Multi-View Integrative Approach For Imputing Short-Chain Fatty Acids and Identifying Key factors predicting Blood SCFA

- 3
- 4 Anqi Liu^{1#}, Bo Tian^{2#}, Chuan Qiu¹, Kuan-Jui Su¹, Lindong Jiang¹, Chen Zhao³, Meng Song⁴, Yong
- 5 Liu², Gang Qu⁵, Ziyu Zhou⁹, Xiao Zhang¹, Shashank Sajjan Mungasavalli Gnanesh¹, Vivek
- 6 Thumbigere-Math⁷, Zhe Luo¹, Qing Tian¹, Li-Shu Zhang⁶, Chong Wu⁸, Zhengming Ding^{9*}, Hui
- 7 Shen^{1*}, Hong-Wen Deng^{1*}
- 8
- 9 [#] Co-first authors
- 10 ^{*}Co-corresponding authors
- 11

¹Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine,

13 School of Medicine, Tulane University, New Orleans, LA, USA

¹⁴ ²Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical

15 Science, Central South University, Yuelu, Changsha, P.R. China

³College of Computing and Software Engineering, Kennesaw State University, GA, USA

⁴College of Science, Xi'an Shiyou University, Xi'an, P.R. China

⁵Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA

⁶School of Physical Science and Engineering, College of Life Sciences and Bioengineering,

- 20 Beijing Jiaotong University, Beijing, China
- ²¹ ⁷Division of Periodontics, University of Maryland Baltimore School of Dentistry, Baltimore, USA
- ⁸Department of Biostatistics, The University of Texas MD Anderson Cancer Center, USA
- ⁹School of Science and Engineering, Tulane University, New Orleans, LA, USA

24 Abstract

Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of 25 dietary fiber within gastrointestinal tract. SCFAs produced by gut microbiotas (GMs) are absorbed 26 by host, reach bloodstream, and are distributed to different organs, thus influencing host 27 physiology. However, due to the limited budget or the poor sensitivity of instruments, most studies 28 29 on GMs have incomplete blood SCFA data, limiting our understanding of the metabolic processes within the host. To address this gap, we developed an innovative multi-task multi-view integrative 30 approach (M²AE, Multi-task Multi-View Attentive Encoders), to impute blood SCFA levels using 31 32 gut metagenomic sequencing (MGS) data, while taking into account the intricate interplay among the gut microbiome, dietary features, and host characteristics, as well as the nuanced nature of 33 SCFA dynamics within the body. Here, each view represents a distinct type of data input (i.e., gut 34 microbiome compositions, dietary features, or host characteristics). Our method jointly explores 35 both view-specific representations and cross-view correlations for effective predictions of SCFAs. 36 We applied M²AE to two in-house datasets, which both include MGS and blood SCFAs profiles, 37 host characteristics, and dietary features from 964 subjects and 171 subjects, respectively. Results 38 from both of two datasets demonstrated that M²AE outperforms traditional regression-based and 39 40 neural-network based approaches in imputing blood SCFAs. Furthermore, a series of gut bacterial species (e.g., *Bacteroides thetaiotaomicron* and *Clostridium asparagiforme*), host characteristics 41 (e.g., race, gender), as well as dietary features (e.g., intake of fruits, pickles) were shown to 42 43 contribute greatly to imputation of blood SCFAs. These findings demonstrated that GMs, dietary 44 features and host characteristics might contribute to the complex biological processes involved in 45 blood SCFA productions. These might pave the way for a deeper and more nuanced 46 comprehension of how these factors impact human health.

47 **Keywords:** Short-Chain Fatty Acids, Gut Microbiotas, Metagenome, Imputation, Deep learning

48 Introduction

Short-chain fatty acids (SCFAs) are vital metabolites produced by the bacterial fermentation 49 of dietary fiber in the gastrointestinal tract¹. In a healthy gut, common bacteria such as Prevotella, 50 Bacteroides, Ruminococcaceae, and Lachnospiraceae^{2, 3} generate principal SCFAs, including 51 acetate, propionate, and butyrate. These SCFAs are absorbed and distributed to various organs, 52 influencing host physiology by maintaining an intestinal anaerobic environment and regulating 53 energy metabolism ⁴⁻⁷. Given the effects of blood SCFAs on host health, understanding the factors 54 that regulate their production is important for the development of strategies to modulate blood 55 56 SCFA levels to promote health and prevent diseases 8 .

Recent studies have shown that fermentative bacteria species such as Faecalibacterium 57 prausnitzii and Eubacterium rectale, which are abundant in the human gut, could efficiently 58 metabolize complex carbohydrates, particularly resistant starches, into butyrate ⁹. Wang *et al.* 59 found that an imbalance of "Good" and "Bad" gut microbiota led to the attenuation of the bacterial 60 metabolite SCFAs ^{10, 11}. These findings demonstrated that gut microbiotas (GMs) are crucial 61 determinants for blood SCFAs. Dietary features, specifically fibers and macronutrients (i.e., fat, 62 protein, and carbohydrate) intake, are pivotal, as they determine the substrate availability for 63 microbial fermentation in the gut, which subsequently impacts the synthesis of SCFAs¹². 64 Meanwhile, host characteristics (e.g., age, race) can significantly modulate blood levels of SCFAs 65 by influencing the synthesis, uptake, and utilization of blood SCFAs within the body, possibly 66 through the direct or indirect regulation of metabolic processes and immune responses ¹³. For 67 68 instance, the increase in blood SCFAs may be due to increased uptake of SCFAs in the colon, in part due to increased nutrient intake, a complete bypass of SCFA transporters and increased 69 passive uptake of SCFAs¹⁴. Despite the growing interest in SCFAs research, the majority of 70

existing research does not fully account for the complex interplay among host characteristics,
 dietary features, and GMs, which are crucial for generating accurate results across a wide range of
 applications ¹⁵.

Due to the limited budget or the poor sensitivity of instruments, most of current studies 74 focusing on the gut microbiome are lacking in complete measurements of blood SCFAs ¹⁶, which 75 76 can limit subsequent analyses and conceivably results in the neglect of pivotal insights into 77 metabolic processes within the host. Gut microbiome as measured by metagenomic sequencing 78 (MGS) data can determine SCFA concentrations, influencing host phenotypes by affecting metabolism, immune responses, and energy homeostasis ^{17, 18}. Integrating SCFA data with MGS 79 data enables multi-omic analyses that reveal broader metabolic impacts and potential links 80 between gut microbiota composition and physiological or disease-related outcomes ¹⁹. Hence, 81 developing a model to impute blood SCFA levels using the MGS data is beneficial and essential 82 for advancing our understanding in this field. To the best of our knowledge, the imputation of 83 84 blood SCFAs in the host using the MGS data remains largely untapped, marking a significant gap in our comprehension of the dynamics and implications of blood SCFAs production. By 85 developing predictive models that integrate gut microbial compositions with host characteristics 86 87 and dietary features, we can better understand the complex interplay between these variables and their impacts on blood SCFA production, potentially paving the way for personalized interventions 88 to optimize blood SCFA levels and promote overall well-being ²⁰. 89

In this study, leveraging metagenomic sequencing technology and deep learning methods, we unveiled an innovative approach that captures the intricate interplays among GMs, dietary features, and host characteristics to impute the absolute abundances of human blood SCFAs. Our method addresses the challenge of incomplete SCFA data by imputing it using MGS data, which will

94 further facilitate the integration of SCFAs and MGS. This integration will enable more comprehensive multi-omic analyses, providing deeper insights into the influence of gut microbial 95 composition on SCFA levels and their subsequent impact on host phenotypes in future research. 96 By applying our approach to two in-house generated datasets, we demonstrated our model 97 outperforms traditional regression-based and neural-network based approaches in imputing blood 98 99 SCFAs. Accurate imputation of incomplete blood SCFA data will enable researchers to conduct more comprehensive studies exploring metabolic processes and their potential implications for 100 health. 101

102 Methods

103 Subject recruitment and sample collection

A total of 964 unrelated males, aged 20-51 years, were recruited for this study as the first 104 dataset (Dataset 1). An additional 171 unrelated subjects, aged 20-85 years, were recruited for this 105 study, forming the second dataset (Dataset 2). All the subjects were living in New Orleans, 106 107 Louisiana and its surrounding areas. We excluded subjects who had chronic or recent temporary conditions (e.g., gastroenteritis or inter-continental travel in the past 3 months) that may have 108 significantly disturbed gut microbiota compositions, as described previously ²¹⁻²⁷. Each subject 109 provided stool and blood samples for metagenomic and SCFA profiling, respectively. We used the 110 OMNIgene•GUT (OMR-200) all-in-one system (DNA GenoTEK, Ottawa, CA) for stool sample 111 collection. Stool samples were frozen at -80°C after sample procurement until DNA extraction. 112 Serum (for 964 subjects) or plasma (for 171 subjects) was extracted from 10 ml of blood samples 113 from each subject according to the protein precipitation protocol ²⁸ developed for metabolomics 114 analysis, aliquoted, and stored at -80°C until used for further analysis. The 964 subjects in the first 115 dataset (Dataset 1) also completed three questionnaires-the Louisiana Osteoporosis 116 Questionnaire, the Metagenomic Study Supplementary Questionnaire, and the Food Frequency 117 Questionnaire-to provide relevant covariate information (e.g., demographic factors, lifestyle 118 factors and dietary features). The 171 subjects in the second dataset (Dataset 2) completed only 119 two questionnaires-the Louisiana Osteoporosis Questionnaire and the Metagenomic Study 120 Supplementary Questionnaire-to provide similar covariate information (e.g., demographic 121 factors, but part of lifestyle factors and dietary features). Each subject signed an informed consent, 122 123 and the study protocols were approved by the Institutional Review Boards (IRBs) of Tulane University. All data were treated with confidentiality, ensuring the anonymity of the participants. 124

125

126 Metagenome profiling

Metagenomic DNA was extracted from stool samples using the Nucleospin Soil kit
(MACHEREY-NAGEL) according to manufacturer's instructions, as previously described ^{19, 29-33}.
After a few washes, DNA was eluted with 50 µl elution buffer and stored at -80°C until used for
further sequencing. For Dataset 1, 530 samples were sequenced at LC Sciences (Houston, TX),
and 434 samples were sequenced at BGI Americas (Cambridge, MA). For Dataset 2, all the 171
subjects were sequenced at LC Sciences.

For the samples sequenced in LC Sciences (Houston, TX), the DNA library was constructed by TruSeq Nano DNA LT Library Preparation Kit (Illumina Inc.). And then we performed the paired-end 2×150 bp sequencing on an Illumina Hiseq 4000 platform at the LC Sciences following the vendor's recommended protocol.

Raw sequencing reads were processed to obtain valid reads for further analysis. First, 137 sequencing adapters were removed from sequencing reads using cutadapt v1.9³⁴. Secondly, low 138 quality reads were trimmed by fqtrim v0.94³⁵ using a sliding-window algorithm. Thirdly, reads 139 were aligned to the host genome using bowtie2 v2.2.0 ³⁶ to remove host contamination. Once 140 141 quality-filtered reads were obtained, they were *de novo* assembled to construct the metagenome for each sample by IDBA-UD v1.1.1 ³⁷. All coding regions (CDS) of metagenomic contigs were 142 predicted by MetaGeneMark v3.26³⁸. CDS sequences of all samples were clustered by CD-HIT 143 v4.6.1 ³⁹ to obtain unigenes. Unigene abundance for a certain sample were estimated by TPM 144 based on the number of aligned reads by bowtie2 v2.2.0³⁶. The lowest common ancestor taxonomy 145 of unigenes were obtained by aligning them against the NCBI NR database by DIAMOND v 0.9.⁴⁰. 146 147 For samples sequenced in BGI Americas, the sequencing library was generated using MGI

Easy Universal DNA Library Prep Set Kit (MGI Inc.). The established library was sequenced on BGI DNBSEQ platform using the 100 bp pair-end sample preparation protocol. Quality control (QC) of raw reads was performed using Fastp⁴¹ to filter low-quality reads. The high-quality reads were aligned to the host genome using bowtie2³⁶ to remove human reads. The gene profiles were generated by aligning high-quality sequencing reads to the 9.9M integrated gene catalog (IGC) by using the Human Microbiome Project Unified Metabolic Analysis Network (HUMAnN2)⁴².

154

155 Serum/Plasma SCFA profiling

156 Eight SCFAs (acetic acid, propionic acid, isobutyric acid, butyric acid, 2-methylbutyric acid, isovaleric acid, valeric acid and hexanoic acid) in serum/plasma samples were analyzed by 157 Metabolon Inc. (Durham, NC) using LC-MS/MS, as previously described ²⁹⁻³³. The serum/plasma 158 159 samples were spiked with stable labelled internal standards and were homogenized and subjected 160 to protein precipitation with an organic solvent. After centrifugation, an aliquot of the supernatant 161 was derivatized. The reaction mixture was injected onto an Agilent 1290/AB Sciex QTrap 5500 LC MS/MS system equipped with a C18 reversed phase UHPLC column. The mass spectrometer 162 was operated in negative mode using electrospray ionization (ESI). The peak area of the individual 163 164 analyte product ions was measured against the peak area of the product ions of the corresponding internal standards. Quantitation was performed using a weighted linear least squares regression 165 166 analysis generated from fortified calibration standards prepared immediately prior to each run. LC-167 MS/MS raw data were collected and processed using SCIEX OS-MQ software v1.7. Three levels of QC samples were prepared by diluting with phosphate-buffered saline (PBS) and/or spiking 168 169 with stock solutions to obtain the appropriate concentrations for each level (low-concentration QC, 170 medium-concentration QC, and high-concentration QC). Sample analysis was carried out in a 96well plate format containing two calibration curves to determine SCFA concentrations and six QC samples (per plate) to monitor assay performance. Accuracy was evaluated using the corresponding QC replicates in the sample runs. QCs met acceptance criteria at all levels for all analytes. QC acceptance criteria are at least 50% of QC samples at each concentration level per analyte should be within $\pm 20.0\%$ of the corresponding historical mean, and at least 2/3 of all QC samples per analyte should fall within $\pm 20.0\%$ of the corresponding historical mean.

While SCFA levels were measured in Datasets 1 and 2 using serum and plasma samples, respectively, SCFA concentrations tend to be highly consistent between serum and plasma samples ^{43, 44}. This consistency arises because both serum and plasma SCFAs reflect similar metabolic states and distributions in the bloodstream ⁴⁴. Thus, validating the model on these two datasets is appropriate, as both serum and plasma SCFA data provide reliable and comparable insights into SCFA dynamics.

183

184 Data preprocessing

To remove noise and experimental artifacts in the data and better interpret the results, proper 185 preprocessing for each view data is essential. For gut metagenomic sequencing data, we kept only 186 187 the GM species that exist in all the subjects for data harmonization across the two data sets. For dietary and clinical data, we filtered out variables with missing rate > 20% and kept all the variables 188 that, to our knowledge ⁴⁵⁻⁴⁸, could be pertinent to the study. Missing data for dietary and host 189 characteristics data were imputed using multiple imputation through R package 'mice' ⁴⁹. Missing 190 values in SCFAs were imputed with the minimum of values of all subjects for each SCFA (missing 191 192 rate <1%). We randomly selected 75% of the samples as the training set and the remaining 25% 193 of the samples in the dataset as the test set. To avoid potential bias, the training data and testing

data have been processed for data normalization separately. We applied log normalization to each
type of data, transforming the features to reduce skewness and bring the values into a comparable
scale.

