normal mode (INM) spectrum of a
simulated soft-sphere liquid at different equilibrium temperatures
T . We find that the spectrum of eigenvalues ρ(λ) has a sharp
maximum near (but not at) λ = 0 and decreases monotonically
with |λ| on both the stable and unstable sides of the spectrum.
The spectral shape strongly depends on temperature. It is rather
asymmetric at low temperatures (close to the dynamical critical
temperature) and becomes symmetric at high temperatures. To
explain these findings we present a mean-field theory for ρ(λ),
which is based on a heterogeneous elasticity model, in which the
local shear moduli exhibit spatial fluctuations, including negative
values. We find good agreement between the simulation data and
the model calculations, done with the help of the self-consistent
Born approximation (SCBA), when we take the variance of the
fluctuations to be proportional to the temperature T . More im-
portantly, we find an empirical correlation of the positions of the
maxima of ρ(λ) with the low-frequency exponent of the density
of the vibrational modes of the glasses obtained by quenching to
T = 0 from the temperature T . We discuss the present findings in
connection to the liquid to glass transformation and its precursor
phenomena.
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The investigation of the potential energy surface (PES)
V (r1(t) . . . rN (t)) of a liquid (made up of N particles

with positions r1(t) . . . rN (t) at a time instant t) and the
corresponding instantaneous normal modes (INMs) of the
(Hessian) matrix of curvatures has been a focus of liquid and
glass science since the appearance of Goldstein’s seminal article
(1) on the relation between the PES and the liquid dynamics in
the viscous regime above the glass transition (2–27).

The PES has been shown to form a rather ragged landscape
in configuration space (8, 28, 29) characterized by its station-
ary points. In a glass these points are minima and are called
“inherent structures.” The PES is believed to contain important
information on the liquid–glass transformation mechanism. For
the latter a complete understanding is still missing (28, 30, 31).
The existing molecular theory of the liquid–glass transformation
is mode-coupling theory (MCT) (32, 33) and its mean-field Potts
spin version (28, 34). MCT predicts a sharp transition at a tem-
perature TMCT > Tg , where Tg is the temperature of structural
arrest (glass transition temperature). MCT completely misses the
heterogeneous activated relaxation processes (dynamical hetero-
geneities), which are evidently present around and below TMCT

and which are related to the unstable (negative-λ) part of the
INM spectrum (28, 30).

Near and aboveTMCT , apparently, there occurs a fundamental
change in the PES. Numerical studies of model liquids have
shown that minima present below TMCT change into saddles,
which then explains the absence of activated processes above
TMCT (2–24). Very recently, it was shown that TMCT is related
to a localization–delocalization transition of the unstable INM
modes (25, 26).

The INM spectrum is obtained in molecular dynamic simu-
lations by diagonalizing the Hessian matrix of the interaction
potential, taken at a certain time instant t:

Hαβ
ij (t) =

∂2

∂x
(α)
i ∂x

(β)
j

V {r1(t) . . . rN (t)}, [1]

with ri = (x
(1)
i , x

(2)
i , x

(3)
i ). For large positive values of the eigen-

values λj (j = 1 . . .N , N being the number of particles in the
system) they are related to the square of vibrational frequencies
λj = ω2

j , and one can consider the Hessian as the counterpart of
the dynamical matrix of a solid. In this high-frequency regime one
can identify the spectrum with the density of vibrational states
(DOS) of the liquid via

g(ω) = 2ωρ(λ(ω)) =
1

3N

∑
j

δ(ω − ωj ) . [2]

For small and negative values of λ this identification is not
possible. For the unstable part of the spectrum (λ < 0) it has
become common practice to call the imaginary number

√
λ= i ω̃

and define the corresponding DOS as

g(ω̃)≡ 2 ω̃ρ(λ(ω̃)). [3]

This function is plotted on the negative ω axis and the stable
g(ω), according to [2], on the positive axis. However, the (as we
shall see, very interesting) details of the spectrum ρ(λ) nearλ= 0
become almost completely hidden by multiplying the spectrum
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with |ω|. In fact, it has been demonstrated by Sastry et al. (6) and
Taraskin and Elliott (7) already 2 decades ago that the INM spec-
trum of liquids, if plotted as ρ(λ) and not as g(ω) according to
[2] and [3], exhibits a characteristic cusp-like maximum at λ= 0.
The shape of the spectrum changes strongly with temperature.
This is what we find as well in our simulation and what we want
to explore further in our present contribution.

