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Abstract

Background: The mouse mu opioid receptor (OPRM1) gene undergoes extensive alternative splicing at both the
3’- and 5’-ends of the gene. Previously, several C-terminal variants generated through 3’ splicing have been
identified in the rat OPRM1 gene. In both mice and humans 5’ splicing generates a number of exon 11-containing
variants. Studies in an exon 11 knockout mouse suggest the functional importance of these exon 11-associated
variants in mediating the analgesic actions of a subset of mu opioids, including morphine-6b-glucuronide (M6G)
and heroin, but not others such as morphine and methadone. We now have examined 5’ splicing in the rat.

Results: The current studies identified in the rat a homologous exon 11 and seven exon 11-associated variants,
suggesting conservation of exon 11 and its associated variants among mouse, rat and human. RT-PCR revealed
marked differences in the expression of these variants across several brain regions, implying region-specific mRNA
processing of the exon 11-associated variants. Of the seven rat exon 11-associated variants, four encoded the
identical protein as found in rMOR-1, two predicted 6 TM variants, and one, rMOR-1H2, generated a novel N-
terminal variant in which a stretch of an additional 50 amino acids was present at the N-terminus of the previously
established rMOR-1 sequence. When expressed in CHO cells, the presence of the additional 50 amino acids in
rMOR-1H2 significantly altered agonist-induced G protein activation with little effect on opioid binding.

Conclusion: The identification of the rat exon 11 and its associated variants further demonstrated conservation of
5’ splicing in OPRM1 genes among rodents and humans. The functional relevance of these exon 11 associated
variants was suggested by the region-specific expression of their mRNAs and the influence of the N-terminal
sequence on agonist-induced G protein coupling in the novel N-terminal variant, rMOR-1H2. The importance of the
exon 11-associated variants in mice in M6G and heroin analgesia revealed in the exon 11 knockout mouse implies
that these analogous rat variants may also play similar roles in rat. The complexity created by alternative splicing of
the rat OPRM1 gene may provide important insights of understanding the diverse responses to the various mu
opioids seen in rats.

Background
Three families of opioid receptors were proposed from
pharmacological studies [1,2]. Of the three opioid recep-
tor families, the mu opioid receptors are particularly
important since they mediate the actions of most of the
clinically relevant opioids, as well as those most widely
abused such as heroin. Clinicians have observed a wide

range of responses among patients, a variability con-
firmed among different strains of mice. These findings,
along with receptor binding studies and the actions of
selective antagonists, led us to propose the existence of
multiple mu opioid receptor subtypes [3] long before
the molecular characteristics of mu receptors were
known.
The molecular cloning of the mu opioid receptor

(MOR-1) [4-6] opened new opportunities to investigate
the molecular underpinnings for the concept of multiple
mu opioid receptors. A single mu opioid receptor gene
(OPRM1) has been identified in mammals, raising
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questions on how to reconcile a single gene with the
multiple pharmacologically defined mu opioid receptors.
One possibility is alternative pre-mRNA splicing, which
can provide enormous RNA and protein diversity. A
number of G protein-coupled receptors undergo alterna-
tive splicing, such as dopamine D2 [7,8], somatostatin 2
[9], prostaglandin EP3 [10], serotonin receptor subtypes
[11], tachykinin NK(2) [12], metabotropic glutamate
receptor [13,14], and metabotropic muscarinic acetyl-
choline receptors [15,16]. Antisense mapping studies
provided early evidence suggesting alternative splicing of
the mouse and rat OPRM genes [17,18], which was
further supported by the studies in an exon 1 knockout
(KO) mouse model generated by Pintar and colleagues
[19]. In this mouse, loss of exon 1 eliminated all the full
length variants, which contain exon 1. However, a series
of exon 11-associated variants lacking exon 1 were still
expressed. Pharmacologically, disrupting exon 1 in this
mouse completely abolished morphine analgesia, but
not that of either M6G or heroin, consistent with the
possibility that alternatively spliced transcripts lacking
exon 1 might be responsible for the residual M6G and
heroin actions.
In recent years, alternative splicing of the OPRM1 genes

has been extensively explored by our group and others
[20-34]. In the mouse OPRM1 gene, over 28 alternatively
spliced variants have been isolated. Of these splice var-
iants, most are C-terminal variants that were generated
through alternative splicing between exon 3 and 10 differ-
ent downstream exons [35]. These C-terminal variants
from mice, rats and humans bound mu opioids with simi-
lar high affinities, but displayed marked differences in ago-
nist-induced G protein coupling in both their potency,
defined by the EC50 values, and efficacy, indicated by the
maximal stimulation[25,27,36,37]. Although it can be
speculated that different C-terminal tails may alter interac-
tions of receptor with different G proteins or other related
proteins like regulator of G protein signaling (RGS) pro-
teins based upon their intracellular location, the underly-
ing mechanisms for these differences remain unclear.
Morphine-induced internalization also varied among the
C-terminal variants. For example, morphine given intra-
cerebroventricularly in vivo internalized mMOR-1C in the
mouse lateral septum, while mMOR-1 is not internalized
by morphine [38]. Mu agonist-induced interaction of
phosphorylated mu opioid receptor with b-arrestins have
been indicated to involve the receptor internalization and
desensitization [39-41]. Various additional phosphoryla-
tion sites for b-adrenergic receptor kinase, protein kinase
C, caseine kinase, tyrosine kinase and cAMP- and cGMP-
dependent protein kinases have been predicted among dif-
ferent C-termini [35]. Although highly speculative, these
phosphorylation sites at different C-termini may differen-
tially modulate the recruitment of b-arrestins and

therefore contribute to the disparities in mu agonist-
induced receptor internalization.
In the mouse, OPRM1 generates a set of splice var-

iants associated with exon 11, located approximately
30 kb upstream of exon 1, under the control of a distinct
exon 11 promoter [24,28]. Of nine exon 11-associated
variants, three variants encoded the original mMOR-1
protein, five variants lacked exon 1 and predicted a 6 TM
receptor protein, and one variant predicted a protein
with single TM. The functional relevance of exon
11-associated variants was established by studies in an
exon 11 KO mouse model [42]. Unlike the exon 1 KO
mouse developed by Pintar [19], the exon 11 KO mouse
retained full sensitivity towards morphine and metha-
done analgesia while the effects of M6G, fentanyl and
heroin were greatly attenuated. This suggested that exon
11 associated variants mediated the actions of a subset of
mu opioids, including M6G and heroin.
Previous studies also have reported many splice var-

iants from the rat OPRM1 gene [20,25] (Figures 1 & 2),
as well as the human OPRM1 gene [21,26,28,32,33]. The
current study reports the identification and characteriza-
tion of the rat exon 11 homolog and seven exon 11-
associated variants.