197

198 Overview of Multi-task Multi-View Attentive Encoders (M²AE) model

199 $M^{2}AE$ is a framework for prediction tasks with multi-view data as input. Each view corresponds to a distinct category of data input, i.e., gut microbiome compositions, dietary features, 200 or host characteristics. The workflow of M^2AE is shown in Fig. 1 and can be summarized into two 201 202 components. (1) View-specific representation learning via attentive encoders. For each view, an attentive encoder is designed in a symmetric auto-encoder fashion, where the encoder part is 203 204 composited with one graph convolutional module and two fully-connected layers for view-specific 205 representation learning. (2) Multi-view integration via the View Interactive Network (VIN). A cross-view interactive tensor is calculated using the latent representations from all the view-206 specific networks. A VIN is then trained with the cross-view discovery tensor to produce the final 207 predictions. VIN can effectively learn the intra-view and inter-view correlations in the higher-level 208 space for better prediction with multi-view data. M²AE is an end-to-end model, where both view-209 210 specific attentive encoders and VIN module are trained jointly. We describe each component in detail in the following sections. 211

Fig. 1. Overview of M^2AE .

M²AE is a framework for prediction tasks with multi-view data as input. The workflow of M²AE 214 can be summarized into two components. (1) View-specific representation learning via attentive 215 encoders. For each view, an attentive encoder was designed in a symmetric auto-encoder fashion, 216 217 where the encoder part is composed with one graph convolutional module and two fully-connected layers for view-specific representation learning. (2) Multi-view integration via the View 218 Interactive Network (VIN). A cross-view interactive tensor was calculated using the latent 219 representations from all the view-specific networks. A VIN was then trained with the cross-view 220 discovery tensor to produce the final predictions. VIN can effectively learn the intra-view and 221 inter-view correlations in the higher-level space for better prediction with multi-view data. M²AE 222 223 is an end-to-end model, where both view-specific attentive encoders and VIN module are trained 224 jointly.

225

226 Attentive encoders (AEs) for view-specific representation learning

We design each attentive encoder (AE) in an autoencoder manner with one encoder and one symmetric decoder. The encoder contains one graph convolutional module and two fullyconnected layers for view-specific representation learning of each type of data input.

The graph convolutional module is implemented to map node features to low-dimensional 230 space and utilizes a simple inner product layer to aggregate the features for feature embedding 50. 231 By viewing each sample as a node, a view-specific graph can be constructed for each type of view 232 233 by utilizing both the features (relative microbial abundance/dietary features/host characteristics) 234 of each node and the relationships between nodes. Specifically, in each view, the input sample feature matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ contains the features of all samples, where *n* is the number of samples 235 and d is the number of features. The input adjacency matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ characterizes the 236 relationships between samples by computing the cosine similarity among pairs of nodes and edges. 237 Thus, the graph convolutional module can be built by stacking multiple convolutional layers with 238 each layer defined as: 239

$$\mathbf{H}^{(l+1)} = f(\mathbf{H}^{(l)}, \mathbf{A}) = \sigma(\mathbf{A}\mathbf{H}^{(l)}\mathbf{W}^{(l)})$$

(1)

240

where $\mathbf{H}^{(l)}$ is the input of the *l*th layer and $\mathbf{W}^{(l)}$ is the weight matrix of the *l*-th layer and $\mathbf{H}^{(0)} = \mathbf{X}$. $\sigma(\cdot)$ denotes a non-linear activation function. For \mathbf{A}_{ij} , it states the adjacency between node *i* and node *j* in the graph and is calculated as:

244
$$\mathbf{A}_{ij} = \begin{cases} s(\mathbf{x}_i, \mathbf{x}_j), \text{ if } i \neq j \text{ and } s(\mathbf{x}_i, \mathbf{x}_j) \geq \epsilon \\ 0, \text{ otherwise} \end{cases}$$
(2)

245 where \mathbf{x}_i and \mathbf{x}_j are the feature vectors of node *i* and node *j*, respectively. $s(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_i \cdot \mathbf{x}_j}{\|\mathbf{x}_i\|_2 \|\mathbf{x}_j\|_2}$ is 246 the cosine similarity between node *i* and node *j*. The threshold ϵ is determined given a parameter *k*,

247 which represents the average number of edges per node that are retained including self-connections:

248
$$k = \sum_{i,j} I(s(\mathbf{x}_i, \mathbf{x}_j) \ge \epsilon)/n \tag{3}$$

where $I(\cdot)$ is the indicator function. The parameter *k* in Eq. (3) is tuned over ⁵¹ {2, 5, 10} with the training data, and the same *k* value is adopted across all experiments on the same dataset. Note that for k = 1, **A** will turn out to be an identity matrix.

Our graph convolutional module will output a latent feature **F** per view, which is then fed into the subsequent two fully-connected layers generating a further latent feature **Z** for each view. Thus, the adjacency matrix in the decoder is calculated as $\widetilde{\mathbf{A}} = \text{sigmoid}(\mathbf{Z}\mathbf{Z}^{T})^{52}$, which is sent to the decoder to reconstruct the original input.

For the model training, we aim to minimize the mean absolute error (MAE) between the input feature matrix $\hat{\mathbf{X}}$ and the reconstructed matrix $\hat{\mathbf{X}}$ for all views:

258
$$L_{AE} = \text{MAE}(\mathbf{X}, \ \widehat{\mathbf{X}}) = \frac{1}{N \times D} \sum_{n=1}^{N} \sum_{d=1}^{D} |x_{nd} - \widehat{x}_{nd}|$$
(4)

where MAE(·) represents the mean absolute error function. x_{nd} is the input feature of the *n*th sample and *d*th feature, \hat{x}_{nd} is the predicted feature of the *n*th sample and *d*th feature.

261 So far, we have learned the view-specific representation **Z** and we will introduce to fuse each 262 view for the final prediction task in the following section.

263 VIN for multi-view integration

Current approaches leveraging multi-view data for biomedical prediction tasks traditionally either concatenate features from disparate views directly or fuse these features within a low-level feature space ⁵³⁻⁵⁶. However, properly aligning multiple views remains a consistent challenge, as improper alignment can have detrimental effects. On the other hand, view correlation discovery network (VCDN) ⁵⁷ can exploit the higher-level cross-view correlations in class label level, as different types of data can provide unique distinctiveness for the production of SCFAs. Inspired by this, we develop VIN, which consolidates three latent features from gut microbiome, dietary

271 features, and host characteristics to learn higher-level intra-view and cross-view correlations,

- thereby improving SCFA predictions.
- For the latent representations of the *n*th sample from three types of views $\hat{z}_n^{(m)}$, m = 1, 2, 3,

we construct a cross-view interactive tensor C_n , where each entry of C_n is calculated as:

275
$$C_{n,a1a2a3} = \hat{z}_{n,a1}^{(1)} \hat{z}_{n,a2}^{(2)} \hat{z}_{n,a3}^{(3)}$$
(5)

where $\hat{z}_{n,a}^{(m)}$ denotes the *a*th entry of $\hat{z}_n^{(m)}$. Then, the obtained tensor C_n is reshaped to a c^3 dimensional vector c_n and is forwarded to the final prediction. VIN(·) is designed as a network with one graph convolutional layer and one fully-connected layer with the output dimension of *c* (In this case, we have eight SCFAs as outputs, so we set c = 8). We aim to minimize the mean absolute error between the predicted and ground-truth SCFAs as:

281
$$L_{\text{VIN}} = \sum_{n=1}^{N} \text{MAE}(\text{VIN}(\mathbf{c}_n), \mathbf{y}_n)$$
(6)

where y_n represents the absolute abundances of eight SCFAs in the *n*th sample, *N* represents the sample size.

To this end, VIN(\cdot) could reveal the latent intra-view and cross-view correlations and help to improve the learning performance. By utilizing VIN(\cdot) to integrate latent representations from different types of views, the final prediction made by M²AE is based on both the latent representation from each view and the learned cross-view correlation knowledge.

Overall, we optimize our M²AE by minimizing the attentive encoder loss and view interactive network losses in an iterative manner. During one epoch of the training process, we first fix VIN(·) and update $AE_m(\cdot)$, m = 1, 2, 3, for each type of view to minimize the loss function L_{AE}^m . Then we fix the view-specific AEs and update VIN(·) to minimize L_{VIN} . View-specific AEs and VIN are updated alternately until convergence.

294 Model performance evaluation

To evaluate the model's performance in imputing blood SCFAs, we computed the mean absolute errors (MAE) and root mean squared errors (RMSE) for each subject. The average MAE and RMSE were then calculated by averaging these metrics across all subjects. We evaluated the models on five different randomly generated training and test splits, and the mean and standard deviation of the evaluation metrics across these five experiments were computed.

300

304

301 Identification of influential factors for blood SCFAs

302 To identify significant factors for SCFAs, we defined a feature contribution score for each 303 SCFA *p* across three different views as:

$$f_{d \to p}^{(m)} = \frac{1}{N} \cdot \sum_{n=1}^{N} \left| g_{d \to p}^{(m)} \right|$$
(7)

where $f_{d\to p}^{(m)}$ denotes the contribution score of the feature *d* to the SCFA *p* in view *m* and $g_{d\to p}^{(m)}$ denotes the gradient of the SCFA *p* with respect to the input feature *d* in view *m*. Using this approach, we analyzed the contribution of each feature in different types of views on the test set. Features with the largest contribution scores in each view were considered to be the most important ones. Considering the inherent variability during training, we executed five repeated experiments in one dataset and reported the results by summing up the feature contribution scores across these five repeated experiments.

KEGG pathway analyses were conducted to identify significant biological pathways enriched
in prominent bacterial species associated with SCFAs, by searching on the website of Kyoto
Encyclopedia of Genes and Genomes (<u>https://www.genome.jp/kegg/</u>).

316 **Results**

317 Datasets

To validate the proposed M²AE model, we applied it to two different in-house datasets. We adopted the same data preprocessing pipeline described in the Methods section. For a fair comparison with existing approaches, we used the same methodology to construct the training and testing sets for evaluation.

Dataset 1 consists of data from 964 unrelated males who provided both stool and blood samples for metagenomic and serum SCFAs profiling, along with dietary features, and host characteristics data. The basic characteristics of the samples are shown in Table 1. Features used to predict serum SCFAs include 194 gut bacterial species (relative abundance), 33 dietary features (e.g., intake of fruits, vegetables) and 17 host characteristics (e.g., age, race). The host characteristics and dietary habits used in Dataset 1 are listed in Supplementary Table 1.

328

	Caucasian	African American	Total
N (%)	577 (59.85%)	387 (40.15%)	964 (100%)
Age: Mean (range)	35.84 (20-51)	39.20 (20-51)	37.19 (20-51)
Height (cm): Mean (SD)	175.27 (6.90)	174.94 (6.97)	175.14 (6.93)
Weight (kg): Mean (SD)	82.97 (15.83)	82.85 (17.46)	82.92 (16.52)
BMI (<mark>kg/m²):</mark> Mean (SD)	27.02 (5.07)	27.04 (5.31)	27.03 (5.18)
Regular exercise: n (%)	459 (79.55%)	256 (66.15%)	715 (74.17%)
Smoking: n (%)	391 (67.76%)	292 (75.45%)	683 (70.85%)
Alcohol drinking: n (%)	427 (74.00%)	210 (54.26%)	637 (66.08%)

Table 1. Sample Characteristics for Dataset 1 (964 subjects).

- samples for metagenomic profiling and plasma SCFAs profiling, along with dietary features and
- host characteristics data. The basic characteristics of these samples are presented in Table 2.
- Features used to predict plasma SCFAs include 646 gut bacterial species (relative abundance), 3
- dietary features (e.g., intake of milk and yogurt), and 11 host characteristics (e.g., age, gender, and
- race). The host characteristics and dietary habits used in Dataset 2 are listed in Supplementary
- 337 Table 2.

	Male (58 (33.92%))		Female (113 (66.08%))		
	Caucasian	African American	Caucasian	African American	Total
N (%)	19 (77.19%)	39 (22.81%)	77 (78.95%)	36 (21.05%)	171 (100%)
Age: Mean (range)	58.16 (44-76)	58.13 (51-72)	41.66 (20-85)	40.00 (21-69)	46.90 (20-85)
Height (cm): Mean (SD)	173.32 (8.07)	172.93 (7.57)	161.80 (6.96)	165.52 (6.33)	166.40 (8.63)
Weight (kg): Mean (SD)	85.41 (14.12)	83.72 (18.85)	66.10 (14.53)	77.34 (17.30)	74.63 (17.97)
BMI (<mark>kg/m²):</mark> Mean (SD)	28.53 (4.93)	27.81 (4.90)	25.24 (5.27)	28.20 (6.02)	26.82 (5.47)
Regular exercise: n (%)	29 (83.04%)	29 (16.96%)	88 (85.38%)	25 (14.62%)	124 (72.51%)
Smoking: n (%)	35 (86.55%)	23 (13.45%)	103 (94.15%)	10 (5.85%)	75 (43.86%)
Alcohol drinking: n (%)	41 (90.06%)	17 (9.94%)	98 (91.23%)	15 (8.77%)	110 (64.33%)

Table 2. Sample Characteristics for Dataset 2 (171 subjects).

1 M²AE outperformed existing multi-view integration prediction methods

2 As shown in Table 3, we compared the prediction performance of M^2AE with the following existing regression algorithms for our data: (1) K-nearest neighbor regression (KNN), (2) Random 3 forest regression (RF), (3) Gradient boosting-based regression (XGBoost), (4) Fully-connected 4 5 neural network (NN) regression and (5) Linear regression. Deep fully-connected NN were also 6 trained with MAE loss. Among the compared methods, KNN, RF, XGBoost, and NN were trained with the direct concatenation of the processed multi-view data as input. All methods were trained 7 8 with the same processed data. The average MAE and average RMSE across all subjects were 9 computed to compare the performance of different models. The choices for each hyper-parameter are relegated to Supplementary Table 3. 10

	Data	nset 1	Dataset 2		
Methods	Mean MAE	Mean RMSE	Total MAE	Total RMSE	
Linear Regression	0.641 ± 0.016	0.813 ± 0.020	0.495 ± 0.016	0.620 ± 0.002	
RF	0.481 ± 0.012	0.619 ± 0.014	0.393 ± 0.018	0.494 ± 0.004	
NN	0.951 ± 0.100	1.170 ± 0.121	2.232 ± 0.160	2.673 ± 0.062	
KNN	0.518 ± 0.011	0.662 ± 0.014	0.423 ± 0.021	0.530 ± 0.005	
XGBoost	0.529 ± 0.013	0.679 ± 0.013	0.447 ± 0.021	0.569 ± 0.005	
AE(MLP)	0.458 ± 0.007	0.589 ± 0.010	0.392 ± 0.021	0.502 ± 0.004	
AE(GCN)	0.467 ± 0.006	0.601 ± 0.008	0.385 ± 0.018	0.494 ± 0.004	
AE(2GCN+1MLP)	0.470 ± 0.015	0.602 ± 0.015	0.388 ± 0.021	0.498 ± 0.003	
VIN(MLP)	0.458 ± 0.011	0.590 ± 0.015	0.384 ± 0.019	0.493 ± 0.003	
VIN(GCN)	0.597 ± 0.029	0.731 ± 0.032	0.384 ± 0.019	0.493 ± 0.003	
M ² AE	$\textbf{0.449} \pm \textbf{0.010}$	$\textbf{0.581} \pm \textbf{0.012}$	$\boldsymbol{0.382 \pm 0.017}$	$\boldsymbol{0.489 \pm 0.030}$	

11 ′	Table 3.	Performance	Comparison	of different	t models for	Dataset 1	and Dataset 2.
------	----------	-------------	------------	--------------	--------------	-----------	----------------

12 Note: Bold represents the best performance in different criteria.

13

We observed that M²AE outperformed the other methods in the prediction tasks by showing the smallest mean MAE and mean RMSE in both Dataset 1 and Dataset 2 (Table 3), indicating the superior learning capability of M²AE. Interestingly, although deep learning-based methods have shown great promises in regression applications, the deep learning-based method NN did not show clear improvements over other approaches. This observation suggested that proper design of deep learning algorithms specific to multi-view integration applications was to some degree required to achieve superior prediction performance.