In the present contribution we demonstrate that the strong
change of the spectrum with temperature can be rather well
explained in terms of a model, in which the instantaneous har-
monic spectrum of the liquid is interpreted to be that of an
elastic medium, in which the local shear moduli exhibit strong
spatial fluctuations, which includes a large number of negative
values. Because these fluctuations are just a snapshot of thermal
fluctuations, we assume that they are obeying Gaussian statistics,
the variance of which is proportional to the temperature.

Evidence for a characteristic change in the liquid configu-
rations in the temperature range above Tg has been obtained
in recent simulation studies of the low-frequency vibrational
spectrum of glasses, which have been rapidly quenched from
a certain parental temperature T ∗. If T ∗ is decreased from
high temperatures toward TMCT , the low-frequency exponent
of the vibrational DOS of the daughter glass (quenched from
T ∗ to T = 0) changed from Debye-like g(ω)∝ ω2 to g(ω)∝ ωs

with s > 2. In our numerical investigation of the INM spectra
we show a correlation of some details of the low-eigenvalue
features of these spectra with the low-frequency properties of
the daughter glasses obtained by quenching from the parental
temperatures.

The stochastic Helmholtz equations (Eq. 7) of an elastic model
with spatially fluctuating shear moduli can be readily solved for
the averaged Green’s functions by field theoretical techniques
(35–37). Via a saddle point approximation with respect to the
resulting effective field theory one arrives at a mean-field theory
(self-consistent Born approximation [SCBA]) for the self-energy
of the averaged Green’s functions. The SCBA predicts a stable
spectrum below a threshold value of the variance. Restricted to
this stable regime, this theory, called heterogeneous elasticity
theory (HET), was rather successful in explaining several low-
frequency anomalies in the vibrational spectrum of glasses, in-
cluding the so-called boson peak, which is an enhancement at
finite frequencies over the Debye behavior of the DOS g(ω)∝ ω2

(37–41). We now explore the unstable regime of this theory and
compare it to the INM spectrum of our simulated soft-sphere
liquid.*

We start Results by presenting a comparison of the simulated
spectra of the soft-sphere liquid with those obtained by the unsta-
ble version of HET-SCBA theory. We then concentrate on some
specific features of the INM spectra, namely, the low-eigenvalue
slopes and the shift of the spectral maximum from λ= 0. Both
features are accounted for by HET-SCBA. In particular, we find
an interesting law for the difference between the slopes of the
unstable and the stable parts of the spectrum, which behaves as
T−2/3, which, again, is accounted for by HET-SCBA.

In the end we compare the shift of the spectral maximum with
the low-frequency exponent of the DOS of the corresponding
daughter glasses and find an empirical correlation. We discuss
these results in connection with the saddle to minimum transfor-
mation near TMCT .

Results
In Fig. 1A we have plotted the INM spectrum of our soft-sphere
r−12 liquid (Materials and Methods) for nine temperatures. The

*In the HET theory for a glass (37–41) the width of the distribution of the shear moduli
is, of course, not temperature dependent. Compared with the present treatment, one
may reconcile the glassy width with an effective temperature, or frozen-in disorder.

Fig. 1. (A) INM spectra for different temperatures as indicated in the
legend. The eigenvalues and temperatures are in LJ units (Materials and
Methods). (B) INM spectra of our unstable elasticity model, calculated in
SCBA disorder parameters, assuming γ(T) = T/0.24 for the same values of
T as for A. We converted the SCBA units (Materials and Methods) to LJ units.

lowest ones are just above the glass transition temperature†

Tg ∼ 0.05 (in Lennard–Jones units [LJ]; Materials and Methods),
and the highest one is in the high-fluidity regime ∼ 50Tg . The
mode-coupling temperature of the soft-sphere liquid has been
reported (26, 42) to be TMCT ∼ 0.2, corresponding to the light
violet curves in Fig. 1. We observe that the spectrum changes
from an almost stable one at low T to a spectrum, which is almost
symmetric with respect to positive and negative λ. In Fig. 1B we
show the spectrum predicted by the HET-SCBA (Materials and
Methods). We see that HET-SCBA satisfactorily explains the
development of the INM spectrum: it changes from a stable one
at Tg to a completely symmetric one at high T, while due to
the normalization, the peak height decreases with temperature.
Obviously, TMCT qualitatively marks the cross-over from a
strongly asymmetric to rather symmetric INM spectrum.