Results
Cloning the rat exon 11-associated splice variants
To determine whether the rat OPRM1 gene contained an
exon homologous to the mouse exon 11, we blasted the
rat genome database in Ensembl using the mouse exon
11 sequence and found a highly homologous sequence
with 86% identity, which included both coding and adja-
cent intron regions that included the splice site (Figure 3).
We designated this sequence as the rat exon 11. The rat
exon 11 was located at about 21 kb upstream of exon 1
in the rat OPRM1 locus of chromosome 1, a distance
similar to the 30 kb seen in the mouse OPRM1 gene [24]
and the 28 kb in the human OPRM1 gene [28]. However,
the sequence of the rat exon 11 predicted only seven
amino acids before encountering a stop codon. To isolate
potential rat exon 11-associated splice variants homolo-
gous to those identified in the mouse OPRM1 gene, we
performed RT-PCR using sense primers designed from
the rat exon 11 sequence together with two antisense pri-
mers from the 3’UTR of exon 4. We identified seven
exon 11-associated splice variants, rMOR-1G1, rMOR-
1G2, rMOR-1H1, rMOR-1H2, rMOR-1i1, rMOR-1i2 and
rMOR-1i3, from rat brain (Figures 1B, 2 &4).
The rat exon 11 contained an alternative splice site

that divided the exon into two parts, a pattern similar to
that seen in the human exon 11 [28], which we assigned
as exon 11a and exon 11b. Alternative usage of the two
splice sites in the exons 11a and 11b led to the series of
splice variants. rMOR-1G1 contained exons 11a/11b/2/

Xu et al. Molecular Pain 2011, 7:9
http://www.molecularpain.com/content/7/1/9

Page 2 of 14



2
3

a/b b/a
5

15 4c/b/a b/a
9

10 6 87

rMOR-1

rMOR-1A

rMOR-1B1

rMOR-1B2

rMOR-1C1

rMOR-1C2

rMOR-1D

E1 Promoter

rMOR-1P

31 0.8 1 7 9 63 23 7 60 7
E11 Promoter

Exon

Intron (kb)

a/b

rMOR-1G1

21

rMOR-1S

rMOR-1G2

rMOR-1H1

rMOR-1i1

rMOR-1H2

rMOR-1i2

rMOR-1i3

A. Genomic structure

B. Alternatively spliced variants

28

111

Figure 1 Schematic of the rat OPRM1 gene structure and alternative splicing. A. Genomic structure of the rat OPRM1gene. Exons and
introns are showed by boxes and horizontal lines, respectively. Translational start and termination sites are indicated by downward and upward
lines on exon boxes, respectively. Exons are numbered based upon their time of discovery, as previously reported. B. Alternatively spliced
variants of the rat OPRM1 gene. Exon composition for each alternatively spliced variant was indicated by appropriate exon boxes. The lines
between exons are introns that are spliced out during splicing. Translation start and stop points are shown by bars below and above exon
boxes, respectively.
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Figure 2 Schematic of protein structures predicted from Exon
11-associated variants. Colored bars indicate proteins predicted
from different exons.

M  M  E  A  F  S  K  S  A  F  Q  K  L
mE11  GCGGGATCTGGGCCGATGATGGAAGCTTTCTCTAAGTCTGCATTCCAAAAGCT
rE11  ATGGGATCTGGTCCAATGCTGTAAGCTTTCTCCAAGTCCGCATTCCAAAAACT
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Figure 3 Sequence comparison of the rat exon 11 with the
mouse exon 11. The nucleotide sequences and their deduced
amino acids of the mouse exon 11 (mE11) and the rat exon 11
(rE11) are shown by capital letters. Intron sequences are indicated
by low letters. The identical nucleotides are indicated by non-italic
letters and diverse nucleotides by italic letters. Exon-exon and exon-
intron boundaries are indicated by arrows.
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Figure 4 The partial nucleotide sequence and predicted amino acid sequence of the rat variants. Exon-exon boundaries are indicated by
arrows. The stop codons are showed by *. The complete cDNA and deduced amino acid sequences of rMOR-1G1, rMOR-1G2, rMOR-1H1, rMOR-
1H2, rMOR-1i1, rMOR-1i2 and rMOR-1i3 have been deposited in the GenBank database with Accession numbers: DQ680043, EU024650,
EU340244, EU024651, EU340245, EU024652 and EU340246, respectively.
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3/4. If the AUG in exon 11a was used, rMOR-1G1 only
predicted a peptide with seven amino acids since the
stop codon predicted from exon 11b terminated its
translation. However, rMOR-1G1 still could use the first
AUG from exon 2 as the translational start codon to
yield a 6 TM protein, a situation similar to that human
hMOR-1G1 [28], the mu3 receptor [31] and hMOR-1K
[33]. rMOR-1G2 had the same exon composition as
rMOR-1G1 except that the stop codon in exon 11b was
skipped due a downstream splice site of exon 11a. Thus,
like both mMOR-1G and hMOR-1G2, translation of
rMOR-1G2 can proceed from the exon 11a AUG to
encode a 6 TM protein since the exon 11a reading-
frame was in frame with that of exons 2/3/4 (Figures 2
& 3). The two AUGs in exon 11a were in the same
reading-frame and separated by four amino acids. We
arbitrarily assigned the first AUG as the translational
start codon for rMOR-1G2, although it is not clear
which AUG is actually used.
The other five variants, rMOR-1H1, rMOR-1H2,