22 M²AE outperformed its variations and other methods in SCFA prediction tasks

M²AE integrates view-specific learning via AEs with cross-view interactive fusion via VIN for 23 effective SCFA predictions. To examine the necessity of AEs and VIN for effective SCFA 24 predictions, we performed extensive ablation studies of our proposed method where two additional 25 variations of M²AE were compared. (1) AutoEncoder VIN: a) Fully-connected NNs with the same 26 number of layers and the same dimensions of hidden layers as the encoder part in M²AE were used 27 for view-specific representation learning; b) GCNs with the same number of layers and the same 28 dimensions of hidden layers as the encoder part in M²AE were used for view-specific 29 30 representation learning; c) An AE containing two graph convolutional layers and one fullyconnected layer with the same dimensions of hidden layers as the encoder part in M²AE were used 31 for view-specific representation learning. The multi-view integration component utilized VIN, 32 which was the same as M^2AE . (2) AE NN/GCN: the view-specific representation component 33 utilized one graph convolutional layer and two fully-connected layers, which was the same as 34 M²AE. a) A fully-connected NN with the same number of layers and the same dimensions of 35 hidden layers as VIN was used for multi-view integration; b) A GCN with the same number of 36 layers and the same dimensions of hidden layers as VIN was used for multi-view integration. Note 37 38 that Autoencoder VIN itself is also a novel approach. To the best of our knowledge, there is no existing method that applies AEs to multi-view data integration and imputation problems. 39

As shown in Table 3, we observed that M²AE outperformed Autoencoder_VIN and AE_NN/GCN in all prediction tasks across both Datasets 1 and 2. The better performance of average MAE and average RMSE in M²AE than AE_NN/GCN indicates that our usage of VIN combines one graph convolutional layer and one fully-connected layer for multi-view integration and prediction tasks makes important contributions to the performance boost of M²AE comparing with existing methods. Compared with traditional NN and GCN that only learn from view information from one pathway, the AE further exploits the graph structural information within the data using a more flexible way. This can be essential to a more comprehensive understanding of the type of view as it captures the connections and correlations among samples. Therefore, AEs were needed for effective view-specific representation learning to fully exploit the advantages of VIN, and these two components could be trained jointly to achieve superior results for multi-view prediction tasks across both datasets.

52

53 Performance of M²AE under different types of views

To further demonstrate the necessity of integrating multiple types of data to boost the prediction 54 performance, we compared the prediction performance of M²AE with three types of views (MGS 55 + host characteristics + dietary features), M^2AE with two types of views (MGS + host 56 characteristics, MGS + dietary features, and host characteristics + dietary features), and the view-57 specific AEs trained with single-view data before integration (MGS only, host characteristics only, 58 and dietary features only). Figs. 2 and 3 show that by exploring the cross-view interactive fusion 59 through VIN, the prediction performance was consistently improved by integrating prediction 60 results from multiple views. Specifically, in all the prediction tasks, M²AE models trained with 61 three types of views achieved the best performance compared with M²AE models trained with two 62 types of views. Moreover, the M²AE models trained with two types of views both outperformed 63 64 the single-view AE models.

It is well known that gut microbiome is closely influenced by host characteristics and dietary habits, as noted in previous studies ^{12, 13}. This interdependence suggests that these factors, when considered together, may collectively enhance the predictive power of models. The results, therefore, strongly support the necessity of integrating multiple types of data in predictive models.
By leveraging cross-view interactions and fusing diverse data types, we captured a more
comprehensive understanding of the complex interplay between microbiome, host, and
environmental factors, leading to significantly improved prediction accuracy. This multi-view
approach is crucial for advancing personalized medicine and for a more profound understanding
of complex biological phenomena.

Fig. 2. Performance comparison of multi-view data prediction via M²AE and single-view data

76 prediction via Attentive Encoders in Dataset 1 (n = 5 experiments for each model).

77 Means of evaluation metrics from different experiments are shown in the figure. MGS + Host characteristics + Dietary refers to M^2AE with three types of views combining MGS, host 78 characteristics, and dietary features data. MGS + Host characteristics refers to M²AE with two 79 types of views combining gut microbiomes and host characteristics. MGS + Dietary refers to 80 M²AE with two types of views combining gut microbiomes and dietary features. Host 81 characteristics + Dietary refers to M^2AE with two types of views combining host characteristics 82 and dietary features. MGS, host characteristics and dietary features refer to the view-specific 83 attentive encoders trained with single-view gut microbiomes, host characteristics, and dietary 84 85 features.

Fig. 3. Performance comparison of multi-view data prediction via M²AE and single-view data

prediction via Attentive Encoders in Dataset 2 (n = 5 experiments for each model).

87

Means of evaluation metrics from different experiments are shown in the figure. MGS + Host 90 characteristics + Dietary refers to M^2AE with three types of views combining MGS, host 91 characteristics, and dietary features data. MGS + Host characteristics refers to M^2AE with two 92 types of views combining gut microbiomes and host characteristics. MGS + Dietary refers to 93 M²AE with two types of views combining gut microbiomes and dietary features. Host 94 characteristics + Dietary refers to M²AE with two types of views combining host characteristics 95 and dietary features. MGS, host characteristics and dietary features refer to the view-specific 96 attentive encoders trained with single-view gut microbiomes, host characteristics, and dietary 97 98 features.

99 M²AE identified important factors associated with blood SCFAs

In our analysis, we identified key features influencing SCFA production by selecting top-100 101 ranked features from two datasets, as detailed in Supplementary Tables 4-11. Among these, Faecalibacterium prausnitzii and Rothia mucilaginosa emerged as significant contributors to 102 various SCFAs production. Several species from the *Bacteroides* genus were also highlighted for 103 104 their role in SCFA biosynthesis. For example, Bacteroides thetaiotaomicron and Bacteroides fragilis were major producers of acetic acid, while Bacteroides vulgatus was linked to valeric acid. 105 Bacteroides fragilis was also associated with 2-methylbutyric acid and isobutyric acid, and 106 107 Bacteroides eggerthii was found to be important for isovaleric acid production. Numerous species within the Clostridium genus were identified as key contributors to specific SCFAs. Clostridium 108 *bolteae* was particularly relevant for isobutyric acid production, while *Clostridium asparagiforme* 109 110 played a significant role in butyric acid synthesis. Streptococcus salivarius was associated with butyric acid production. Additionally, species like Leuconostoc gelidum was noted for its 111 relevance to valeric acid biosynthesis pathways. KEGG pathway analysis further revealed that 112 several of these bacterial species, including Faecalibacterium prausnitzii, Rothia mucilaginosa, 113 Bacteroides thetaiotaomicron, Bacteroides fragilis, Bacteroides vulgatus, 114 Clostridium 115 asparagiforme, and Leuconostoc gelidum, are enriched in SCFA-related biological processes, such as fatty acid biosynthesis, degradation, and metabolism. 116

Moreover, host characteristics, such as gender, race, age, height, weight, physical activity levels, and the use of probiotics, antibiotics, and gastric acid-lowering medications, were found to correlate with SCFA levels (Supplementary Tables 4-11). Dietary habits, including the consumption of pickles, fruits, cereals, eggs, meat, fats, coffee, and chocolate, also significantly influenced SCFA production. Overall, the factors identified by the M²AE model showed

substantial diversities between different SCFAs.

124 Discussion

Recent development in high-throughput profiling technologies and integrative analysis of 125 126 multi-view data offered advanced and powerful approaches to dissect complex biological problems. In this study, we pioneered an innovative approach, M²AE, for imputing the abundances of blood 127 SCFAs, and performed multi-view prediction for blood SCFAs data by synthesizing the 128 information of gut microbiome, dietary features and host characteristics. This method jointly 129 explores view-specific representation and cross-view correlation for effective prediction, and 130 demonstrated superior performance compared with other methods. M²AE also effectively 131 identified prominent factors that showed strong associations with blood SCFAs. 132

Through literature mining, we found interesting evidence supporting the biological connections between these prominent factors and blood SCFAs and interesting relationships among some of these prominent factors.

136

137 *Gut microbiotas*

Our analysis identified several GM species, such as *Bacteroides thetaiotaomicron*, *Bacteroides* 138 fragilis, Bacteroides vulgatus, Bacteroides eggerthii, Clostridium asparagiforme, Clostridium 139 bolteae, Faecalibacterium prausnitzii, Rothia mucilaginosa, Streptococcus salivarius and 140 Leuconostoc gelidum, as significant contributors to the production of blood SCFAs. Specifically, 141 Bacteroides thetaiotaomicron and Bacteroides fragilis are prominent contributors to acetic acid 142 production due to their ability to ferment complex carbohydrates into intermediate metabolites, 143 such as lactate and succinate, which can be further converted into SCFAs by other gut bacteria^{30,} 144 ^{58, 59}. Bacteroides vulgatus exhibited a negative association with blood valeric acid levels ⁶⁰, 145 possibly due to its negative interactions with other gut bacteria, which affect substrate availability 146

for valeric acid production ⁶¹. *Bacteroides eggerthii* has been identified as a significant contributor 147 to the production of isovaleric acid, primarily via leucine fermentation ⁶². Moreover, consistent 148 with prior study, *Clostridium asparagiforme* plays a major role in butyrate production by 149 fermenting glucose into lactate, which is then converted to butyrate by other bacteria ⁶³. 150 *Clostridium bolteae* can utilize value through fermentation pathways, leading to the production 151 of isobutyric acid as a metabolic byproduct ⁶⁴. *Faecalibacterium prausnitzii* is positively correlated 152 with butyric and valeric acid ^{59, 65, 66}. *Rothia mucilaginosa* ferments glucose to produce acetate ⁶⁷. 153 As above, we identified a series of gut bacterial species that have been proved to play a role in 154 155 SCFA production. In addition, we identified some novel putative factors that might affect blood SCFAs. For example, *Bacteroides fragilis* was associated with 2-methylbutyric acid and isobutyric 156 acid, Streptococcus salivarius was associated with butyric acid production, and Leuconostoc 157 gelidum was related to valeric acid. Bacteroides species contribute to amino acid metabolism 68, 158 which might lead to the production of SCFAs, such as isobutyric acid and 2-methylbutyric acid. 159 Streptococcus salivarius, primarily known for its presence in the oral cavity, can also inhabit the 160 gut and metabolize carbohydrates via fermentation ⁶⁹, potentially contributing to the production of 161 butyric acid. Similarly, Leuconostoc gelidum is a lactic acid bacterium known for fermenting 162 carbohydrates to produce lactic acid ⁷⁰, which might serve as a substrate for other gut microbes, 163 potentially leading to the production of valeric acid. These findings enhance our understanding of 164 165 the complex interactions between GM and blood SCFA levels. Meanwhile, these insights could 166 help in validating our model by supporting the observed associations between specific bacterial species and SCFA production, as well as their potential influence on systemic SCFA levels. 167 168 However, more in-depth studies might be needed to further unravel the underlying mechanisms.

170 *Dietary features*

Incorporating dietary features into our study enhanced our understanding in regulating the 171 complex biological regulation of blood SCFAs production. Our findings demonstrated that the 172 intake of various dietary components, such as pickles, fruits, cereals, eggs, meat, fat oil, coffee, 173 and chocolate, influences blood SCFA levels. Diets could shape the microbiome by promoting the 174 growth of bacteria that preferentially use the ingested nutrients ⁷¹. For instance, fermented foods 175 like pickles and fiber-rich foods like fruits and cereals promote the growth of beneficial bacteria 176 that ferment sugars and fibers into SCFAs, such as acetic, propionic, and butyric acids ^{72, 73}. High-177 protein and high-fat diets, including eggs, steak, and fat oil, can promote the growth of Bacteroides 178 species, which are adept at protein degradation and fat metabolism, thereby affecting SCFA 179 production ^{10, 74-76}. Additionally, coffee and dark chocolate were linked to SCFA production due to 180 181 their bioactive compounds, like caffeine, chlorogenic acid, and polyphenols, which modulate the gut microbiota and fermentation activities ^{77, 78}. These findings emphasize the critical role of diet 182 in regulating SCFA levels and support our model's effectiveness in identifying dietary 183 determinants of SCFA production. 184

185

186 *Host characteristics*

Our study identified several factors in host characteristics—such as gender, race, age, height, weight, BMI, physical activity, and the use of probiotics, antibiotics, and gastric acid-lowering medications—were correlated with blood SCFA levels. Race was associated with SCFA production, aligning with previous findings that African Americans have lower fecal acetate levels compared to white participants ⁴⁵, potentially reflecting similar trends in blood SCFAs ⁷⁹. Gender and age also affect SCFA production due to differences in gut microbiota diversity and composition across

groups ^{80, 81}. Body composition indicators, such as BMI, weight, and height, correlate with SCFA 193 levels, as reduced gut microbiota diversity in overweight or obese individuals often results in 194 increased SCFA production ⁸²⁻⁸⁴, which is linked to energy storage and lipid metabolism ⁸⁵⁻⁸⁷. 195 Physical activities such as biking and swimming affect muscle lactate metabolism ⁸⁸⁻⁹⁰, and 196 Veillonella species in the gut can convert lactate into SCFAs like acetic acid ⁹¹. Additionally, 197 probiotics increase SCFA production by boosting SCFA-producing bacteria ⁹², whereas antibiotics 198 and gastric acid-lowering medications reduce microbial diversity and alter gut environments, 199 impacting SCFA levels ^{84, 93, 94}. These identified host characteristics, in turn, demonstrate the 200 effectiveness of our model in imputing SCFA levels by integrating gut microbiome compositions, 201 dietary features, and host characteristics, providing a comprehensive understanding of the 202 determinants influencing SCFA production. 203

204

Our current results indicated that the regulation of blood SCFAs could be a complex procedure, 205 the GMs can be important factors. Besides, dietary habits and host characteristics might also 206 influence blood SCFAs directly or through interactions with GMs. However, there are a few 207 limitations in this study. First, all the subjects in our study were Caucasians and African Americans, 208 209 making it necessary yet to generalize the results to other racial populations. The validation of our model in diverse populations would enhance its applicability. This necessitates further model 210 validation in different cohorts that incorporate metagenomic and blood SCFAs profiling, dietary 211 212 features, and host characteristics of a similar scope. Second, our study utilized two different datasets for model validation: one with serum SCFA measurements and the other with plasma 213 214 SCFA measurements. While previous studies suggest that SCFA levels are generally consistent 215 between serum and plasma samples, minor variations might still exist due to the different

biological matrices. These variations were not directly analyzed in our study, as the primary goal 216 was to validate the model's performance across different datasets rather than compare serum and 217 plasma SCFA levels. To strengthen the model's accuracy and reliability, future studies should 218 validate our models using additional datasets with more serum and plasma SCFA measurements. 219 220 Third, another limitation of our study is the sex distribution across the two datasets used for model 221 validation. Dataset 1 included males, while Dataset 2 included both males and females. This imbalance in sex representation between the two datasets could affect the model's ability to 222 generalize across different sexes. However, because Dataset 2 has a relatively small number of 223 224 male participants, splitting this dataset by sex for separate analyses would result in low statistical power, leading to potentially unreliable results. To maintain robust model validation, we combined 225 the male and female samples in Dataset 2, which helps to preserve adequate sample size for 226 227 analysis. We adjusted for sex as a covariate in our model to account for potential sex-specific differences in SCFA production. However, future studies with more balanced sex distributions or 228 larger sample sizes for both sexes would provide a more comprehensive understanding and 229 enhance the robustness of the model. Fourth, the integration of data from two different sequencing 230 platforms in Dataset 1 could be considered a limitation. However, deep learning models are 231 232 particularly capable of finding common patterns across heterogeneous data by learning generalizable features that are not specific to any single sequencing platform. We applied uniform 233 234 normalization within the model to standardize the data and employed regularization techniques 235 like dropout and mean absolute error loss to prevent overfitting to sequencing platform-specific characteristics. While these strategies allow the model to generalize effectively, future studies 236 237 could include more data generated from either consistent or varied sequencing platforms to further 238 validate the model's robustness across different technical conditions. Fifth, another limitation of

our study is that the features in each view of the two datasets differ, which could result in variability 239 240 in the important features identified by the model. Although many of the identified important features are well-known factors related to SCFA production, demonstrating the model's 241 effectiveness to some extent, this variability highlights the need for caution in interpreting results. 242 However, it is worth noting that the imputation performance was strong across both datasets, 243 highlighting the model's generalizability despite these differences. It also opens up new 244 opportunities to explore and identify additional relevant features that might be specific to certain 245 datasets or conditions. Future studies should aim to include datasets with consistent feature sets 246 247 across all views to enhance comparability and validate the model's ability to generalize findings across different contexts. 248

To summarize, we have blazed a trail with our innovative method that synthesizes information from the gut microbiome, dietary features, and host characteristics to perform multi-view imputation for blood SCFAs data. This can also help us identify key factors or pathways that regulate blood SCFAs in the future study. Our research highlights the utility of integrating information on gut microbiome, dietary features, and host characteristics, providing fresh perspectives on the potential regulatory mechanisms affecting blood SCFAs.