An interesting detail of the spectra concerns the slope of the
ρ(λ) curves at small |λ| on the stable and unstable sides. In Fig. 2
A and C we plot the positions of these slopes against temperature
for both the numerical and the SCBA calculations. We see that

†Of course, this Tg does not correspond to the glass transition temperature in a
macroscopic sample. This Tg corresponds to that temperature in which the relaxation
time is much longer than the simulation time and the INM spectrum is stable.
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Fig. 2. (A and C) Small-|λ| slopes of the unstable (black squares) and stable (red circles) INM spectra of Fig. 1 as a function of temperature. The lines are
guides for the eye. (B and D) Difference of the slopes in double-logarithmic representation. The dashed lines indicate a T−2/3 behavior. (A and B) Slopes of
the simulated data and (C and D) slopes of the SCBA spectra.

they follow the same trends, as can already be seen in Fig. 1. In
Fig. 2 B and D we plot the difference of these slopes double-
logarithmically against T. Both for the numerical and for the
SCBA data we observe a T−2/3 law.

There is a further interesting detail in which the numerical and
HET-SCBA curves differ: the numerical data meet the maximum
always with a finite slope, while the SCBA data meet the λ= 0
axis always with a rectangular slope according to λ1/2 (parabolic
shape), which implies an inverse square root singularity of the
slope at λ= 0. This nonanalytic and singular behavior can be
traced to the sum rule

∑
j H

αβ
ij = 0 of the Hessian (Eq. 5) (7),

due to global translation invariance. At a cross-over tempera-
ture T SCBA

x ≈ TMCT the positive parabola turns into a negative
parabola (7). In our elastic model the sum rule is transformed
to the double spatial derivative in the elastic wave Eq. 6 or in
the Helmholtz Eq. 7, reflecting global translation invariance.

Technically, the λ1/2 singularity stems from vanishing values of
the wave number k in the integrand of the SCBA Eq. 8, corre-
sponding to density and stress fluctuations of very large extent.
We convinced ourselves that the singularity at λ= 0 disappears
if an infrared cutoff k0 is introduced at the lower end of the
integral in [8], which mimics the effect of a finite sample size.
(The simulated sample is rather small, 1,024 particles.) So, the
finite slope at λ= 0 (as compared to the λ= 0 singularity of the
SCBA) might be a finite-size effect.

Both in the simulated and the SCBA spectra the maximum is
not exactly at λ= 0. In the simulations the maximum position
λmax continuously decreases (Fig. 3A) and becomes negative at
a cross-over temperature Tx ∼ 0.4. In the HET-SCBA theory,
at low enough temperatures, there is also a maximum at λ > 0
due to the upward parabola at λ= 0. ForT > TMCT = 0.2, there
is on both sides of the spectrum a downward parabola, and the
maximum with the |λ|1/2 cusp is always at λ= 0.

Fig. 3. (A) Maxima of ρ(λ), λmax, as a function of temperature. (B) Exponent s(T∗) of the daughter glasses, quenched from the parental temperatures T∗

against the position of the maxima of the INM spectra at the temperatures, from which the glasses are quenched to T → 0. The line indicates a s − 2 ∝ λ4
max

behavior. (C) The exponent S(T∗) vs. T∗. The dotted line is a guide for the eye.
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We now turn to the discussion of stable (daughter) glasses,
quenched toward T → 0 from a given parental temperature T ∗.
We mentioned in the Introduction that it has been shown in ref.
43 that above a certain parental temperature the low-frequency
DOS g(ω) of the glass exhibits Debye-like behavior g(ω)∝ ωs

with s ∼ 2, and at lower parental temperatures a continuous
increase of s toward the value of s ∼ 4 is observed.

It should be emphasized that these low-frequency modes are
not wave-like modes but diffusive quasi-localized ones (44),
which are only visible in very small model samples that do not
support elastic standing waves (45).