rMOR-1i1, rMOR-1i2 and rMOR-1i3, contained exons
11a, 1a, 2, 3 and 4, but with alternative splicing among
exons 11a, 11b, 1a, 1b and 1c to generate different tran-
scripts. Despite their differences in exon composition,
rMOR-1H1, rMOR-1i1, rMOR-1i2 and rMOR-1i3 all
predicted the same protein sequence as the original
rMOR-1 when using AUG in exon 1a as translational
start codon (Figure 1B, 2 & 4). Translation from the
AUG of exon 11a predicted a short protein sequence
due to early translation termination within exon 11b,
exons 1b or 1c. The ability of four different exon11-con-
taining transcripts to encoded the same protein as
rMOR-1 protein mimics three mouse exon 11-contain-
ing variants, mMOR-1H, mMOR-1I and mMOR-1J [24].
The predicted protein sequence of rMOR-1H2 was intri-

guing. Splicing from exon 11a to exon 1a gave rise to a
sequence that predicted an in-frame fusion protein from
exon 11a to exons 1a/2/3/4 when the AUG in exon 11a
was used as the translational start codon (Figures 2 & 4).
Thus, rMOR-1H2 encoded a novel receptor protein con-
taining the same amino acid sequence as rMOR-1, but
with an additional 50 amino acids at the N-terminus. In
vitro transcription coupled translation revealed a molecu-
lar weight for rMOR-1H2 that was approximately 5 kD
higher than that of rMOR-1, suggesting the preferential
usage of the AUG in exon 11a to initiate translation
(Figure 5). The 50 amino acid sequence did not contain a
predicted transmembrane domain, implying that rMOR-
1H2 still encoded a 7 TM protein. Interestingly, the addi-
tional sequence did possess a potential N-glycosylation site.

Expression of the rat exon 11-associated variant mRNAs
The relative size and abundance of the variant mRNAs was
assessed using Northern blot analysis (Figure 6). The exon

2/3a probe, designated to detect most of the variant
mRNAs, hybridized several heavy and diffuse bands ranging
from 2 - 15 kb, a band pattern similar to Northern blots
using mouse and human brains with their respective exon
2/3a probes [24,37]. The exon 11 probe detected a major
strong band around 12 kb. A similar band with relatively

Figure 5 In vitro translation of rMOR-1 and rMOR-1H2. In vitro
transcription coupled translation was performed as described in the
methods section.
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same size was also seen in the blot with the exon 2/3a
probe. Two weaker bands were seen around 1 - 1.5 kb and
2 - 4.5 kb, respectively.
We next examined the expression of the variant mRNAs

in several brain regions using RT-PCR (Figures 7A, 7B,
Table 1 & Additional files 1, 2 & 3). The rMOR-1 band
was observed in all the regions with relatively equal abun-
dance, except for lower levels in the cerebellum. However,
the expression of the other mRNAs varied markedly
among the regions. rMOR-1G1, rMOR-1G2 and rMOR-
1H2 were highly expressed in the brain stem, hippocam-
pus and spinal cord, but had very lower levels in the cere-
bellum and hypothalamus. In contrast, rMOR-1H1 was
abundant in the cerebellum, hippocampus and spinal
cord, but limited in the brain stem and hypothalamus. On
the other hand, rMOR-1i1, rMOR-1i2 and rMOR-1i3

expression was mainly observed in the brain stem. The
brain stem expressed all the variants at relatively high
levels except for rMOR-1H1, whereas the hypothalamus
expressed the most variants at very low levels. These
results suggested region-specific alternative splicing of
these variant pre-mRNAs.

Characterization of the rat exon 11-associated variants by
receptor binding
Of the seven exon 11-associated variants, rMOR-1H1,
rMOR-1i1, rMOR-1i2 and rMOR-1i3, predicted the same
protein as rMOR-1, while rMOR-1H2 encoded a novel
receptor protein with additional 50 amino acids extended
at the N-terminal tip of rMOR-1. To examine the phar-
macological binding profiles of these variants, we estab-
lished CHO cell lines stably expressing these variants and
examined [3H] DAMGO binding. Saturation studies
demonstrated similar high affinities of [3H] DAMGO for
all five variants (Table 2). Although the small difference
in KD values between rMOR-1i3 and rMOR-1, rMOR-
1H2, rMOR-1i1 and rMOR-1i2 were statistically signifi-
cant, we believe that these small differences reflected dif-
ferences in the assays rather than the receptor itself,
particularly since they all predict receptors with identical
amino acid sequences. While it theoretically might be
due to the concurrent generation of the 16 amino acid
fragment predicted from the methionine in exon 11a,
there is, to date, nothing to indicate that this peptide is
actually generated. Competition studies confirmed their
mu selectivity (Table 3), with mu ligands such as mor-
phine and M6G potently lowering binding while the
kappa1-selective opioid U50,488H and the delta-selective
ligand DPDPE did not. As expected, the variants with the
same predicted protein as rMOR-1 displayed the similar
binding characteristics as rMOR-1 itself. rMOR-1H2
bound both agonists and antagonists with affinities indis-
tinguishable from other variants including rMOR-1, indi-
cating that the additional 50 amino acids at N-terminus
did not influence opioid binding.