255 Data Availability

The raw data presented in this study can be found in online repositories. The names of the repositories and accession numbers can be found below: NCBI BioProjects PRJNA1015234 and PRJNA1015228.

259

260 **Code Availability**

261 The source code of this work can be downloaded from GitHub

262 (<u>https://github.com/Wonderangela123/M2AE</u>).

263

264 Acknowledgement

265 This work is made possible with partial support by grants from the NIH (U19AG055373,

266 R01AG061917, R01AG068232, P20GM109036 and P20GM103629).

267 **Reference**

- Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461-78. doi: 10.1038/s41575-019-0157-3. PubMed PMID: 31123355.
- Sakamoto M, Takagaki A, Matsumoto K, Kato Y, Goto K, Benno Y. Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family 'Porphyromonadaceae' isolated from rat faeces. Int J Syst Evol Microbiol. 2009;59(Pt 7):1748-53. Epub 20090619. doi: 10.1099/ijs.0.007674-0. PubMed PMID: 19542124.
- Huo W, Feng Z, Hu S, Cui L, Qiao T, Dai L, Qi P, Zhang L, Liu Y, Li J. Effects of polysaccharides from wild morels on immune response and gut microbiota composition in non-treated and cyclophosphamide-treated mice. Food Funct. 2020;11(5):4291-303. Epub 20200501. doi: 10.1039/d0fo00597e. PubMed PMID: 32356856.
- Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics. 2012;4(1):4. Epub 20120227. doi: 10.1186/1868-7083-4-4. PubMed PMID: 22414433; PMCID: PMC3312834.
- 5. Wang Y, Yao W, Li B, Qian S, Wei B, Gong S, Wang J, Liu M, Wei M. Nuciferine modulates
 the gut microbiota and prevents obesity in high-fat diet-fed rats. Exp Mol Med.
 2020;52(12):1959-75. Epub 20201201. doi: 10.1038/s12276-020-00534-2. PubMed PMID:
 33262480; PMCID: PMC8080667.
- Overby HB, Ferguson JF. Gut Microbiota-Derived Short-Chain Fatty Acids Facilitate Microbiota:Host Cross talk and Modulate Obesity and Hypertension. Curr Hypertens Rep. 2021;23(2):8. Epub 20210203. doi: 10.1007/s11906-020-01125-2. PubMed PMID: 33537923; PMCID: PMC7992370.
- den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role
 of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy
 metabolism. J Lipid Res. 2013;54(9):2325-40. Epub 20130702. doi: 10.1194/jlr.R036012.
 PubMed PMID: 23821742; PMCID: PMC3735932.
- Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilan CG,
 Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health.
 Front Microbiol. 2016;7:185. Epub 20160217. doi: 10.3389/fmicb.2016.00185. PubMed
 PMID: 26925050; PMCID: PMC4756104.

Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing
bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1-8. Epub
20090213. doi: 10.1111/j.1574-6968.2009.01514.x. PubMed PMID: 19222573.
10. Chen J, Xiao Y, Li D, Zhang S, Wu Y, Zhang Q, Bai W. New insights into the mechanisms of high-fat diet mediated gut microbiota in chronic diseases. iMeta. 2023;2(1):e69. doi: https://doi.org/10.1002/imt2.69.

- Wang G, Li X, Zhao J, Zhang H, Chen W. Lactobacillus casei CCFM419 attenuates type 2
 diabetes via a gut microbiota dependent mechanism. Food Funct. 2017;8(9):3155-64. doi:
 10.1039/c7fo00593h. PubMed PMID: 28782784.
- Conlon MA, Bird AR. The Impact of Diet and Lifestyle on Gut Microbiota and Human
 Health. Nutrients. 2015;7(1):17-44.
- Besten G, Eunen K, Groen AK, Venema K, Reijngoud K, Bakker BM. The role of shortchain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.
 J Lipid Res. 2013;54(9):2325–40.
- You H, Tan Y, Yu D, Qiu S, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. The Therapeutic Effect
 of SCFA-Mediated Regulation of the Intestinal Environment on Obesity. Front Nutr.
 2022;9:886902. Epub 20220517. doi: 10.3389/fnut.2022.886902. PubMed PMID:
 35662937; PMCID: PMC9157426.
- Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador
 D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein
 M, Zilberman-Schapira G, Dohnalova L, Pevsner-Fischer M, Bikovsky R, Halpern Z,
 Elinav E, Segal E. Personalized Nutrition by Prediction of Glycemic Responses. Cell.
 2015;163(5):1079-94. doi: 10.1016/j.cell.2015.11.001. PubMed PMID: 26590418.
- 16. Wang Y, Gao X, Lv J, Zeng Y, Li Q, Wang L, Zhang Y, Gao W, Wang J. Gut Microbiome 323 Signature Are Correlated With Bone Mineral Density Alterations in the Chinese Elders. 324 2022;12:827575. Front Microbiol. 325 Cell Infect Epub 20220331. doi: 10.3389/fcimb.2022.827575. PubMed PMID: 35433497; PMCID: PMC9008261. 326
- Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to
 Gut Microbiota and Genetic Variability. Nutrients. 2022;14(24). Epub 20221216. doi:
 10.3390/nu14245361. PubMed PMID: 36558520; PMCID: PMC9788597.
- 18. den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, Muller M,
 Groen AK, Hooiveld GJ, Bakker BM, Reijngoud DJ. Gut-derived short-chain fatty acids
 are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver
 Physiol. 2013;305(12):G900-10. Epub 20131017. doi: 10.1152/ajpgi.00265.2013. PubMed
 PMID: 24136789.
- Lin X, Xiao HM, Liu HM, Lv WQ, Greenbaum J, Gong R, Zhang Q, Chen YC, Peng C,
 Xu XJ, Pan DY, Chen Z, Li ZF, Zhou R, Wang XF, Lu JM, Ao ZX, Song YQ, Zhang YH,
 Su KJ, Meng XH, Ge CL, Lv FY, Luo Z, Shi XM, Zhao Q, Guo BY, Yi NJ, Shen H,
 Papasian CJ, Shen J, Deng HW. Gut microbiota impacts bone via Bacteroides vulgatusvaleric acid-related pathways. Nat Commun. 2023;14(1):6853. Epub 20231027. doi:
 10.1038/s41467-023-42005-y. PubMed PMID: 37891329; PMCID: PMC10611739.

- Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat
 Rev Gastroenterol Hepatol. 2019;16(1):35-56. doi: 10.1038/s41575-018-0061-2. PubMed
 PMID: 30262901.
- Greenbaum J, Su KJ, Zhang X, Liu Y, Liu A, Zhao LJ, Luo Z, Tian Q, Shen H, Deng HW.
 A multiethnic whole genome sequencing study to identify novel loci for bone mineral
 density. Hum Mol Genet. 2022;31(7):1067-81. doi: 10.1093/hmg/ddab305. PubMed PMID:
 34673960; PMCID: PMC8976433.
- He H, Liu Y, Tian Q, Papasian CJ, Hu T, Deng HW. Relationship of sarcopenia and body composition with osteoporosis. Osteoporos Int. 2016;27(2):473-82. Epub 2015/08/06. doi: 10.1007/s00198-015-3241-8. PubMed PMID: 26243357.
- Song M, Greenbaum J, Luttrell Jt, Zhou W, Wu C, Luo Z, Qiu C, Zhao LJ, Su KJ, Tian Q,
 Shen H, Hong H, Gong P, Shi X, Deng HW, Zhang C. An autoencoder-based deep learning
 method for genotype imputation. Front Artif Intell. 2022;5:1028978. Epub 20221103. doi:
 10.3389/frai.2022.1028978. PubMed PMID: 36406474; PMCID: PMC9671213.
- Du Y, Xu T, Yin Z, Espinoza S, Xie Y, Gentry C, Tian Q, Zhao LJ, Shen H, Luo Z, Deng HW. Associations of physical activity with sarcopenia and sarcopenic obesity in middle-aged and older adults: the Louisiana osteoporosis study. BMC Public Health. 2022;22(1):896. Epub 2022/05/06. doi: 10.1186/s12889-022-13288-5. PubMed PMID: 359 35513868; PMCID: PMC9074188.
- Du Y, Zhao LJ, Xu Q, Wu KH, Deng HW. Socioeconomic status and bone mineral density
 in adults by race/ethnicity and gender: the Louisiana osteoporosis study. Osteoporos Int.
 2017;28(5):1699-709. Epub 2017/02/27. doi: 10.1007/s00198-017-3951-1. PubMed PMID:
 28236128.
- Jeng C, Zhao LJ, Wu K, Zhou Y, Chen T, Deng HW. Race and socioeconomic effect on sarcopenia and sarcopenic obesity in the Louisiana Osteoporosis Study (LOS). JCSM Clin Rep. 2018;3(2). Epub 2019/08/30. PubMed PMID: 31463425; PMCID: PMC6712972.
- Ning H, Du Y, Zhao LJ, Tian Q, Feng H, Deng HW. The mediating effect of skeletal muscle
 index on the relationship between menarcheal age and bone mineral density in
 premenopausal women by race/ethnicity. Menopause. 2021;28(10):1143-9. Epub
 2021/07/28. doi: 10.1097/GME.00000000001814. PubMed PMID: 34313616; PMCID:
 PMC8514157.
- Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA. Investigation of human blood
 plasma sample preparation for performing metabolomics using ultrahigh performance
 liquid chromatography/mass spectrometry. Anal Chem. 2009;81(9):3285-96. doi:
 10.1021/ac8024569. PubMed PMID: 19323527.

29. Lv WQ, Lin X, Shen H, Liu HM, Qiu X, Li BY, Shen WD, Ge CL, Lv FY, Shen J, Xiao
HM, Deng HW. Human gut microbiome impacts skeletal muscle mass via gut microbial
synthesis of the short-chain fatty acid butyrate among healthy menopausal women. J

- 379Cachexia Sarcopenia Muscle.2021;12(6):1860-70.Epub20210901.doi:38010.1002/jcsm.12788.PubMed PMID: 34472211;PMCID: PMC8718076.
- 381 30. Shen WD, Lin X, Liu HM, Li BY, Qiu X, Lv WQ, Zhu XZ, Greenbaum J, Liu RK, Shen J,
 382 Xiao HM, Deng HW. Gut microbiota accelerates obesity in peri-/post-menopausal women
 383 via Bacteroides fragilis and acetic acid. Int J Obes (Lond). 2022;46(10):1918-24. Epub
 384 20220817. doi: 10.1038/s41366-022-01137-9. PubMed PMID: 35978102.
- 385 31. Liu HM, Lin X, Meng XH, Zhao Q, Shen J, Xiao HM, Deng HW. Integrated metagenome and metabolome analyses of blood pressure studies in early postmenopausal Chinese women. J Hypertens. 2021;39(9):1800-9. doi: 10.1097/HJH.00000000002832. PubMed PMID: 33758158.
- 32. Tian B, Xu LL, Jiang LD, Lin X, Shen J, Shen H, Su KJ, Gong R, Qiu C, Luo Z, Yao JH,
 Wang ZQ, Xiao HM, Zhang LS, Deng HW. Identification of the serum metabolites
 associated with cow milk consumption in Chinese Peri-/Postmenopausal women. Int J
 Food Sci Nutr. 2024;75(6):537-49. Epub 20240625. doi: 10.1080/09637486.2024.2366223.
 PubMed PMID: 38918932.
- Tian B, Yao JH, Lin X, Lv WQ, Jiang LD, Wang ZQ, Shen J, Xiao HM, Xu H, Xu LL,
 Cheng X, Shen H, Qiu C, Luo Z, Zhao LJ, Yan Q, Deng HW, Zhang LS. Metagenomic
 study of the gut microbiota associated with cow milk consumption in Chinese peri/postmenopausal women. Front Microbiol. 2022;13:957885. Epub 20220816. doi:
 10.3389/fmicb.2022.957885. PubMed PMID: 36051762; PMCID: PMC9425034.
- 399 34. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
 400 Embnet Journal. 2011;17.
- 40135.PerteaG.fqtrim:v0.9.4(Version0.9.4)2015.Availablefrom:402http://ccb.jhu.edu/software/fqtrim/index.shtml.
- 403 36. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods.
 404 2012;9(4):357-9. Epub 20120304. doi: 10.1038/nmeth.1923. PubMed PMID: 22388286;
 405 PMCID: PMC3322381.
- 406 37. Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and 407 metagenomic sequencing data with highly uneven depth. Bioinformatics.
 408 2012;28(11):1420-8. Epub 20120411. doi: 10.1093/bioinformatics/bts174. PubMed PMID: 409 22495754.
- 410 38. Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic
 411 sequences. Nucleic Acids Res. 2010;38(12):e132. Epub 20100419. doi:
 412 10.1093/nar/gkq275. PubMed PMID: 20403810; PMCID: PMC2896542.
- 413 39. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein
 414 or nucleotide sequences. Bioinformatics. 2006;22(13):1658-9. Epub 20060526. doi:
 415 10.1093/bioinformatics/bt1158. PubMed PMID: 16731699.

- 40. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND.
 417 Nat Methods. 2015;12(1):59-60. Epub 20141117. doi: 10.1038/nmeth.3176. PubMed
 418 PMID: 25402007.
- 419 41. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
 420 Bioinformatics. 2018;34(17):i884-i90. doi: 10.1093/bioinformatics/bty560. PubMed
 421 PMID: 30423086; PMCID: PMC6129281.
- 422 42. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson KS, Knight R, Caporaso JG, Segata N, Huttenhower C. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15(11):962-8. Epub 20181030. doi: 10.1038/s41592-018-0176-y. PubMed PMID: 30377376; PMCID: PMC6235447.
- 43. Bowen RA, Remaley AT. Interferences from blood collection tube components on clinical chemistry assays. Biochem Med (Zagreb). 2014;24(1):31-44. Epub 20140215. doi: 10.11613/BM.2014.006. PubMed PMID: 24627713; PMCID: PMC3936985.
- 430 44. Zhao HJ, Chen Y, Liu T, McArthur K, Mueller NT. Short-Chain Fatty Acids and
 431 Preeclampsia: A Scoping Review. Nutr Rev. 2024. Epub 20240525. doi:
 432 10.1093/nutrit/nuae057. PubMed PMID: 38796843.
- 433 45. Hester CM, Jala VR, Langille MG, Umar S, Greiner KA, Haribabu B. Fecal microbes,
 434 short chain fatty acids, and colorectal cancer across racial/ethnic groups. World J
 435 Gastroenterol. 2015;21(9):2759-69. doi: 10.3748/wjg.v21.i9.2759. PubMed PMID:
 436 25759547; PMCID: PMC4351229.
- 437 46. Jenkins DJ, Kendall CW, Popovich DG, Vidgen E, Mehling CC, Vuksan V, Ransom TP,
 438 Rao AV, Rosenberg-Zand R, Tariq N, Corey P, Jones PJ, Raeini M, Story JA, Furumoto EJ,
 439 Illingworth DR, Pappu AS, Connelly PW. Effect of a very-high-fiber vegetable, fruit, and
 440 nut diet on serum lipids and colonic function. Metabolism. 2001;50(4):494-503. doi:
 441 10.1053/meta.2001.21037. PubMed PMID: 11288049.
- 442 47. Sowah SA, Riedl L, Damms-Machado A, Johnson TS, Schubel R, Graf M, Kartal E, Zeller
 443 G, Schwingshackl L, Stangl GI, Kaaks R, Kuhn T. Effects of Weight-Loss Interventions on
 444 Short-Chain Fatty Acid Concentrations in Blood and Feces of Adults: A Systematic Review.
 445 Adv Nutr. 2019;10(4):673-84. doi: 10.1093/advances/nmy125. PubMed PMID: 31075175;
 446 PMCID: PMC6628843.
- 447 48. Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in
 448 the levels of microbial-derived short-chain fatty acids correlate with increased
 449 gastrointestinal colonization of Candida albicans. Sci Rep. 2019;9(1):8872. Epub
 450 20190620. doi: 10.1038/s41598-019-45467-7. PubMed PMID: 31222159; PMCID:
 451 PMC6586901.
- 452 49. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained
 453 Equations in R. Journal of Statistical Software. 2011;45(3):1-67. doi:
 454 10.18637/jss.v045.i03.