In Fig. 3C we show the temperature dependence of s(T ∗). In
Fig. 3B we have plotted s(T ∗) (taken from ref. 43) against the
positionλmax of the INM-spectral maximum of the corresponding
parental liquid. We observe a positive correlation, which looks
like (s(λmax) – 2) ∝ λ4

max. At present we have an explanation
neither for this empirical law nor for the T 2/3 behavior of the
slopes of the INM spectra, recorded in Fig. 2 B and D.

As the non-Debye exponents are associated with nonphononic
quasi-localized excitations, we conclude, in agreement with the
reasoning in ref. 43, that these modes arise from incomplete re-
laxation due to the presence of immobile clusters in the parental
liquid. The saddle to minimum cross-over in the PES near TMCT

with decreasing temperature is here reflected by the increase of
the exponent s from 2 to higher values. This increase might be
due to a delocalization–localization transition of the modes near
λ= 0, inherited from the transition, which occurs in the parent
liquid (26).

Discussion
We have demonstrated that looking at the original INM spec-
trum ρ(λ) reveals much more interesting information than trans-
forming it to the ω =

√
λ spectrum. In studying the ρ(λ) INM

spectrum of a soft-sphere liquid, we found that it can be well
modeled by a spectrum of an unstable elastic medium, in which
the shear-elastic modulus has strong spatial thermal fluctuations
with variance proportional to the temperature. We found that
the maxima of the INM spectra occur at positive values of λ
below a cross-over temperature Tx ≈ 0.4 and at negative values
aboveTx . In the HET-SCBA model also a finite low-temperature
maximum occurs, but not a maximum position in the unstable
regime.

In the light of our findings we can sketch the following scenario
for the INM spectrum of a liquid with decreasing temperature. At
large temperatures T � TMCT the INM spectrum is symmetric:
there are as many positive as negative curvatures in the PES.
In our model this corresponds to a width of the distribution of
shear moduli, which is much larger than the average value μ0 and
then leads to the symmetric spectrum. Lowering the temperature
toward TMCT , the spectrum becomes increasingly asymmetric.
The unstable modes support less and less delocalized states (26).
Below TMCT the INM spectrum has a maximum at finite λ, the
position of which increases monotonically.

We are convinced that our model description of the INM
spectrum will be helpful in the future in order to obtain a
better theoretical understanding of the temperature regime of
dynamical heterogeneities between TMCT and Tg .

At the end we would like to comment on a recent paper, which
has appeared in PNAS (46) and which deals with a very similar
subject. Building on the assumption that the dynamic of the liquid
is described by a single-particle local Langevin-type dynamics,
the authors of ref. 46 claim that the INM DOS would have a
universal shape and, specifically, that at small frequency, g(ω)∝
ω, meaning that ρ(λ) would be constant in this regime. It is clear
from our results that ρ(λ) is not constant at small λ and not
universal, as it strongly changes with temperature. The authors
of ref. 46 claim to have good agreement with recently evaluated

INM spectra of Zhang et al. (27). We divided the g(ω), g(ω̃) data
of ref. 27 by ω (ω̃) for the stable (unstable) regime and found not
a constant ρ(λ) but nonuniversal curves, peaked at λ= 0, similar
to ours in Fig. 1. Further, we reanalyzed the Langevin model of
these authors and found that a factorω−1 is missing in their result
for the spectrum. This error occurred probably because they
mistook the Green’s function (they do not distinguish between
longitudinal and transverse degrees of freedom) for the velocity
v(r, t) = u̇(r, t) for that for the displacements u(r, t), which ex-
plains the missing factor ω−1. The mathematically correct result
gives a density of states (for positive ω) g(ω)∝ Γ/(ω2 + Γ2),
which would lead to a λ−1/2 singularity of ρ(λ), which is neither
observed in the simulations nor predicted by HET-SCBA.