Functional comparison of rMOR-1 with rMOR-1H2 in
agonist-induced [35S]GTPgS binding
All five full-length variants with 7 TM contained exon 1.
Of these, only rMOR-1H2 encoded a novel protein, dif-
fering from the others by the extended N-terminal
sequence. Previously, we found that the C-terminal var-
iants of the OPRM1 gene displayed differences in ago-
nist-induced G protein activation despite their small
differences in receptor binding profile [25]. To investi-
gate a possible functional effect of the additional N-
terminal sequence in rMOR-1H2 on agonist-induced G
protein activation, we compared the agonist-induce sti-
mulation profiles of several agonists on [35S]GTPgS
binding in stably transfected CHO cells expressing

Figure 6 Northern blot analysis Northern blots were performed
on rat brain using an exon 2/3 probe and an exon 11 probe, as
described in the Methods section.
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rMOR-1H2 and rMOR-1 (Table 4). All the drugs effec-
tively stimulated [35S]GTPgS binding. However, we
observed differences in both their potencies (EC50 value)
and efficacies (% maximal stimulation) among the var-
iants. For example, DAMGO and dynorphin A were

more potent in rMOR-1H2 than in rMOR-1, as was
b-endorphin. Maximal stimulation revealed that mor-
phine was significantly more efficacious in rMOR-1H2
than in rMOR-1. There was little correlation between
the EC50 and the maximal stimulation, as shown by the

Figure 7 Regional distribution of the mRNAs from the rat exon 11-associated variants A. Four sets of total RNAs were extracted from
brain regions dissected from four separate groups of rats. Each group contained 1 or 2 rats depending upon the size of the regions. RT-PCRs
were performed using primers designed for amplifying rMOR-1G1, rMOR-1G2, rMOR-1H1, rMOR-1H2, rMOR-1i1, rMOR-1i2, rMOR-1i3 and rMOR-1
as described in the Methods. G3PDH was used as RNA loading control. The PCR products were separated on 1% agarose gel, stained with
ethidium bromide and photographed using FluorChem 8000 Image System. Only one of four sets data was shown, while the data from other
three sets were shown in Additional files 1, 2 & 3. B. Quantification of the PCR products from the four sets of RNAs. The band intensities from
the agarose gel were quantified with AlphaEase FC software of the Image System and normalized with the band intensities of G3PDH. The data
were graphed using GraphPad Prism 4.0 and analyzed with Two-way ANOVA. The results are shown in Table 1.
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fact that dynorphin A was the most efficacious of the
ligands tested, despite its lower potency.
To obtain a general indication of the intrinsic activity of

the various ligands, we compared their EC50 values after
normalizing for their receptor binding affinity (EC50/Ki).
This provides an indication of the receptor occupancy
needed to elicit the response. The lower the number, the
greater is the intrinsic activity of the ligand. While the
EC50 values for M6G and DAMGO were similar for
rMOR-1, their EC50/Ki ratios differed by approximately
10-fold. A similar situation existed for rMOR-1H2. The
potency of dynorphin A in stimulating [35S]GTPgS was far
less than that of the other ligands, while its EC50/Ki ratio
was the lowest, implying the greatest intrinsic activity. The
rank order of the EC50/Ki values varied from their corre-
sponding rank order of both the EC50 and the maximal sti-
mulation values. Comparing the two variants, we also saw
different rank-order ratios (Table 4). These results sug-
gested that the extra 50 amino acids influence agonist-
induced G protein activation.

Discussion
Multiple mu opioid receptors were proposed in many
years ago, mainly based upon pharmacological studies

[3,43-45]. However, to date only a single mu opioid
receptor gene has been identified, raising the questions
of how a single OPRM1 gene could explain the complex
pharmacology of mu opioids in animals and humans.
Our early antisense mapping studies suggested different
exon combinations for the analgesic actions of the two
mu agonists morphine and M6G, raising the possibility
of alternative splicing in the OPRM1 gene [17,46]. Since
then, much effort has been devoted to identifying these
OPRM1variants. To date, over 28 splice variants of the
mouse OPRM1 gene have been isolated [22-24,27,35],
some of which had been previously identified in humans
[21] and rats [20].
The majority of variants were C-terminal variants, differ-

ing only at the C-terminal tip. These variants revealed
marked differences in their regional distribution at both
mRNA and protein level [22-24,27,47-52] and agonist-
induced G protein activation and internalization [25,36,37].
We then identified a second set of variants associated with
exon 11, a previously unknown exon located 30 kb
upstream of exon 1 [24], and established their functional
significance in an exon 11 KO mouse model [42]. Disrupt-
ing exon 11 diminished M6G and heroin analgesia without
affecting morphine or methadone actions, suggesting that
exon 11 and its associated variants played an important
role in the actions of a subset of mu opioids that include
M6G and heroin. A number of C-terminal variants have
been isolated from the rat [20,25] and human OPRM1
genes [21,26,37]. We recently isolated a homolog exon 11
and three its associated variants in the human OPRM1
gene [28]. The current studies have now extended a similar
splicing pattern to the rat with the identification of a homo-
logous exon 11 and seven associated variants in the rat
OPRM1 gene. Additionally, the exon 11 sequence has been
predicted from the OPRM1 genomic locus of six other
mammalian species through NBCI and Ensembl databases,
including chimpanzees, monkeys, guinea pigs, bats, cows
and armadillos [53], but not in lower vertebrate species
such as fish and amphibians that contain OPRM1 gene.

Table 1 Significance values of the semi-quantitative RT-PCR for the expression of the exon 11 associated variants’
mRNAs in the selected brain regions

cb vs hyp cb vs bs cb vs hip cb vs spc hyp vs bs hyp vs hip hyp vs spc bs vs hip bs vs spc hip vs spc

rMOR-1 ns ns 0.05 0.05 ns ns ns ns ns ns

rMOR-1G1 ns 0.001 0.001 0.001 0.001 0.001 0.001 ns ns ns

rMOR-1G2 ns 0.001 0.001 0.001 0.001 0.001 0.001 ns ns ns

rMOR-1H1 ns ns 0.01 0.001 ns 0.001 0.001 0.001 0.001 ns

rMOR-1H2 ns 0.01 0.01 0.001 0.01 0.01 0.001 ns ns ns

rMOR-1i1 ns 0.001 ns ns 0.001 ns ns 0.001 0.001 ns

rMOR-1i2 ns 0.001 ns ns 0.001 ns ns 0.00 0.001 ns

rMOR-1i3 ns 0.001 ns ns 0.001 ns ns 0.001 0.001 ns

Two-way ANOVA followed by Bonferroni post tests was performed to determine significant difference among the selected brain regions for each variant. cb:
cerebellum; hyp: hypothalamus; bs: brainstem; hip: hippocampus; spc: spinal cord; ns: no significance (p > 0.05).