- 455 50. Li J, Lu G, Wu Z, Ling F. Multi-view representation model based on graph autoencoder.
 456 Information Sciences. 2023;632:439-53.
- 457 51. 2022 Alzheimer's disease facts and figures. Alzheimers Dement. 2022;18(4):700-89. Epub
 458 2022/03/16. doi: 10.1002/alz.12638. PubMed PMID: 35289055.
- 52. Zhang X, Wang X, Shivashankar GV, Uhler C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer's disease. Nat Commun. 2022;13(1):7480. Epub 20221203. doi: 10.1038/s41467-022-35233-1. PubMed PMID: 36463283; PMCID: PMC9719477.
- 53. Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, Le Cao KA. DIABLO:
 an integrative approach for identifying key molecular drivers from multi-omics assays.
 Bioinformatics. 2019;35(17):3055-62. doi: 10.1093/bioinformatics/bty1054. PubMed
 PMID: 30657866; PMCID: PMC6735831.
- Serra A, Fratello M, Fortino V, Raiconi G, Tagliaferri R, Greco D. MVDA: a multi-view genomic data integration methodology. BMC Bioinformatics. 2015;16:261. Epub 20150819. doi: 10.1186/s12859-015-0680-3. PubMed PMID: 26283178; PMCID: PMC4539887.
- 471 55. Zhu X, Suk HI, Zhu Y, Thung KH, Wu G, Shen D. Multi-view Classification for
 472 Identification of Alzheimer's Disease. Mach Learn Med Imaging. 2015;9352:255-62. Epub
 473 20151002. doi: 10.1007/978-3-319-24888-2_31. PubMed PMID: 26900608; PMCID:
 474 PMC4758364.
- Li Y, Wu FX, Ngom A. A review on machine learning principles for multi-view biological data integration. Brief Bioinform. 2018;19(2):325-40. doi: 10.1093/bib/bbw113. PubMed PMID: 28011753.
- 478 57. Wang L. Correlation Discovery for Multi-view and Multi-label Learning: Northeastern
 479 University; 2021.
- 58. Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A. 2006;103(26):10011-6. Epub 20060616. doi: 10.1073/pnas.0602187103. PubMed PMID: 16782812; PMCID: PMC1479766.
- Wrzosek L, Miquel S, Noordine ML, Bouet S, Joncquel Chevalier-Curt M, Robert V,
 Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M.
 Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of
 mucus glycans and the development of goblet cells in the colonic epithelium of a
 gnotobiotic model rodent. BMC Biol. 2013;11:61. Epub 20130521. doi: 10.1186/17417007-11-61. PubMed PMID: 23692866; PMCID: PMC3673873.
- 48960.Lin X, et al. Gut microbiota impacts bone via B.vulgatus-valeric acid-related490pathways2020.doi:491extension://efaidnbmnnnibpcajpcglclefindmkaj/<u>https://www.medrxiv.org/content/10.1101</u>492/2020.03.16.20037077v2.full.pdf.

- 49361.Coyte KZ, Rakoff-Nahoum S. Understanding Competition and Cooperation within the494Mammalian Gut Microbiome. Curr Biol. 2019;29(11):R538-R44. doi:49510.1016/j.cub.2019.04.017. PubMed PMID: 31163167; PMCID: PMC6935513.
- Wang H, Xie L, Liu S, Dai A, Chi X, Zhang D. Non-targeted metabolomics and microbial 496 62. 497 analyses of the impact of oat antimicrobial peptides on rats with dextran sulfate sodiuminduced enteritis. Front Nutr. 2022;9:1095483. 498 Epub 20230111. doi: 10.3389/fnut.2022.1095483. PubMed PMID: 36712538; PMCID: PMC9875082. 499
- 500 63. Thomson P, Medina DA, Ortuzar V, Gotteland M, Garrido D. Anti-inflammatory effect of
 501 microbial consortia during the utilization of dietary polysaccharides. Food Res Int.
 502 2018;109:14-23. Epub 20180411. doi: 10.1016/j.foodres.2018.04.008. PubMed PMID:
 503 29803436.
- 64. Watanabe M, Kaku N, Ueki K, Ueki A. Falcatimonas natans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor of cattle waste. Int J Syst Evol Microbiol. 2016;66(11):4639-44. Epub 20160808. doi: 10.1099/ijsem.0.001403. PubMed PMID: 27506535.
- 508 65. Xu D, Feng M, Chu Y, Wang S, Shete V, Tuohy KM, Liu F, Zhou X, Kamil A, Pan D, Liu
 509 H, Yang X, Yang C, Zhu B, Lv N, Xiong Q, Wang X, Sun J, Sun G, Yang Y. The Prebiotic
 510 Effects of Oats on Blood Lipids, Gut Microbiota, and Short-Chain Fatty Acids in Mildly
 511 Hypercholesterolemic Subjects Compared With Rice: A Randomized, Controlled Trial.
 512 Front Immunol. 2021;12:787797. Epub 20211209. doi: 10.3389/fimmu.2021.787797.
 513 PubMed PMID: 34956218; PMCID: PMC8697019.
- 514 66. Song CH, Kim N, Nam RH, Choi SI, Jang JY, Kim EH, Choi J, Choi Y, Yoon H, Lee SM,
 515 Seok YJ. The Possible Preventative Role of Lactate- and Butyrate-Producing Bacteria in
 516 Colorectal Carcinogenesis. Gut Liver. 2024;18(4):654-66. Epub 20231130. doi:
 517 10.5009/gnl230385. PubMed PMID: 38030382; PMCID: PMC11249946.
- 67. Gao B, Gallagher T, Zhang Y, Elbadawi-Sidhu M, Lai Z, Fiehn O, Whiteson KL. Tracking
 Polymicrobial Metabolism in Cystic Fibrosis Airways: Pseudomonas aeruginosa
 Metabolism and Physiology Are Influenced by Rothia mucilaginosa-Derived Metabolites.
 mSphere. 2018;3(2). Epub 20180425. doi: 10.1128/mSphere.00151-18. PubMed PMID:
 29695623; PMCID: PMC5917424.
- 68. Allison C, Macfarlane GT. Influence of pH, nutrient availability, and growth rate on amine
 production by Bacteroides fragilis and Clostridium perfringens. Appl Environ Microbiol.
 1989;55(11):2894-8. doi: 10.1128/aem.55.11.2894-2898.1989. PubMed PMID: 2560361;
 PMCID: PMC203187.
- 69. Abranches J, Zeng L, Kajfasz JK, Palmer SR, Chakraborty B, Wen ZT, Richards VP, Brady
 LJ, Lemos JA. Biology of Oral Streptococci. Microbiol Spectr. 2018;6(5). doi:
 10.1128/microbiolspec.GPP3-0042-2018. PubMed PMID: 30338752; PMCID:
 PMC6287261.

- Johansson P, Sade E, Hultman J, Auvinen P, Bjorkroth J. Pangenome and genomic taxonomy analyses of Leuconostoc gelidum and Leuconostoc gasicomitatum. BMC Genomics. 2022;23(1):818. Epub 20221209. doi: 10.1186/s12864-022-09032-3. PubMed PMID: 36494615; PMCID: PMC9733070.
- 71. Zeng X, Xing X, Gupta M, Keber FC, Lopez JG, Lee YJ, Roichman A, Wang L, Neinast
 MD, Donia MS, Wuhr M, Jang C, Rabinowitz JD. Gut bacterial nutrient preferences
 quantified in vivo. Cell. 2022;185(18):3441-56 e19. doi: 10.1016/j.cell.2022.07.020.
 PubMed PMID: 36055202; PMCID: PMC9450212.
- 539 72. Swain MR, Anandharaj M, Ray RC, Parveen Rani R. Fermented fruits and vegetables of
 540 Asia: a potential source of probiotics. Biotechnol Res Int. 2014;2014:250424. Epub
 541 20140528. doi: 10.1155/2014/250424. PubMed PMID: 25343046; PMCID: PMC4058509.
- 73. Chung WS, Walker AW, Louis P, Parkhill J, Vermeiren J, Bosscher D, Duncan SH, Flint
 HJ. Modulation of the human gut microbiota by dietary fibres occurs at the species level.
 BMC Biol. 2016;14:3. Epub 20160111. doi: 10.1186/s12915-015-0224-3. PubMed PMID:
 26754945; PMCID: PMC4709873.
- Mendez-Salazar EO, Ortiz-Lopez MG, Granados-Silvestre MLA, Palacios-Gonzalez B,
 Menjivar M. Altered Gut Microbiota and Compositional Changes in Firmicutes and
 Proteobacteria in Mexican Undernourished and Obese Children. Front Microbiol.
 2018;9:2494. Epub 20181016. doi: 10.3389/fmicb.2018.02494. PubMed PMID: 30386323;
 PMCID: PMC6198253.
- 551 75. Luo J, Zhang C, Liu R, Gao L, Ou S, Liu L, Peng X. Ganoderma lucidum polysaccharide
 alleviating colorectal cancer by alteration of special gut bacteria and regulation of gene
 expression of colonic epithelial cells. Journal of Functional Foods. 2018;47:127-35.
- 76. Bisht A, Goh KKT, Matia-Merino L. The fate of mamaku gum in the gut: effect on in vitro gastrointestinal function and colon fermentation by human faecal microbiota. Food Funct.
 2023;14(15):7024-39. Epub 20230731. doi: 10.1039/d3fo01665j. PubMed PMID: 37439088.
- Nishitsuji K, Watanabe S, Xiao J, Nagatomo R, Ogawa H, Tsunematsu T, Umemoto H, Morimoto Y, Akatsu H, Inoue K, Tsuneyama K. Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci Rep. 2018;8(1):16173. Epub 20181101. doi: 10.1038/s41598-018-34571-9. PubMed PMID: 30385796; PMCID: PMC6212590.
- 563 78. Garcia-Cordero J, Martinez A, Blanco-Valverde C, Pino A, Puertas-Martin V, San Roman
 564 R, de Pascual-Teresa S. Regular Consumption of Cocoa and Red Berries as a Strategy to
 565 Improve Cardiovascular Biomarkers via Modulation of Microbiota Metabolism in Healthy
 566 Aging Adults. Nutrients. 2023;15(10). Epub 20230513. doi: 10.3390/nu15102299.
 567 PubMed PMID: 37242181; PMCID: PMC10223313.
- Yamamura R, Nakamura K, Kitada N, Aizawa T, Shimizu Y, Nakamura K, Ayabe T,
 Kimura T, Tamakoshi A. Associations of gut microbiota, dietary intake, and serum short-

chain fatty acids with fecal short-chain fatty acids. Biosci Microbiota Food Health.
2020;39(1):11-7. Epub 20191005. doi: 10.12938/bmfh.19-010. PubMed PMID: 32010539;
PMCID: PMC6971417.

- Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi 80. 573 574 C, Verdenelli MC, Clavel T, Koebnick C, Zunft HJ, Dore J, Blaut M. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: 575 Environ Microbiol. 2006;72(2):1027-33. cross-sectional study. Appl doi: 576 а 577 10.1128/AEM.72.2.1027-1033.2006. PubMed PMID: 16461645; PMCID: PMC1392899.
- Fransen F, van Beek AA, Borghuis T, Meijer B, Hugenholtz F, van der Gaast-de Jongh C,
 Savelkoul HF, de Jonge MI, Faas MM, Boekschoten MV, Smidt H, El Aidy S, de Vos P.
 The Impact of Gut Microbiota on Gender-Specific Differences in Immunity. Front
 Immunol. 2017;8:754. Epub 20170630. doi: 10.3389/fimmu.2017.00754. PubMed PMID:
 28713378; PMCID: PMC5491612.
- 583 82. Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World J Gastroenterol.
 584 2021;27(25):3837-50. doi: 10.3748/wjg.v27.i25.3837. PubMed PMID: 34321848; PMCID:
 585 PMC8291023.
- Salazar N, Ponce-Alonso M, Garriga M, Sanchez-Carrillo S, Hernandez-Barranco AM, Redruello B, Fernandez M, Botella-Carretero JI, Vega-Pinero B, Galeano J, Zamora J, Ferrer M, de Los Reyes-Gavilan CG, Del Campo R. Fecal Metabolome and Bacterial Composition in Severe Obesity: Impact of Diet and Bariatric Surgery. Gut Microbes. 2022;14(1):2106102. doi: 10.1080/19490976.2022.2106102. PubMed PMID: 35903014; PMCID: PMC9341356.
- 592 84. Lange O, Proczko-Stepaniak M, Mika A. Short-Chain Fatty Acids-A Product of the Microbiome and Its Participation in Two-Way Communication on the Microbiome-Host Mammal Line. Curr Obes Rep. 2023;12(2):108-26. Epub 20230519. doi: 10.1007/s13679-023-00503-6. PubMed PMID: 37208544; PMCID: PMC10250490.
- 596 85. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes.
 598 2014;4(6):e121. Epub 20140630. doi: 10.1038/nutd.2014.23. PubMed PMID: 24979150;
 599 PMCID: PMC4079931.
- 86. Heiss CN, Olofsson LE. Gut Microbiota-Dependent Modulation of Energy Metabolism. J
 Innate Immun. 2018;10(3):163-71. Epub 20171108. doi: 10.1159/000481519. PubMed
 PMID: 29131106; PMCID: PMC6757175.
- 603 87. Chambers ES, Preston T, Frost G, Morrison DJ. Role of Gut Microbiota-Generated Short604 Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr Nutr Rep. 2018;7(4):198605 206. doi: 10.1007/s13668-018-0248-8. PubMed PMID: 30264354; PMCID: PMC6244749.
- 88. Richard NA, Koehle MS. Optimizing recovery to support multi-evening cycling competition performance. Eur J Sport Sci. 2019;19(6):811-23. Epub 20181227. doi: 10.1080/17461391.2018.1560506. PubMed PMID: 30589619.

- 609 89. Cieminski K, Flis DJ, Dzik KP, Kaczor JJ, Wieckowski MR, Antosiewicz J, Ziolkowski W.
 610 Swim Training Affects on Muscle Lactate Metabolism, Nicotinamide Adenine
 611 Dinucleotides Concentration, and the Activity of NADH Shuttle Enzymes in a Mouse
 612 Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci. 2022;23(19). Epub 20220929. doi:
 613 10.3390/ijms231911504. PubMed PMID: 36232801; PMCID: PMC9569676.
- Fasching P, Rinnerhofer S, Wultsch G, Birnbaumer P, Hofmann P. The First Lactate
 Threshold Is a Limit for Heavy Occupational Work. J Funct Morphol Kinesiol. 2020;5(3).
 Epub 20200825. doi: 10.3390/jfmk5030066. PubMed PMID: 33467281; PMCID:
 PMC7739369.
- Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC,
 Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB,
 Lessard S, Church GM, Kostic AD. Meta-omics analysis of elite athletes identifies a
 performance-enhancing microbe that functions via lactate metabolism. Nat Med.
 2019;25(7):1104-9. Epub 20190624. doi: 10.1038/s41591-019-0485-4. PubMed PMID:
 31235964; PMCID: PMC7368972.
- Markowiak-Kopec P, Slizewska K. The Effect of Probiotics on the Production of ShortChain Fatty Acids by Human Intestinal Microbiome. Nutrients. 2020;12(4). Epub
 20200416. doi: 10.3390/nu12041107. PubMed PMID: 32316181; PMCID: PMC7230973.
- Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest.
 2014;124(10):4212-8. Epub 20141001. doi: 10.1172/JCI72333. PubMed PMID: 25271726;
 PMCID: PMC4191029.
- 630 94. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the
 human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol.
 632 2008;6(11):e280. doi: 10.1371/journal.pbio.0060280. PubMed PMID: 19018661; PMCID:
 633 PMC2586385.