Materials and Methods
Simulation. For simulating a soft-sphere liquid (which has also the ability of
forming a glass) (43, 47), we consider a 50 : 50 binary mixture of large and
small soft spheres in three dimensions (48). Indicating with ri the position of
the particle i, with i = 1, . . . , N, two particles i, j interact via a pure repulsive
potential φ(rij), where rij ≡ |ri − rj|. The potential reads

φ(rij) =

(
σi + σj

rij

)12

+ αrij + βr2
ij [4]

where we have set the prefactor = 1 (LJ). Moreover, we impose a cutoff to
the potential φ at rc = 1.5/(L/2) in such a way that φ(r) = 0 for r > rc. The
coefficient α and β are chosen in a way such that φ(r) has continuous first
and second derivatives at r = rc.

σi takes the value σA for the large particles and σB for the small ones,
with σA/σB = 1.2 and σA + σB ≡ σ = 1. We consider N = NA + NB particles
(NA = NB) that are enclosed in a three-dimensional box of side L = σN1/3

where periodic boundary conditions are employed. The expression for L
guarantees ρ = N/V = 1, with ρ the particle density.

The normal modes are obtained by means of the diagonalization of the

Hessian matrix
↔
H (Eq. 1), which can be related to the potential as

Hαβ
ij =

∑
� �=i

Kαβ
i� δij − Kαβ

ij (1 − δij)

Kαβ
ij =

[
φ
′′
(rij) −

1

rij
φ
′
(rij)

] xα
ij xβ

ij

r2
ij

+
1

rij
φ
′
(rij)δαβ . [5]

For the diagonalization we used the gsl-GNU libraries.

SCBA for the Unstable Elasticity Model. The equations of motion of linear
elasticity with a spatially fluctuating shear modulus μ(r) can be written as

ρ
∂2

∂t2
u(r, t) = ∇M(r)∇ · u(r) − ∇ × μ(r)∇ × u(r), [6]

with the longitudinal modulus M(r) = K + 4
3μ(r). K is the bulk modulus,

which is not considered to exhibit spatial fluctuations. We now divide the
displacements into longitudinal ones with ∇ × uL = 0 and transversal ones
with ∇ · uT = 0 and go into frequency space:

ω
2uL,T (r,ω) = ∇v2

L,T (r)∇
2uL,T (r, ω), [7]

with v2
L (r) =

1
ρ M(r) and v2

T = 1
ρμ(r). ρ is the mass density. We now write

1
ρμ(r) = μ0 − Δ(r). μ0 is the average of μ(r)/ρ. Assuming Gaussian fluctu-
ations of Δ(r), one can use replica theory to calculate the average spectrum
(35–37). From a saddle point approximation of the resulting effective action
one obtains an effective medium theory, in which the fluctuating quan-
tity Δ(r) is replaced by a complex, frequency-dependent self-energy Σ(z)
with z = λ + iε, which obeys the following self-consistent equation [SCBA
(37–40)]:

Σ(z) = γ
3

k3
ξ

∫ kξ

0
dkk4

(
2/3

−z + k2
[
K̃ + 4

3

(
μ0 − Σ(z)

)]

+
1

−z + k2
(
μ0 − Σ(z)

)
)

, [8]

with K̃ = K/ρ. γ is proportional to the variance 〈[Δ(r)]2〉 of the fluctuations,
which are taken to be proportional to the temperature according to γ =

T/0.24, where γ is in SCBA units (see below) and T is in LJ units.
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The spectrum is then given by

ρ(λ) =
1

π
Im

{
3

k3
ξ

∫ kξ

0
dkk2

(
1

−z + k2
[
K̃ + 4

3

(
μ0 − Σ(z)

)]

+
2

−z + k2
(
μ0 − Σ(z)

)
)}

. [9]

The ultraviolet cutoff is given by kξ = C/�ξ , where �ξ is the correlation
length of the fluctuations and C is of order unity. �ξ can be estimated to be of
the order of one or two interparticle distances. In all calculations we used the
value 3.166 for the ratio K̃/μ0, which is a realistic value for a soft-sphere glass
(39). Further, we used μ0k2

ξ as the unit for squared frequencies. For strong
fluctuations (high temperatures) the value of μ0 becomes irrelevant, so

equivalently, we measure squared frequencies in K̃k2
ξ/3.166 = Kk2

ξ/3.166ρ,
where K is the bulk modulus of the liquid. In Figs. 1 and 2 we converted
these units to LJ units by multiplying λSCBA with 800 and, correspondingly,
by dividing the spectra by this factor.

Data Availability. All study data are included in the article.
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