Table 2 Saturation studies with [3H] DAMGO

Clone KD (nM) Bmax (pmol/mg protein)

rMOR-1 0.39 ± 0.03 0.47 ± 0.07

rMOR-1H1 0.51 ± 0.05 0.40 ± 0.01

rMOR-1H2 0.37 ± 0.02 0.30 ± 0.05

rMOR-1i1 0.36 ± 0.05 0.24 ± 0.02

rMOR-1i2 0.36 ± 0.04 0.26 ± 0.01

rMOR-1i3 0.63 ± 0.06 0.24 ± 0.01

[3H] DAMGO binding was performed in membranes of CHO cells stably
expressing the indicated variant constructs. The binding parameters were
determined by nonlinear regression analysis. Results are the mean ± S.E.M. of
at least three independent determinations. P values determined by one-way
ANOVA were 0.0013 for KD and 0.0311 for Bmax. Tukey post hoc analysis
determined that rMOR-1i3 was different from rMOR-1, rMOR-1i1, rMOR-1i2
and rMOR-1H2 (p < 0.001), and that there was no significant difference
among the variants in Bmax.
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The nucleotide sequence and genomic location of the
rat exon 11 were similar to those in the mouse and
human. However, some differences exist between the rat
and mouse exons 11. Whereas the rat contains an alter-
native splice site within exon 11 which splits it into
exon 11a and exon 11b, a situation similar to the
human exon 11, the mouse does not. Alternative usage
of these two splice sites within exon 11, together with a
choice of downstream exons, created a number of differ-
ent variants. The rat exon 11b has a predicted stop
codon when translated from its first AUG in exon 11a,
leading to only seven amino acids in rMOR-1G1,
rMOR-1H1 and rMOR-1i1. However, initiating transla-
tion from the first AUG of exon 2 in rMOR-1G1 pre-
dicts a 6 TM protein. Using the AUG in exon 1a of
rMOR-1H1 and rMOR-1i1, rMOR-1i2, rMOR-1i3 leads
to the same protein as the original rMOR-1.
The variants that skip exon 11b can translate through

from the AUG in exon 11a, but differed in amino acid
sequence depending upon their downstream exons. In
rMOR-1i2 and rMOR-1i3, translation using the first
AUG in exon 11a still predicted small proteins due to

early termination of translation in exons 1b and exon 1c,
respectively. However, both rMOR-1i2 and rMOR-1i3
can initiate translation from the AUG of exon 1a to gen-
erate the same protein as the original rMOR-1. Thus,
together with rMOR-1H1 and rMOR-1i1, a total of four
exon 11-associated transcripts can produce the identical
rMOR-1 protein, a similar situation seen in the mouse
exon 11-aasociated variants. This raises questions regard-
ing why four different splice variants are needed to gen-
erate the same protein. It is interesting to speculate, that
these differences may differentially regulate their cellular
location and their ability to express the protein, but there
is no evidence to date to support this possibility.
On the other hand, translation from the AUG of exon

11a also generated the 6 TM protein, rMOR-1G2. Skip-
ping exon 11b maintained the reading frame from AUG
of exon 11a through exons 2/3/4. Similarly, skipping
exon 11b also enabled rMOR-1H2 to read through,
yielding a novel receptor with extra 50 amino acids
extended at the N-terminus of rMOR-1, a prediction
that was supported by in vitro transcription coupled
with translation. Thus, rMOR-1H2 is the first full length

Table 4 Stimulation of [35S]GTPgS binding by opioids in rMOR-1 and rMOR-1H2

rMOR-1 rMOR-1H2

EC50 EC50/Ki % Max Relative Efficacy (%) EC50 EC50/Ki % Max Relative Efficacy (%)

Morphine 59 ± 18 39 180 ± 4 71 70 ± 24 88 225 ± 20* 90

M6G 40 ± 4 9 149 ± 3 59 44 ± 6 17 189 ± 25 75

DAMGO 35 ± 2 90 192 ± 5 76 20 ± 3* 54 209 ± 17 83

b-Endorphin 58 ± 34 21 226 ± 12 89 24 ± 8 6 241 ± 17 96

Dynorphin A 344 ± 64 22 254 ± 6 100 162 ± 12* 7 251 ± 44 100

Membranes were prepared from CHO cells stably transfected with the indicated cDNA constructs and [35S]GTPgS binding carried out as described in the Methods
section. The maximal stimulation, defined as the percent increase over basal binding, % Max, and the dose of drug needed to elicit 50% of the maximal
response, the EC50, were calculated by nonlinear regression analysis (GraphPad Prism 4.0). Results are the means ± S.E.M. of at least three independent
determinations. Significant differences of the EC50 and maximal stimulation between rMOR-1 and rMOR-1H2 were analyzed by Student t-test. Intrinsic activity
(EC50/Ki) was calculated by dividing EC50 values by Ki values in Table 2. The relative efficacies for the listed opioids were determined for each of the variants,
based upon the maximal stimulation values. The drug with the highest level of stimulation for a specific variant was arbitrarily given an efficacy of 100%. Efficacy
for all the other compounds for the indicated variant was defined relative to the drug with the greatest maximal stimulation. *: p < 0.05, when compared to
rMOR-1.