634 Supplementary Tables

635

636 **Supplementary Table 1.** Features (Host characteristics and dietary habits) used in Dataset 1.

Host Characteristics	Dietary Habits
Age	Whether you drink milk (Yes/No)
Race	Whether you eat yogurt (Yes/No)
Height (cm)	Whether you eat cheese (Yes/No)
Weight (kg)	Quantity of eating vegetables
Whether currently exercise on a fairly regular	Quantity of eating fruit
basis (Yes/No)	Frequency of eating eggs
Whether you smoke(d) cigarettes (Yes/No)	Quantity of eating eggs in a day
Whether you drink (drank) alcohol (Yes/No)	Frequency of eating steak
Whether you are currently taking any probiotics	Quantity of eating steak in a day
supplements (Yes/No)	Frequency of eating pork chops
Whether you have you taken any probiotics in the	Quantity of eating pork chops in a day
past 12 months (Yes/No)	Frequency of eating cookies
BMI	Quantity of eating cookies in a day
Whether you have used antibiotics in the past 12	Frequency of eating chocolate candy
months (Yes/No)	Quantity of eating chocolate candy in a day
Whether you are currently taking any gastric acid	Frequency of eating cold cereals
lowering medications (Yes/No)	Quantity of eating cold cereals in a day
Whether you have you taken any gastric acid	Quantity of drinking water in a day
lowering medications in the past 12 months	Frequency of drinking milky coffee
(Yes/No)	Quantity of drinking milky coffee in a day
Frequency of bicycling or swimming	Frequency of drinking non-milky coffee
Time in bicycling or swimming for each time	Quantity of drinking non-milky coffee in a day
Frequency of heavy work	Frequency of drinking hot tea
Time in heavy work for each time	Quantity of drinking hot tea in a day
	Frequency of eating pickles
	Quantity of eating pickles in a day
	Frequency of taking folic acid
	Frequency of taking fiber supplements
	Frequency of taking calcium
	Quantity of taking calcium in a day
	Frequency of taking fat oil
	Number of meals in a day
	How much eating fried fish, fish sticks, fish
	sandwich, breaded fillets (g)

639	Supplementary Table 2.	. Features (Hos	t characteristics	and dietar	y habits) used in Dataset 2.
-----	------------------------	-----------------	-------------------	------------	----------	----------------------

Host Characteristics	Dietary Habits
Age	Whether you drink milk (Yes/No)
Gender	Whether you eat yogurt (Yes/No)
Race	Whether you eat cheese (Yes/No)
Height (cm)	
Weight (kg)	
Whether currently exercise on a fairly regular basis (Yes/No)	
Whether you smoke(d) cigarettes (Yes/No)	
Whether you drink (drank) alcohol (Yes/No)	
Whether you are currently taking any probiotics supplements	
(Yes/No)	
Whether you have you taken any probiotics in the past 12 months	
(Yes/No)	
BMI	

640

641

642

644 **Supplementary Table 3.** Hyperparameters Tuning.

Hyperparameters	Values
Dropout	0.1, 0.3, 0.5, 0.7
Number of epochs	1000, 1500, 2000, 2500, 3000
Average number of edges per	
node that are retained	2, 5, 10
including self-connections (k)	

645

Gut Microbiotas		Host Characteristics		Dietary Features	
Dataset 1	Dataset 2	Dataset 1	Dataset 2	Dataset 1	Dataset 2
Subdoligranulum_ unclassified	Bacteroides_intestinalis	Weight (kg)	Gender	Frequency of eating pickles	Whether you eat yogurt
Ruminococcus_tor ques	candidate_division_TM7 _single_cell_isolate_TM 7b	Time in bicycling or swimming for each time	Race	Frequency of eating steak	Whether you drink milk
Oscillibacter_uncla ssified	Atopobium_vaginae	Whether you have you taken any probiotics in the past 12 months (Yes/No)	Height (cm)	Frequency of taking fat oil	Whether you eat cheese
Bacteroides_unifor mis	Weissella_confusa	Height (cm)	Weight (kg)	Quantity of eating eggs in a day	
Clostridium_aspara giforme	Lachnospiraceae_bacteri um_2_1_46FAA	Whether you have used antibiotics in the past 12 months (Yes/No)	Whether you have you taken any probiotics in the past 12 months (Yes/No)	Quantity of eating cold cereals in a day	
Ruminococcus_sp _5_1_39BFAA Rothia_mucilagin osa	Bombyx_mori_nucleopo lyhedrovirus Streptococcus_mutans				
Prevotella_copri	Faecalibacterium_prausn itzii				
Roseburia_intestin alis	Clostridium_sp_HGF2				
Bacteroides_thetai otaomicron	Ruminococcus_obeum				
Desulfovibrio_pige r	Bordetella_unclassified				
Alistipes_unclassifi ed	Anaerococcus_vaginalis				
Bifidobacterium_c atenulatum	Alistipes_sp_HGB5				
Lactobacillus_saliv arius	Avian_carcinoma_virus				
Clostridium_leptu m	New_World_begomovir us_associated_satellite_ DNA				
Acidaminococcus_ sp_BV3L6	Sapporo_virus				

Supplementary Table 4. Important factors associated with blood acetic acids.

Erysipelotrichace	Bifidobacterium_breve
ae_bacterium_6_1	
_45	
Bacteroides_fragil	Gemella_sanguinis
is in the second s	
Parabacteroides_m	Fusobacterium_necroph
erdae	orum
Alistipes_senegale	Culex_flavivirus
11818 Mitsuokelle, uncles	Anarotrungus colihomi
sified	nis
Bacteroides caccae	IIIS Lachnospiraceae bacteri
Dacterolides_caccac	um 5 1 63FAA
Turicibacter unclas	Bacteroides cellulosilyti
sified	cus
Bacteroides sp 4	Porphyromonas asaccha
3 47FAA	rolvtica
Blautia hansenii	Alistipes finegoldii
 Clostridium_clostri	Facklamia unclassified
dioforme	Tuestiumu_unetuberred
Rhodococcus ervt	Staphylococcus phage
hropolis	phiETA3
Clostridium citroni	Cupriavidus unclassifie
ae	d
Ruminococcus_alb	Chicory_yellow_mottle_
us	virus_large_satellite_RN
	Α
Bacteroides_eggert	Erysipelotrichaceae_bact
hii	erium_21_3
	Gemella_unclassified
	Porphyromonas_uenonis
	Classical swine fever v
	irus — — —
	Eubacterium_infirmum
	Enterovirus_B
	Escherichia_unclassified
	Eubacterium sp 3 1 31
	Coprobacillus unclassifi
	·

ed Bovine_viral_diarrhea_v irus 2 Fusobacterium nucleatu m Coprobacter_fastidiosus Coprobacillus sp D6 Clostridiales bacterium 1_7_47FAA Ruminococcus_sp_JC30 4 Bacteroides_dorei Mycoplasma_hominis Actinomyces urogenitali s Bovine_viral_diarrhea_v irus 3 Royal_Farm_virus Prevotella_timonensis Pseudomonas_thermotol erans Coprococcus_sp_ART55 1 Bacteroides_pectinophil us Blautia_hydrogenotrophi ca Dorea_unclassified Collinsella_aerofaciens Sutterella wadsworthens is Eubacterium_biforme Clostridiales bacterium BV3C26 Clostridium_sp_KLE_1 755 Melon_aphid_borne_yell

ows_virus Veillonella_dispar Bacteroides_salyersiae Clostridium_bartlettii Lachnospiraceae_bacteri um 9 1 43BFAA Campylobacter ureolyti cus Lactobacillus antri Montana myotis leukoe ncephalitis virus Entamoeba_dispar Leuconostoc_gelidum Caulobacter_unclassified Fusobacterium_periodon ticum Coriobacteriaceae bacte rium BV3Ac1 Cardiobacterium_valvar um Bacteroides_fragilis Bifidobacterium_pseudo longum Porphyromonas bennoni S Orthohepadnavirus uncl assified Ruminococcus_gnavus Alistipes_sp_AP11 Enterovirus_D Lactobacillus mucosae Streptococcus_macedoni cus **Bacteroides thetaiotao** micron Coprobacillus_sp_29_1

Chicken_anemia_virus Lachnospiraceae_bacteri um 1 4 56FAA Eggerthella_lenta Cetobacterium somerae Circovirus like genome _SAR_A Granulicatella_elegans Ruminococcus flavefaci ens Parascardovia_denticole ns Pseudomonas_phage_M P38 Bilophila unclassified Actinomyces_viscosus Actinomyces naeslundii Streptococcus_agalactiae Salmon pancreas diseas e virus C2likevirus unclassified

Note: Top 30 gut microbiota species in dataset 1; top 100 gut microbiota species in dataset 2. Top 5 host characteristics features and top 5 dietary features in datasets 1 and 2.

Gut Microbiotas		Host Characteristics		Dietary Features	
Dataset 1	Dataset 2	Dataset 1	Dataset 2	Dataset 1	Dataset 2
Ruminococcus_t orques	Ruminococcaceae_bacteri um_D16	Weight (kg)	Gender	Frequency of eating pickles	Whether you eat yogurt
Subdoligranulum _unclassified	Nilaparvata_lugens_honey dew_virus_2	Whether you have you taken any probiotics in the past 12 months (Yes/No)	Race	Quantity of eating cold cereals in a day	Whether you drink milk
Roseburia_intesti nalis	Bordetella_unclassified	Whether you are currently taking any gastric acid lowering medications (Yes/No)	Weight (kg)	Quantity of eating chocolate candy in a day	Whether you eat cheese
Oscillibacter_unc lassified	Providencia_unclassified	Height (cm)	BMI	Frequency of eating steak	
Bifidobacterium_ catenulatum	Weissella_confusa	Whether you have used antibiotics in the past 12 months (Yes/No)	Whether you have you taken any probiotics in the past 12 months (Yes/No)	Quantity of eating steak in a day	
Bacteroides_thet	Coprococcus_sp_ART55_				
aiotaomicron Parabacteroides	l Coriobacteriaceae bacteri				
merdae	um_BV3Ac1				
Turicibacter_uncl assified	Eubacterium_infirmum				
Bacteroides_cacc ae	Corynebacterium_durum				
Bacteroides_unif ormis	Apoi_virus				
Prevotella_copri	Alistipes_finegoldii				
Rothia_mucilagi nosa	Plectrovirus_unclassified				
Erysipelotrichace ae_bacterium_6_ 1 45	Actinomyces_turicensis				
Erysipelotrichace ae_bacterium_6_ 1_45	Anaerostipes_caccae				
Blautia_hansenii	Alistipes_indistinctus				
Ruminococcus_s p_5_1_39BFAA	Parabacteroides_johnsonii				

Supplementary Table 5. Important factors associated with blood butyric acids.

Alistipes_senegal	Erysipelotrichaceae_bacter
ensis	ium_21_3
Desulfovibrio_pi	Eggerthella_unclassified
ger	
Bacteroides_vulg	Lactobacillus_animalis
atus	
Veillonella_uncl	Lactobacillus_vaginalis
assified	
Streptococcus_s	Campylobacter_ureolyticu
alivarius	S
Lactobacillus_pla	Atopobium_parvulum
ntarum	
Rhodococcus_er	Enterococcus_casseliflavu
ythropolis	S
Eubacterium_lim	Leuconostoc_pseudomese
osum	nteroides
Faecalibacteriu	Megasphaera_micronucifo
m_prausnitzii	rmis
Ruminococcus_a	Desulfovibrio_termitidis
lbus	
Oscillibacter_sp	Enterococcus_avium
Oscillibacter_sp _KLE_1745	Enterococcus_avium
Oscillibacter_sp _KLE_1745 Propionibacteriu	Enterococcus_avium Peptostreptococcus_unclas
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii	Enterococcus_avium Peptostreptococcus_unclas sified
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2 Quail_picornavirus_QPV1
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2 Quail_picornavirus_QPV1 _HUN_2010
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2 Quail_picornavirus_QPV1 _HUN_2010 Leuconostoc_carnosum
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2 Quail_picornavirus_QPV1 _HUN_2010 Leuconostoc_carnosum Dialister_succinatiphilus
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2 Quail_picornavirus_QPV1 _HUN_2010 Leuconostoc_carnosum Dialister_succinatiphilus Prevotella_bergensis
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2 Quail_picornavirus_QPV1 _HUN_2010 Leuconostoc_carnosum Dialister_succinatiphilus Prevotella_bergensis Actinobacillus_unclassifie
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2 Quail_picornavirus_QPV1 _HUN_2010 Leuconostoc_carnosum Dialister_succinatiphilus Prevotella_bergensis Actinobacillus_unclassifie d
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2 Quail_picornavirus_QPV1 _HUN_2010 Leuconostoc_carnosum Dialister_succinatiphilus Prevotella_bergensis Actinobacillus_unclassifie d Ruminococcus_obeum
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2 Quail_picornavirus_QPV1 _HUN_2010 Leuconostoc_carnosum Dialister_succinatiphilus Prevotella_bergensis Actinobacillus_unclassifie d Ruminococcus_obeum Bifidobacterium pseudoca
Oscillibacter_sp _KLE_1745 Propionibacteriu m_freudenreichii Clostridium_asp aragiforme Weissella_unclas sified	Enterococcus_avium Peptostreptococcus_unclas sified Lachnospiraceae_bacteriu m_5_1_63FAA Clostridium_sp_HGF2 Quail_picornavirus_QPV1 _HUN_2010 Leuconostoc_carnosum Dialister_succinatiphilus Prevotella_bergensis Actinobacillus_unclassifie d Ruminococcus_obeum Bifidobacterium_pseudoca tenulatum

Collinsella_stercoris Porphyromonas_uenonis Streptococcus_tigurinus Turicibacter_sanguinis Actinomyces_massiliensis Bacteroides_intestinalis Anaerostipes_sp_3_2_56F AA Cupriavidus unclassified Weissella paramesenteroi des Holdemania unclassified Clostridium hathewayi Streptococcus salivarius Chicory yellow mottle vi rus large satellite RNA Leuconostoc_mesenteroid es Odoribacter splanchnicus Culex flavivirus Clostridiales bacterium B V3C26 Blautia hydrogenotrophic а Clostridiaceae_bacterium_ JC118 Clostridium glycolicum Clostridium_sp_KLE_175 5 Bifidobacterium pseudolo ngum Collinsella_aerofaciens Veillonella_unclassified Leuconostoc inhae Dysgonomonas_unclassifi

ed

Okra_yellow_crinkle_Cam eroon alphasatellite Streptococcus australis Lactobacillus helveticus Bovine viral diarrhea vir us 2 Rhodopseudomonas palus tris Bacteroides_pectinophilus Bacteroides_coprocola Passion_fruit_woodiness_ virus Slackia unclassified Prevotella timonensis Bombyx_mori_nucleopoly hedrovirus Hepatitis_C_virus Fusobacterium_necrophor um Anaerococcus_vaginalis Avian_carcinoma_virus Clostridium_bifermentans Gastropod associated circ ular_ssDNA_virus Actinomyces_urogenitalis Olsenella unclassified Bilophila_wadsworthia Hafnia alvei Oat_blue_dwarf_virus Dorea_formicigenerans Akkermansia muciniphila Hepatitis_A_virus Streptococcus mutans

Lactobacillus_salivarius Lactobacillus_casei_parac asei Pepper_vein_yellows_viru \mathbf{S} Oscillibacter_sp_KLE_1 745 Bacteroidales_bacterium_ ph8 . Mycoplasma_hominis Ruminococcus_bromii Pseudomonas thermotoler ans Cardiobacterium_valvaru m Lindernia_anagallis_yello w_vein_virus_satellite_D NA beta

Note: Top 30 gut microbiota species in dataset 1; top 100 gut microbiota species in dataset 2. Top 5 host characteristics features and top 5 dietary features in datasets 1 and 2.