Table 3 Competition of [3H] DAMGO binding among the rat MOR-1 variants

Ligand Ki Value

rMOR-1 rMOR-1H1 rMOR-1H2 rMOR-1i1 rMOR-1i2 rMOR-1i3

Morphine 1.5 ± 0.2 2.0 ± 0.3 0.8 ± 0.1 1.3 ± 0.4 1.2 ± 0.2 1.6 ± 0.2

M6G 4.5 ± 0.3 4.5 ± 0.5 2.6 ± 0.6 3.8 ± 0.5 5.1 ± 1.0 6.3 ± 0.7

DADLE 2.4 ± 0.1 1.9 ± 0.3

DSLET 6.3 ± 0.3 7.2 ± 1.1

Naloxone 0.8 ± 0.1 0.9 ± 0.1 0.8 ± 0.3 0.9 ± 0.1 0.7 ± 0.1 1.3 ± 0.2

b-Endorphin 2.7 ± 0.2 3.1 ± 0.3 3.8 ± 1.9 3.3 ± 0.3 3.7 ± 0.3 6.3 ± 0.7

Dynorphin A 15.5 ± 0.9 37.5 ± 5.3 21.8 ± 5.1 16.2 ± 3.5 23.6 ± 2.8 34.6 ± 6.8

U50,488H > 500 > 500 > 500 > 500 > 500 > 500

DPDPE > 500 > 500 > 500 > 500 > 500 > 500

[3H] DAMGO binding was performed in membranes of CHO cells stably expressing the indicated variants. Dissociate constants, Ki values, were determined from
IC50 values of at least three independent determinations. One-way ANOVA was used to compare the Ki values for each drug among the variants. Of the opioids,
only M6G (p = 0.0157) showed significant difference with lower Ki value of rMOR-1H2 as compared to that of rMOR-1i3 (p < 0.01) in Tukey post hoc analysis.
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(i.e. 7 TM) rat splice variant isolated with a different
protein sequence at the N-terminus.
The exon 11 mRNAs are relatively abundant in the

brain, as illustrated by Northern blot analysis that
displayed a major ~ 12 kb band with intensity compar-
able to that observed with the exons 2/3 probe.
The expression of the exon 11-associated variant
mRNAs differed markedly among brain regions, con-
trasting with the relatively homogenous expression levels
of rMOR-1. This suggested that, like the mouse, there is
region- and/or cell-specific RNA processing of the var-
iant pre-mRNAs and/or varying levels of upstream pro-
moter activity. Differential expression of the variant
mRNAs among brain regions also raised questions
regarding their functions. Recently, we observed high
correlations between mRNA expression levels, including
exon 11-associated variants, in selected brain regions
with the degree of morphine and heroin dependence
and tolerance among four inbred strains of mice (J Xu,
B Kest and YX Pan, unpublished observations). These
results suggest a possible contribution of alternative spli-
cing of the OPRM1 gene in mu opioid tolerance and
addiction in mice, although the relevance of these corre-
lations needs to be further validated. It will be interest-
ing to see if these correlations also exist in rat.
The genomic location of the rat exon 11 approxi-

mately 21 kb upstream of exon 1 suggested the exis-
tence of an upstream promoter controlling the
expression of the exon 11-associated variants. Prelimin-
ary studies indicate that the 5’ flanking region of the rat
exon 11 has promoter activity, particularly in the neuro-
blastoma cell lines NIE115 and Be(2)C cells, assessed
using a secreted alkaline phosphotase (SEAP) reporter
assay (J Xu and XY Pan, unpublished observation).
rMOR-1H2 encoded a full length 7 TM mu opioid

receptor with a unique, extended N-terminus. Its similar
binding profile is consistent with the other variants was
expected since it is believed that the binding pocket is
contained within the transmembrane regions, which are
identical among all the full length variants. However,
the additional N-terminal 50 amino acids in rMOR-1H2
did influence agonist-induced G protein activation, a
similar scenario seen in the human N-terminal variant,
hMOR-1i [28]. While similar results were observed with
the C-terminal variants, but this was more easily under-
stood because of the presumed ability of the C-terminus
to influence coupling to transduction proteins. How the
additional N-terminal sequence influences receptor acti-
vation is as yet unknown.
In the mouse, the exon 11-associated variants mMOR-

1G, mMOR-1M and mMOR-1N predict 6 TM variant
due to skipping of exon 1, which encodes the first TM.
rMOR-1G2 predicted a similar 6 TM protein with trans-
lation of exon 11 that resembles mMOR-1G with exon 4

as the last coding exon. While rMOR-1G1 also predicts a
6 TM variant with a terminal exon 4, it requires using
the AUG within exon 2 to initiate translation. Despite
our efforts, we were unable to isolate rat homologs of the
mouse mMOR-1M and mMOR-1N. While it is possible
that they do not exist in rats, it also is possible that these
homologs are localized to very specific brain regions with
a low overall abundance. The functional relevance of the
6 TM mouse variants has been suggested by a range of
studies. First, although they do not bind radiolabeled mu
agonists with high affinity, the mouse 6 TM variants
displayed a moderate binding affinity towards [3H]-dipre-
norphine (KD approximately 10 nM; J Xu, GW Pasternak
and YX Pan, unpublished observation). Second, the
6 TM variants can physically associate with the regular
7 TM MOR-1 and modulate the expression of the 7 TM
receptors on cell surface membrane (J Xu, GW Pasternak
and YX Pan, unpublished observation). More impor-
tantly, disrupting exon 11 diminished M6G and heroin
analgesia without affecting morphine and methadone,
suggesting selective roles of the 6 TM exon 11-associated
variants in the actions of M6G and heroin. Finally, the
conservation of the exon 11 and exon 11-associated var-
iants across species further supports their role.

Conclusions
We isolated a rat exon 11 and seven exon 11-associated
splice variants from the rat OPRM1 gene, resembling
splicing in both mice and humans and suggesting con-
servation of exon 11 and its associated variants in mam-
mals. The rat OPRM1 gene now contains eleven exons
spanning over 250 kb and whose combination by alter-
native splicing generates over sixteen variants. The func-
tional significance of these rat exon 11-associated
variants was suggested by the region-specific expression
of their mRNAs and the influence of the novel N-term-
inal sequence on agonist-induced G protein coupling in
the N-terminal variant, rMOR-1H2. The existence of
the rat exon 11-associated variants raises questions
regarding their potential role in mediating the actions of
heroin and M6G in rat. The diversity and complexity
created by alternative splicing of the rat OPRM1 gene
may provide important insights of understanding the
diverse responses to the various mu opioids seen in rat.