Gut Microbiotas		Host Characteristi	cs	Dietary Features	
Dataset 1	Dataset 2	Dataset 1	Dataset 2	Dataset 1	Dataset 2
Subdoligranulum_un	Ruminococcus_bromii	Weight (kg)	Consent_Age	Quantity of	Whether you
classified				day	eat yogurt
Ruminococcus_torqu	Erysipelotrichaceae_bacterium_	Frequency of	Gender	Quantity of	Whether you
es	21_3	neavy work		day	ui iiik iiiiik
Oscillibacter_unclass	Faecalibacterium_prausnitzii	Height (cm)	Height (cm)	Frequency of	Whether you
Alistipes_unclassifie	Lachnospiraceae_bacterium_5_1	Exercise_Regular	Race	Frequency of	cut encese
d	_63FAA			eating pickles	
Clostridium_asparagi forme	Ruminococcaceae_bacterium_D 16	Time in heavy work for each time	Whether you have you taken any probiotics in the past 12 months (Yes/No)	Frequency of taking fat oil	
Bacteroides_uniform	Desulfovibrio_termitidis			C	
is Desulfovibrio_piger	Collinsella_stercoris				
Rothia_mucilaginosa	Coriobacteriaceae_bacterium_B V3Ac1				
Ruminococcus_sp_5 _1_39BFAA	candidate_division_TM7_single _cell_isolate_TM7b				
Clostridium_leptum	Lactobacillus_phage_PL_1				
Bacteroides_thetaiota	Clostridium_sp_HGF2				
Roseburia_intestinali	Dorea_formicigenerans				
Lactobacillus_salivar	Classical_swine_fever_virus				
Prevotella_copri	Solobacterium_moorei				
Clostridium_citronia	Lactobacillus_casei_paracasei				
e Bacteroides_nordii	Gemella_unclassified				
Faecalibacterium_p rausnitzii	Actinomyces_naeslundii				
Parabacteroides_uncl assified	Turicibacter_sanguinis				
Bifidobacterium_cate	Lactobacillus_saerimneri				

Supplementary Table 6. Important factors associated with blood hexanoic acids.

nulatum

Bacteroides_sp_4_3_ 47FAA	Ruminococcus_obeum
Clostridium_bolteae	Bordetella_unclassified
Clostridium_clostridi oforme Acidaminococcus_s p BV3L6	Lindernia_anagallis_yellow_vei n_virus_satellite_DNA_beta Enterovirus_B
Erysipelotrichaceae_ bacterium_6_1_45	Lachnospiraceae_bacterium_4_1 _37FAA
Paraprevotella_clara	Clostridiaceae_bacterium_JC118
Bacteroides_fragilis	Roseburia_inulinivorans
Bacteroides_dorei	Weissella_confusa
Leuconostoc_gelidu m	Acidaminococcus_sp_BV3L6
Bacteroides_eggerthi i	Ruminococcus_sp_JC304
Blautia_hansenii	Clostridium_bifermentans
	Chicory_yellow_mottle_virus_la rge_satellite_RNA Campylobacter_ureolyticus
	Oat_blue_dwarf_virus
	Streptococcus_vestibularis
	Coriobacteriaceae_bacterium_ph I
	Enterobacteria_phage_SfV
	Facklamia_unclassified
	Actinomyces_viscosus
	Ruminococcus_champanellensis
	Actinomyces_massiliensis
	Lactobacillus_animalis
	Anaerostipes_caccae
	Quail_picornavirus_QPV1_HU N_2010 West Nile virus

Atopobium_vaginae Lactococcus_lactis Bacteroides intestinalis Sida_yellow_vein_Vietnam_viru s satellite DNA beta Streptococcus parasanguinis Enterococcus avium Rothia dentocariosa Bovine rhinitis B virus Weissella paramesenteroides Bovine viral diarrhea virus 2 Barbel circovirus Parvimonas unclassified Dysgonomonas unclassified Ruminococcus_sp_5_1_39BFA А Fusobacterium mortiferum $Gastropod_associated_circular_s$ sDNA virus Parascardovia_denticolens Erysipelotrichaceae_bacterium_ 5 2 54FAA Lactobacillus_vaginalis Neisseria flavescens Phascolarctobacterium succinat utens Entamoeba dispar Circovirus_like_genome_SAR_ А Sutterella_wadsworthensis Human_cosavirus_B Providencia_unclassified Leuconostoc carnosum Peptostreptococcus_anaerobius

Kelp_fly_virus Fusobacterium_necrophorum Hepatitis_GB_virus_B Pennisetum_mosaic_virus Gemella_haemolysans Blautia_hydrogenotrophica Bacteroides_cellulosilyticus Eubacterium infirmum Bilophila_wadsworthia Petunia_vein_clearing_virus Porphyromonas_asaccharolytica Clostridiales_bacterium_BV3C2 6 Holdemania unclassified Lactococcus_phage_jm2 Klebsiella phage KP36 Plectrovirus unclassified Bifidobacterium breve Parabacteroides sp 20 3 Okra_yellow_crinkle_Cameroon alphasatellite Border disease virus Melon_aphid_borne_yellows_vi rus Oligella_urethralis Lactobacillus_antri Candidatus_Zinderia_insecticola Haemophilus_sputorum Malvastrum_leaf_curl_Philippin es betasatellite Weissella cibaria Actinomyces urogenitalis

651 652 Note: Top 30 gut microbiota species in dataset 1; top 100 gut microbiota species in dataset 2. Top 5 host characteristics features and top 5 dietary features in

datasets 1 and 2.

Gut Microbiotas		Host Characteristics		Dietary Features	
Dataset 1	Dataset 2	Dataset 1	Dataset 2	Dataset 1	Dataset 2
Subdoligranulum_unc lassified	candidate_division_TM7_si	Weight (kg)	Race	Frequency of eating steak	Whether you drink milk
Ruminococcus_torque	Ruminococcus_obeum	Time in bicycling or swimming for each time	Gender	Frequency of	Whether you
Bacteroides_uniformi s	Weissella_confusa	Height (cm)	BMI	Quantity of eating eggs in a day	Whether you eat cheese
Bifidobacterium_cate nulatum	Lactobacillus_phage_PL_1	Age	Whether you have you taken any probiotics in the past 12 months (Yes/No)	Frequency of taking fat oil	
Oscillibacter_unclassi fied	Faecalibacterium_prausni tzii	Race	Weight (kg)	Quantity of eating steak in a day	
Clostridium_asparagif orme	Bovine_viral_diarrhea_viru s_2				
Ruminococcus_albus	Anaerostipes_unclassified				
Alistipes_senegalensi s	Coriobacteriaceae_bacteriu m_BV3Ac1				
Alistipes_unclassified	Okra_yellow_crinkle_Cam eroon_alphasatellite				
Roseburia_intestinalis	Klebsiella_phage_KP36				
Veillonella_unclassifi ed	Candidatus_Zinderia_insect icola				
Faecalibacterium_pr ausnitzii	Bordetella_unclassified				
Bacteroides_thetaiota omicron	Cardiobacterium_valvarum				
Prevotella_copri	Eubacterium_siraeum				
Rothia_mucilaginosa	Zinnia_leaf_curl_virus_ass ociated DNA beta				
Acidaminococcus_sp _BV3L6	Granulicella_unclassified				
Clostridium_leptum	Bifidobacterium_pseudolon gum				
Desulfovibrio_piger	Clostridium_sp_KLE_1755				

Supplementary Table 7. Important factors associated with blood 2-methylbutyric acids.

Erysipelotrichaceae_	Ruminococcus_champanell
bacterium_6_1_45	ensis
1 39RFA A	ified
Lactobacillus salivari	Campylobacter ureolyticus
us	
Clostridium_scindens	Parabacteroides_sp_20_3
Weissella_unclassifie d	Streptococcus_agalactiae
Paraprevotella_clara	Dysgonomonas_mossii
Bacteroides_eggerthii	Dorea_formicigenerans
Bacteroides_fragilis	Alloprevotella_tannerae
Bacteroides_sp_4_3_ 47FAA	Aggregatibacter_segnis
Roseburia_hominis	Borrelia_duttonii
Bacteroides_nordii	Granulicatella_unclassified
Bacteroides_caccae	Holdemania_sp_AP2
	Gemella_haemolysans
	Enterobacteria_phage_SfV
	Streptococcus_vestibularis
	Sapporo_virus
	Streptococcus_mutans
	Anaerotruncus_colihominis
	Erysipelotrichaceae_bacteri um_21_3
	Coprobacter_fastidiosus
	Eubacterium_ramulus
	Haemophilus_pittmaniae
	Olsenella_unclassified
	Alistipes_sp_HGB5
	Actinomyces_urogenitalis
	Lachnospiraceae_bacterium _5_1_63FAA
	Alloprevotella unclassified

Pseudomonas_phage_MP3 8 Lactobacillus_crispatus Prevotella amnii Bacteroides coprocola Anaerococcus vaginalis Enterococcus hirae Eubacterium biforme Barbel circovirus Cetobacterium somerae Butyrivibrio crossotus Peptostreptococcus_anaero bius Bovine viral diarrhea viru s 3 Pediococcus lolii Helicobasidium_mompa_e ndornavirus 1 Culex flavivirus Leuconostoc_gasicomitatu m Oligella urethralis Bacteroides dorei Bovine rhinitis B virus Brachyspira unclassified Streptococcus gordonii Abiotrophia defectiva Lachnospiraceae_bacterium 4_1_37FAA Alistipes_finegoldii Desulfovibrio_termitidis Lachnospiraceae_bacterium 9 1 43BFAA Clostridium bifermentans

Entamoeba_dispar Lachnospiraceae_bacterium 8 1 57FAA Infectious flacherie virus Bifidobacterium breve Lactobacillus fermentum Lactobacillus gasseri Rothia_mucilaginosa Pseudomonas aeruginosa **Bacteroides** fragilis Clostridium sp HGF2 Apoi virus Staphylococcus phage phi ETA3 Turicibacter sanguinis Lactobacillus saerimneri Erysipelotrichaceae bacte rium_6_1_45 Sepik_virus Porphyromonas_asaccharol ytica Clostridium difficile Streptococcus_macedonicu s Gastropod associated circ ular ssDNA virus Subdoligranulum_variabile Hippeastrum_mosaic_virus Prevotella_bergensis Colombian_datura_virus Dorea_unclassified Royal_Farm_virus Enterovirus_B

Blautia_hydrogenotrophica

Note: Top 30 gut microbiota species in dataset 1; top 100 gut microbiota species in dataset 2. Top 5 host characteristics features and top 5 dietary features in 654 655 656 657 datasets 1 and 2.

Gut Microbiotas		Host Characteristics		Dietary Features	
Dataset 1	Dataset 2	Dataset 1	Dataset 2	Dataset 1	Dataset 2
Subdoligranulum_u nclassified	Ruminococcus_obeum	Weight (kg)	Gender	Frequency of eating pickles	Whether you drink milk
Ruminococcus_torq ues	Weissella_confusa	Whether you have you taken any gastric acid lowering medications in the past 12 months (Yes/No)	Race	Quantity of eating chocolate candy in a day	Whether you eat yogurt
Oscillibacter_unclas sified	Epsilon15likevirus_unclas sified	Whether you have you taken any probiotics in the past 12 months (Yes/No)	Height (cm)	Quantity of eating fruit	Whether you eat cheese
Rothia_mucilaginos a	Faecalibacterium_prausn itzii	Time in heavy work for each time	Weight (kg)	Quantity of eating cold cereals in a day	
Alistipes_unclassifi ed	Classical_swine_fever_vir us	Frequency of bicycling or swimming	BMI	Frequency of eating steak	
Desulfovibrio_piger	Campylobacter_ureolyticu s				
Clostridium_aspara giforme	Desulfovibrio_termitidis				
Bacteroides_thetaiot aomicron	Clostridium_sp_HGF2				
Bacteroides_unifor mis	Bovine_rhinitis_B_virus				
Bacteroides_nordii	C2likevirus_unclassified				
Clostridium_bolteae	candidate_division_TM7_s ingle cell isolate TM7b				
Parabacteroides_unc lassified	Eubacterium_sp_3_1_31				
Bacteroides_dorei	Corynebacterium_propinq uum				
Clostridium_citroni ae	Gemella_unclassified				
Collinsella_unclassi fied	Prevotella_bergensis				
Clostridium_clostri dioforme	Neisseria_flavescens				
Bacteroides_fragilis	Cyclovirus_NGchicken15_ NGA_2009				

Supplementary Table 8. Important factors associated with blood valeric acids.

Faecalibacterium_ prausnitzii	Okra_yellow_crinkle_Cam eroon_alphasatellite		
Clostridium_leptum	Alloprevotella_unclassifie		
Eubacterium_ramul	Lachnospiraceae_bacteriu		
Bacteroides_sp_4_3 47FA A	Peptostreptococcus_anaero		
Actinomyces_visco	Bacteroides_vulgatus		
Ruminococcus_sp_ 5 1 39BFAA	Actinomyces_urogenitalis		
Parabacteroides_me	Ruminococcus_champanel lensis		
Leuconostoc_gelid	Lactobacillus_phage_PL_1		
Prevotella_copri	Gastropod_associated_circ ular ssDNA virus		
Lactobacillus_saliva	Lactobacillus_antri		
Escherichia_unclas sified	Corynebacterium_jeikeium		
Bacteroides_eggerth	Coprococcus_comes		
Erysipelotrichaceae bacterium 6 1 45	Bordetella_unclassified		
''	Rhodospirillum_unclassifi ed		
	Neisseria_unclassified		
	Streptococcus_parasanguin is		
	JC_polyomavirus		
	Prevotella_bivia		
	Lachnospiraceae_bacteriu m_4_1_37FAA Pseudomonas_alcaligenes		
	Bilophila_wadsworthia		
	Pseudomonas_phage_MP3 8		

Parabacteroides_sp_20_3 Stomatobaculum_longum Lactobacillus_saerimneri Slow_bee_paralysis_virus Parvimonas_unclassified Providencia_unclassified Enterovirus_B Megasphaera_genomosp_t ype_1 Alistipes_putredinis Cetobacterium somerae Pepper_vein_yellows_viru s Actinobacillus unclassifie d Clostridiales_bacterium_1 7 47FAA Alistipes_sp_HGB5 Porphyromonas uenonis Eubacterium_cylindroides Bifidobacterium longum Enterobacter cloacae Enterobacteria_phage_HK 225 Bifidobacterium breve Bacteroides_coprocola Streptococcus gordonii Atopobium_parvulum Blautia producta Atopobium_vaginae Bean common mosaic ne crosis_virus Melon_aphid_borne_yello ws_virus

Morganella_morganii Streptococcus_mutans Pestivirus_strain_Aydin_0 4 TR Streptococcus tigurinus Lachnospiraceae bacteriu m_8_1_57FAA Rothia_dentocariosa Bacteroides cellulosilyticu s Clostridium_sp_KLE_175 5 Solobacterium moorei Porphyromonas asaccharo lytica Leuconostoc_gelidum Veillonella unclassified Clostridium difficile Orthohepadnavirus unclas sified Clostridium_hathewayi Hippeastrum_mosaic_viru s Streptococcus gallolyticus Eubacterium_dolichum Collinsella_stercoris Alloprevotella tannerae Acidaminococcus_sp_D21 Dorea unclassified Fusobacterium_nucleatum Candida_glabrata Anaerotruncus_colihomini s Anaerococcus_prevotii
Lactobacillus_sakei Coprobacillus_unclassified Hepatitis_GB_virus_B Helicobasidium_mompa_e ndornavirus 1 Fig_fleck_associated_virus Prevotella_timonensis Cardiobacterium_valvaru m Collinsella_aerofaciens

658 Note: Top 30 gut microbiota species in dataset 1; top 100 gut microbiota species in dataset 2. Top 5 host characteristics features and top 5 dietary features in datasets 1 and 2.

659 660

661

Gut Microbiotas		Host Characteristics		Dietary Features	
Dataset 1	Dataset 2	Dataset 1	Dataset 2	Dataset 1	Dataset 2
Subdoligranulum_unclassifi ed	Weissella_confusa	Whether you have you taken any probiotics in the past 12 months (Yes/No)	Gender	Frequency of eating pickles	Whether you eat yogurt
Ruminococcus_torques	Ruminococcaceae_bacterium_D16	Weight (kg)	Race	Frequency of eating steak	Whether you drink milk
Oscillibacter_unclassified	Desulfovibrio_termitidis	Whether you have used antibiotics in the past 12 months (Yes/No)	BMI	Quantity of eating steak in a day	Whether you eat cheese
Bacteroides_uniformis	Ruminococcus_obeum	Age	Consent_Age	Frequency of drinking non-milky coffee	
Roseburia_intestinalis	Lachnospiraceae_bacterium_5_1_6 3FAA	Height (cm)	Weight (kg)	Quantity of eating chocolate candy in a day	
Bacteroides_thetaiotaomicr on	Providencia_unclassified				
Bifidobacterium_catenulatu m	Cyclovirus_NGchicken15_NGA_2 009				
Rothia_mucilaginosa	Enterovirus_B				
Alistipes_unclassified	Porphyromonas_uenonis				
Desulfovibrio_piger	Turicibacter_sanguinis				
Prevotella_copri	Lactococcus_garvieae				
Ruminococcus_sp_5_1_39 BFAA	Ruminococcus_champanellensis				
Clostridium_asparagiforme	Classical_swine_fever_virus				
Blautia_hansenii	Prevotella_nanceiensis				
Faecalibacterium_prausni tzii	Culex_flavivirus				
Acidaminococcus_sp_BV3 L6	Epsilon15likevirus_unclassified				
Turicibacter_unclassified	Enterobacteria_phage_HK225				
Parabacteroides_merdae	Bordetella_unclassified				
Erysipelotrichaceae_bacteri um_6_1_45	Actinobacillus_unclassified				

Supplementary Table 9. Important factors associated with blood propionic acids.

Bacteroides_caccae Lactobacillus_salivarius Ruminococcus_albus Clostridium_citroniae Alistipes_senegalensis Bacteroides_nordii Bacteroides_eggerthii Bacteroides_sp_4_3_47FA A Clostridium_leptum Veillonella unclassified

Bacteroides vulgatus

Prevotella bergensis Olsenella_unclassified Faecalibacterium prausnitzii Melon aphid_borne_yellows_virus Peptostreptococcus anaerobius Streptococcus gallolyticus Collinsella_aerofaciens Hafnia alvei Streptococcus mutans candidate division TM7 single ce ll isolate TM7b Dorea formicigenerans Eubacterium sp 3 1 31 Parabacteroides johnsonii Odoribacter splanchnicus Lactobacillus helveticus Bacteroides phage B124 14 Clostridium hathewayi Clostridium_bifermentans Corynebacterium jeikeium Bacteroides pectinophilus Blautia hydrogenotrophica Eubacterium ramulus Enterobacteriaceae bacterium 9 2 54FAA Gastropod associated circular ssD NA virus Lactobacillus_phage_PL_1 Fig fleck associated virus Hippeastrum mosaic virus Streptococcus gordonii Anaerotruncus colihominis

Clostridium sp HGF2 Colombian_datura_virus Streptococcus salivarius C2likevirus_unclassified Hepatitis_GB_virus_B Streptococcus_tigurinus Plectrovirus_unclassified Campylobacter ureolyticus Avian_carcinoma_virus Chlorobium_phaeobacteroides Coriobacteriaceae bacterium BV3 Ac1 Clostridium nexile Clostridium difficile Gemella unclassified Weissella paramesenteroides Actinomyces turicensis Stomatobaculum longum Chicory yellow mottle virus larg e satellite RNA Okra yellow crinkle Cameroon al phasatellite Prevotella_buccalis Lachnospiraceae_bacterium_8_1_5 7FAA Bilophila wadsworthia Mobiluncus curtisii Corynebacterium amycolatum Veillonella unclassified Lachnospiraceae bacterium 7 1 5 8FAA Collinsella stercoris Pestivirus strain Aydin 04 TR

Ruminococcus lactaris Anaerococcus_prevotii Bacteroides ovatus Clostridium_perfringens Alistipes_indistinctus Actinomyces urogenitalis Bifidobacterium_pseudolongum Bifidobacterium longum Neisseria_flavescens Parabacteroides_sp_20_3 Facklamia_unclassified Erysipelotrichaceae_bacterium_21_ 3 Streptococcus phage ALQ13 2 Human cosavirus B Parsnip yellow fleck virus Bovine rhinitis B virus Sida yellow vein Vietnam virus satellite DNA beta Leuconostoc mesenteroides Ruminococcus_bromii Alistipes sp HGB5 Roseburia inulinivorans Clostridiales bacterium BV3C26 Candida glabrata Slackia unclassified

- 662 Note: Top 30 gut microbiota species in dataset 1; top 100 gut microbiota species in dataset 2. Top 5 host characteristics features and top 5 dietary features in
 663 datasets 1 and 2.
- 664
- 665

Gut Microbiotas		Host Characteristics		Dietary Features	
Dataset 1	Dataset 2	Dataset 1	Dataset 2	Dataset 1	Dataset 2
Subdoligranulum_u nclassified	candidate_division_TM7_sing le_cell_isolate_TM7b	Height (cm)	Race	Frequency of eating pickles	Whether you drink milk
Ruminococcus_torq ues	Weissella_confusa	Weight (kg)	Gender	Quantity of eating steak in a day	Whether you eat yogurt
Oscillibacter_uncla ssified	Ruminococcus_obeum	Time in bicycling or swimming for each time	Height (cm)	Frequency of eating steak	Whether you eat cheese
Bacteroides_unifor mis	Streptococcus_mutans	Age	Whether you have you taken any probiotics in the past 12 months (Yes/No)	Quantity of eating eggs in a day	
Clostridium_aspara giforme	Campylobacter_ureolyticus	Time in heavy work for each time	BMI	Frequency of drinking non- milky coffee	
Alistipes_unclassifi ed	Clostridium_sp_HGF2				
Rothia_mucilaginos a	Corynebacterium_jeikeium				
Bacteroides_thetaio taomicron	Eubacterium_sp_3_1_31				
Faecalibacterium_ prausnitzii	Desulfovibrio_termitidis				
Bifidobacterium_ca tenulatum	Bifidobacterium_longum				
Roseburia_intestina lis	Bacteroides_vulgatus				
Desultovibrio_piger	i				
Clostridium_leptum	Epsilon15likevirus_unclassifie d				
Ruminococcus_alb us	Ruminococcus_champanellens is				
Ruminococcus_sp_ 5_1_39BFAA	Bacteroides_coprocola				
Prevotella_copri	Bordetella_unclassified				
Alistipes_senegalen	Providencia_unclassified				

Supplementary Table 10. Important factors associated with blood isobutyric acids.

sis

Lactobacillus_saliv arius	Classical_swine_fever_virus
Bacteroides_eggert	Bovine_rhinitis_B_virus
Erysipelotrichaceae bacterium 6 1 45	Cetobacterium_somerae
Acidaminococcus_s p_BV3L6	Okra_yellow_crinkle_Camero on alphasatellite
Bacteroides_nordii	Lactobacillus_phage_PL_1
Veillonella_unclass ified	Enterobacteria_phage_SfV
Bacteroides_sp_4_3 47FAA	Parabacteroides_sp_20_3
Bacteroides_caccae	Cyclovirus_NGchicken15_NG A 2009
Clostridium_citroni ae	Prevotella_bergensis
Blautia_hansenii	Rhodospirillum_unclassified
Clostridium_bolte	Enterobacteria_phage_HK225
Bacteroides_fragilis	C2likevirus_unclassified
Roseburia_inuliniv orans	Pseudomonas_alcaligenes
	Neisseria_flavescens
	Corynebacterium_propinquum
	Coriobacteriaceae_bacterium_ BV3Ac1
	Peptostreptococcus_anaerobiu s
	Eubacterium_siraeum
	Bilophila_wadsworthia
	Circovirus_like_genome_SAR
	_A Bifidobacterium pseudolongu
	m
	Clostridium hathewayi

Alistipes_sp_HGB5 Leuconostoc_gasicomitatum Enterovirus B Melon_aphid_borne_yellows_ virus Anaerotruncus colihominis Eubacterium cylindroides Bifidobacterium breve Dysgonomonas unclassified Fusobacterium nucleatum JC polyomavirus Prevotella buccalis Cardiobacterium_valvarum Actinobacillus unclassified Erysipelotrichaceae bacterium 21 3 Lactobacillus antri Facklamia unclassified Lachnospiraceae bacterium 5 _1_63FAA Prevotella bivia Gemella_haemolysans Clostridium difficile Solobacterium_moorei Pepper_vein_yellows_virus Veillonella_unclassified Eubacterium_ramulus Turicibacter_sanguinis Prevotella_timonensis Lindernia_anagallis_yellow_v ein virus satellite DNA beta Enterococcus casseliflavus Royal Farm virus

Collinsella_stercoris Human_cosavirus_B Megasphaera_unclassified Atopobium_parvulum Clostridium_ramosum Atopobium_vaginae Fig_fleck_associated_virus Marvinbryantia_formatexigen S Collinsella aerofaciens Acidaminococcus sp D21 Eubacterium dolichum Leuconostoc_gelidum Haemophilus pittmaniae Prevotella nanceiensis Dorea unclassified Lactococcus raffinolactis Clostridium_bolteae Helicobasidium_mompa_endo rnavirus 1 Lactobacillus_sakei Lactobacillus vaginalis Porphyromonas uenonis Pestivirus strain Aydin 04 T R Anaerostipes_unclassified Eggerthella_sp_1_3_56FAA Oligella_urethralis Lachnospiraceae_bacterium_8 1 57FAA Halomonas unclassified Actinomyces turicensis Gastropod_associated_circular _ssDNA_virus Streptococcus_vestibularis Hippeastrum_mosaic_virus Eubacterium_brachy

- Note: Top 30 gut microbiota species in dataset 1; top 100 gut microbiota species in dataset 2. Top 5 host characteristics features and top 5 dietary features in datasets 1 and 2.
- 668
- 669

Gut Microbiotas		Host Characteristics		Dietary Features	
Dataset 1	Dataset 2	Dataset 1	Dataset 2	Dataset 1	Dataset 2
Subdoligranulum_un classified	Desulfovibrio_termitidis	Height (cm)	Gender	Frequency of eating pickles	Whether you eat yogurt
Ruminococcus_torqu es	Ruminococcaceae_bacterium_D 16	Weight (kg)	Race	Frequency of eating steak	Whether you drink milk
Oscillibacter_unclass ified	Lactobacillus_phage_PL_1	Time in bicycling or swimming for each time	Height (cm)	Frequency of drinking non-milky coffee	Whether you eat cheese
Bacteroides_uniformi s	Bovine_viral_diarrhea_virus_2	Time in heavy work for each time	Weight (kg)	Quantity of eating steak in a day	
Rothia_mucilaginosa	Lachnospiraceae_bacterium_5_1 _63FAA	Whether you have you taken any probiotics in the past 12 months (Yes/No)	BMI	Quantity of eating chocolate candy in a day	
Clostridium_asparagi forme	Clostridium_sp_KLE_1755				
Bifidobacterium_cate nulatum	Lactobacillus_saerimneri				
Bacteroides_thetaiota omicron	Alloprevotella_tannerae				
Roseburia_intestinali s	Okra_yellow_crinkle_Cameroon alphasatellite				
Alistipes_unclassifie d	Dorea_formicigenerans				
Desulfovibrio_piger	Ruminococcus_obeum				
Faecalibacterium_p rausnitzii	Porphyromonas_asaccharolytica				
Bacteroides_nordii	Turicibacter_sanguinis				
Prevotella_copri	Peptostreptococcus_unclassified				
Acidaminococcus_sp BV3L6	Alloprevotella_unclassified				
Ruminococcus_albus	Eubacterium_ramulus				
Alistipes_senegalensi	Bacteroides_ovatus				
S					
Clostridium_leptum	Coriobacteriaceae_bacterium_B V3Ac1				
Ruminococcus_sp_5 _1_39BFAA	Avian_carcinoma_virus				
Bacteroides eggerth	Weissella confusa				

Supplementary Table 11. Important factors associated with blood isovaleric acids.

ii Ve

Veillonella_unclassifi	Fig_fleck_associated_virus
Parabacteroides_mer dae	Streptococcus_salivarius
Bacteroides_caccae	Ruminococcus_champanellensis
Erysipelotrichaceae_ bacterium 6 1 45	Faecalibacterium_prausnitzii
Clostridium_citronia e	Slow_bee_paralysis_virus
Blautia_hansenii	Olsenella_unclassified
Bacteroides_sp_4_3_ 47FAA	Klebsiella_pneumoniae
Lactobacillus_salivar ius	Pestivirus_strain_Aydin_04_TR
Bacteroides_fragilis	Enterococcus_avium
Weissella_unclassifie d	Culex_flavivirus
	Campylobacter_ureolyticus
	candidate_division_TM7_single _cell_isolate_TM7b Apoi_virus
	Odoribacter unclassified
	Barbel_circovirus
	Enterobacteria_phage_SfV
	Lactococcus_lactis
	Weissella_unclassified
	Lactobacillus_delbrueckii
	Holdemania_unclassified
	Actinomyces_urogenitalis
	Clostridium_sp_HGF2
	Bilophila_wadsworthia
	Aggregatibacter_segnis
	Actinobacillus_unclassified

Valsa_ceratosperma_hypovirus_ 1 **Bacteroides** eggerthii Campylobacter concisus Proteus mirabilis Nilaparvata lugens honeydew v irus 2 Zinnia leaf_curl_virus_associate d DNA beta Orthohepadnavirus_unclassified Klebsiella_phage_KP36 Collinsella_stercoris Hippeastrum_mosaic_virus Pseudomonas_phage_MP38 Anaerostipes_unclassified Oligella_urethralis Bifidobacterium_pseudolongum Coprobacillus unclassified Candidatus_Zinderia_insecticola Porphyromonas_uenonis Collinsella_aerofaciens Phascolarctobacterium_succinatu tens Parabacteroides johnsonii Clostridium bifermentans Bacteroides_sp_1_1_30 Holdemania sp AP2 Bovine_viral_diarrhea_virus_3 Granulicatella unclassified Cardiobacterium valvarum Lachnospiraceae bacterium 8 1 57FAA Blautia_producta

Escherichia sp TW09276 Akkermansia_muciniphila Streptococcus peroris Lindernia_anagallis_yellow_vein virus satellite DNA beta Corynebacterium amycolatum Butyrivibrio crossotus Hepatitis C virus Stomatobaculum longum Alistipes finegoldii Sapporo virus Human adenovirus B Peptostreptococcus_anaerobius Actinomyces naeslundii Collinsella intestinalis Parabacteroides sp 20 3 Corynebacterium durum Colombian_datura_virus **Bacteroides** fragilis Bordetella unclassified Anaerostipes caccae Lactobacillus gasseri Eubacterium siraeum Gastropod associated circular s sDNA_virus Anaerotruncus colihominis Barnesiella intestinihominis Mobiluncus curtisii Leuconostoc inhae

670 Note: Top 30 gut microbiota species in dataset 1; top 100 gut microbiota species in dataset 2. Top 5 host characteristics features and top 5 dietary features in datasets 1 and 2.

672