Methods
Genomic database searching
Alignment of the mouse exon 11 sequence in with the
rat OPRM1 gene in the Ensembl human genome data-
base revealed a sequence homologous to exon11. The
rat exon 11 was mapped approximately 21 kb upstream
of exon 1 in the rat OPRM1 locus. There is 86% identity
at the nucleotide level between the rat exon 11 and the
mouse exon 11 sequences (Figure 3).
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Reverse transcription-polymerase chain reaction (RT-PCR)
cloning
Total RNA was isolated from rat brain or selected brain
regions by the guanidinium thiocyanate phenol-chloro-
form extraction method [54] and reverse transcribed
with random primers and Superscript II reverse tran-
scriptase (Invitrogen) as previously described [22,55] or
with an antisense primer from exon 4 (E4-AN1, 5’-CAT
GTG CAG AGT GAA GTA GCC AGA G-3’) and
Superscript III reverse transcriptase (Invitrogen) follow-
ing the manufacture’s protocol. In a 20 μl of RT reac-
tion with random primers and Superscript II, 5 μg of
RNA together with 260 ng of random primer was first
incubated at 70°C for 5 min and then quickly cooled on
ice for 2 min. Following adding the reaction buffer
together with 10 mM DTT and 1 mM dNTP and warm-
ing the mixture at 37°C for 2 min, 260 units of Super-
script II were added. The mixture with the enzyme was
incubated at room temperature for 10 min, then at 37°C
for 5 min and finally at 42°C for 90 min. The reaction
was terminated by heating at 75°C for 15 min. In a
20 μl of RT reaction with E4-AN1 primer and Super-
script III, 5 μg of RNA together with 10 pmol of E4-
AN1 primer was first incubated at 70°C for 5 min and
then quickly cooled on ice. The reaction buffer together
with 5 mM DTT, 1 mM dNTP and 200 units of Super-
script III was added. The reaction was incubated at 53°C
for 90 min and terminated by heating at 75°C for 15
min. Two-step or nested PCRs was used to amplify
exon 11-associated full-length clones using Platinum
Taq DNA polymerase (Invitrogen). The first-step PCRs
were carried out using 5 μl of RT reaction as template
with the appropriate primers (see below) for 39 cycles
after 2 min at 94°C, each cycle consisting of a 20 sec
denaturing step at 94°C, a 20 sec annealing step at 65°C
and a 2 min extension at 72°C. In the second-step
PCRs, 2 μl of the first-step PCR products was used as
template with appropriate primers (see below) using the
same PCR cycling conditions as the first-step PCR. The
primers used for rMOR-1G1, rMOR-1G2, and rMOR-
1H2 were: two sense primers from exon 11 sequence
obtained from the genomic alignment (E11-SE1: 5’-CTT
CCC ATA AGT CAT TTG CTG TCC TTG-3’ and
E11-SE2: 5’-GAA GAG GAA CAC CGA AAC TGG
GAA GC-3’) and two antisense primers from exon 4
(E4-AN1 and E4-AN2: 5’-GAC AGC AAC CTG ATT
CCA CGT AGA TG-3’); for rMOR-1H1 and rMOR-1i1,
an exon 11 sense primer (E11-SE3: 5’-GAA GGA TGG
GAT CTG GTC CAA TGC TGT AAG CTT TCT CCA
AGT CCG CAT TCC AAA AAC TGG ACA GGG
AGA TAG AAA TCA AGA GGG GAA GTT ACC
TCA G-3’) and the two exon 4 antisense primers (E4-

AN1 and E4-AN2); for rMOR-1i2, a exon 11 sense pri-
mer (E11-SE4: 5’-GAA GGA TGG GAT CTG GTC
CAA TGC TTG CAT G-3’) and E4-AN1 primer; and
for rMOR-1i3, an exon 11 sense primer (E11-SE5: 5’-
GCT TGA AGG ATG GGA TCT GGT CCA ATG
CTA TAC GAG-3’) and E4-AN1 and E4-AN2 primers.
All PCR fragments were subcloned into pcDNA3.1/
V5His-TOPO vector (Invitrogen) and sequenced with
appropriate primers in both orientations.

Northern blot analysis
Northern blot analysis was performed as described
[22,55]. Briefly, 20 μg of total brain RNA/lane was sepa-
rated on a 0.8% formaldehyde agarose gel, and trans-
ferred to GenePlus membrane. The membranes were
hybridized with either a 257 bp 32P-labeled exon 11
probe generated by PCR with a sense primer (E11-SE1)
and an antisense primer (E11-AN1: 5’-GAG GTA ACT
TCC CCT CTT GAT TTC TAT CTC CC-3’) from
exon 11 or a 685 bp 32P-labeled exons 2 & 3a probe by
PCR with a sense primer from exon 2 (E2-SE1: 5’-GAC
TGC CAC CAA CAT CTA CAT TTT CAA C-3’) and
an antisense primer from exon 3 (E3-AN1: 5’-GTT
CGT GTA ACC CAA AGC AAT GC-3’).

Regional expression of the variant mRNAs
The selected brain regions were dissected from four
separate groups of rats. Each group had one or two rats
depending upon the size of the region. Total RNAs
extracted from the selected brain regions were reverse-
transcribed with an E4-AN1 primer and Superscript III
as described in RT-PCR cloning (see above). The first-
strand cDNAs were used as templates for two-step or
nested PCRs. For exon 11-associated splice variants, the
first-step PCRs were performed using 5 μl of RT reac-
tion as template and a sense primer from exon 11 (E11-
SE1) and an antisense primer from exon 4 (E4-AN1) for
35 cycles with the same PCR cycling conditions as
described in RT-PCR cloning. In the second-step PCRs,
3 μl of the first-step PCR products was used as template
with appropriate primers (see below). The primers used
in the second-step PCRs were designed to specifically
amplify each variant and listed as following: for rMOR-
1G1, a sense primer (G1-SE: 5’-GAA GTT ACC TCA
GAT ACA CCA AAA TGA-3’) and an exon 3 antisense
primer (E3-AN2: CAG CAG ACG ATA AAT ACA
GCC ACG-3’); for rMOR-1G2, a sense primer (G2-SE:
5’-GGT CCA ATG CTA TAC ACC AAA ATG-3’) and
E3-AN2 primer; for rMOR-1H1, a sense primer (H1-SE:
5’-AAG TTA CCT CAG GGC TGG TCC-3’) and an
exon 2 antisense primer (E2-AN1: 5’-ATG TTC CCA
TCA GGT AGT TGA CAC TC-3’); for rMOR-1H2, a
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sense primer (H2-SE: 5’-GGT CCA ATG CTG GCT
GGT CC-3’) and E2-AN1 primer; for rMOR-1i1, a sense
primer (I1-SE: 5’-AAG TTA CCT CAG TGC ATG
GAG ACC-3’) and E2-AN1 primer; for rMOR-1i2, a
sense primer (I2-SE: GGT CCA ATG CTT GCA TGG
AGA C-3’) and E2-AN1 primer; for rMOR-1i3, a sense
primer (I3-SE: 5’-GGT CCA ATG CTA TAC GCG GA-3’)
and E2-AN1 primer. For detecting rMOR-1, the first-step
PCRs were performed using the same PCR cycling condi-
tions with 5 μl of RT reaction, an exon 1c sense primer
(E1-SE1: 5’-CCC ACT TTA CAC TCG TTT ACA CGG-
3’) and E4-AN1 primer. In the second-step PCRs, 3 μl of
the first-step PCR products was used as template with an
exon 1 sense primer (E1-SE2: 5’-GAC AGC CTG TGC
CCT CAG ACC-3’) and E2-AN1 primer. The second-step
PCRs were carried out for 35 cycles after 2 min at 94°C,
each cycle consisting of a 20 sec denaturing step at 94°C, a
20 sec annealing step at 60 - 65°C and 45 - 90 sec exten-
sion at 72°C, depending upon melting temperature of pri-
mers and length of amplicons. The lengths of the PCR
products were consistent with their predicted sizes: 606 bp
for rMOR-1G1, 604 bp for rMOR-1G2, 539 bp for rMOR-
1H1, 537 bp for rMOR-1H2, 794 bp for rMOR-1i1, 793 bp
for rMOR-1i2, 1051 bp for rMOR-1i3 and 217 bp for
rMOR-1. The sequences of the PCR products were con-
firmed by sequencing with appropriate primers. A negative
control using ddH2O as template was included for each
variant throughout the two-step PCRs. RNA loading was
estimated by parallel one-step PCRs with a pair of primers
for glyceraldehydes 3-phosphate dehydrogenase (G3PDH)
(Clontech). The PCR products were separated on 1% agar-
ose gel, stained with ethidium bromide. The agarose gel
was photographed and analyzed using a FluorChem 8000
Image System (Alpha Innotech).

In vitro transcription coupled translation
The full-length cDNAs of rMOR-1 and rMOR-1H2 in
the pcDNA3.1/V5His-TOPO vector were transcribed
and translated in vitro with a TnT T7 coupled reticulo-
cyte lysate system (Promega) following the manufac-
turer’s protocol. Briefly, the plasmids were incubated
with T7 RNA polymerase and reticulocyte lysate in the
presence of 0.04 mCi of [35S]methionine (> 1000 Ci/
mmol; PerkimElmer) at 25°C for 90 min. The translated
products were separated on a 12% SDS-polyacrylamide
gel, and the gel was treated with Amplify (GE Life),
dried and exposed to Kodak BioMax MR film.

Expression of rMOR-1H1, rMOR-1H2, rMOR-1i1, rMOR-1i2
and rMOR-1i3 in Chinese hamster ovary (CHO) cells
The rMOR-1H1/pcDNA3.1-TOTO, rMOR-1H2/pcDNA
3.1-TOPO, rMOR-1i1/pcDNA3.1-TOPO, rMOR-1i2/
pcDNA3.1-TOPO, rMOR-1i3/pcDNA3.1-TOPO and
rMOR-1/pcDNA3.1(-) plasmids were used to transfect

Chinese Hamster Ovary (CHO) cells by LipofectAMINE
reagent (Invitrogen). Stable transformants were obtained
10 - 14 days after selection with G418 and screened with
a [3H]DAMGO binding assay.

Receptor binding assays
Membranes were prepared from stable transfectants as
described previously [22]. Saturation and competition
binding assays were performed with [3H]DAMGO at
25°C for 60 min in 50 mM potassium phosphate buffer,
pH 7.4, containing 5 mM magnesium sulfate. Specific
binding was defined as the difference between total
binding and non-specific binding, determined in the
presence of 10 μM levallorphan. KD and Ki values were
calculated by non-linear regression analysis (GraphPad
Prism 4.0, Carlsbad, CA). Protein concentrations were
determined using the Lowry method as previously
described using bovine serum albumin (BSA) as the
standard [22,28].

[35S]GTPgS binding assay
Membranes prepared from stable transfectants were
incubated in the presence and absence of indicated
opioids for 60 min at 30°C in the assay buffer (50 mM
Tris-HCl, pH 7.7, 3 mM MgCl2, 0.2 mM EGTA, 10 mM
NaCl) containing 0.05 nM [35S]GTPgS (> 1000 Ci/
mmol, PerkimElmer) and 60 μM GDP, as previously
reported [25,36,37]. Basal binding was determined in the
presence of GDP and absence of drug. The reaction was
terminated by rapid filtration under vacuum through
glass fiber filters, followed by three washes with 3 ml of
ice-cold 50 mM Tris-HCl, pH 7.4. Bound radioactivity
was measured by liquid scintillation spectrophotometry
in Liquid Scintillation Analyzer (TRI-CARB 2900TR,
PerkimElmer) after overnight extraction in 5 ml liquis-
cint scintillation fluid (National Diagnostic Inc.).

Additional material

Additional file 1: Regional distribution of the mRNAs from the rat
exon 11-associated variants (repeated experiment 1) Figure S1. All
the procedures were performed with a separated group of rat as
described in the Methods section and Figure 7 legend.

Additional file 2: Regional distribution of the mRNAs from the rat
exon 11-associated variants (repeated experiment 2) Figure S2. All
the procedures were performed with a separated group of rat as
described in the Methods section and Figure 7 legend.

Additional file 3: Regional distribution of the mRNAs from the rat
exon 11-associated variants (repeated experiment 3) Figure S3. All
the procedures were performed with a separated group of rat as
described in the Methods section and Figure 7 legend.
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