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Abstract: Magnetoencephalography (MEG) is a functional brain imaging technique with high tempo-
ral resolution compared with techniques that rely on metabolic coupling. MEG has an important
role in traumatic brain injury (TBI) research, especially in mild TBI, which may not have detectable
features in conventional, anatomical imaging techniques. This review addresses the original research
articles to date that have reported on the use of MEG in TBI. Specifically, the included studies
have demonstrated the utility of MEG in the detection of TBI, characterization of brain connectivity
abnormalities associated with TBI, correlation of brain signals with post-concussive symptoms, differ-
entiation of TBI from post-traumatic stress disorder, and monitoring the response to TBI treatments.
Although presently the utility of MEG is mostly limited to research in TBI, a clinical role for MEG in
TBI may become evident with further investigation.
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1. Introduction

Traumatic brain injury (TBI) occurs an estimated 27 million to 69 million times per year
throughout the world [1,2]. The plurality of TBIs occur from unintentional falls, and most
patients with TBI do not require hospitalization [3]. However, even mild TBI may result
in persistent symptoms such as headache, cervicalgia, vertigo, and cognitive impairment,
and the impairment may be more pronounced with repeated TBI. Furthermore, mild and
sometimes moderate TBI is often undetectable via conventional imaging such as computerized
tomography (CT) and anatomical magnetic resonance imaging (MRI). More advanced imaging
techniques are required for diagnosis, monitoring, and research of mild TBI.

Functional imaging techniques can be useful for diagnosis and prognosis in mild TBI
and for monitoring the effects of therapeutic interventions [4,5]. Functional imaging has
been shown to detect mild TBI that is undetectable in conventional anatomic imaging,
and long-term functional imaging abnormalities have been demonstrated in patients with
chronic mild TBI [6–9]. Functional imaging has also been used to analyze patterns of
disrupted connectivity and the response to therapeutic interventions in severe TBI [10,11].

Most functional imaging techniques measure neuronal activity indirectly through
neurovascular or metabolic coupling, that is, to provide energy for increased neuronal
activity, local cerebral blood flow, and glucose uptake increase. Neurovascular coupling is
the basis for functional MRI (fMRI) with blood-oxygen-level-dependent (BOLD) imaging
or arterial spin labeling (ASL) MRI. Neurovascular coupling is also the basis for single-
photon emission computed tomography (SPECT), which measures gamma emissions from
Technetium tc 99 m exametazime. Finally, neurovascular coupling is the basis for functional
near infrared spectroscopy (fNIRS), which compares light absorbance in the wavelengths
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absorbed by oxyhemoglobin with the wavelengths absorbed by deoxyhemoglobin. Al-
ternatively, metabolism coupling to neuronal activity is the basis for positron emission
tomography (PET), which detects emissions from a radiotracer linked to a biologically
active molecule such as fluorodeoxyglucose (FDG). Byrnes et al. have comprehensively
reviewed the use of FDG-PET in TBI [12]. Although these techniques, especially fMRI,
provide good spatial resolution, there is a delay between neuronal activation and the associ-
ated increase in blood flow and energy supply. Diagnostic techniques that directly measure
neuronal activity, including electroencephalography (EEG) and magnetoencephalography
(MEG), have superior temporal resolution.

MEG measures magnetic flux on the surface of the head associated with underlying
neuronal electrical currents. Magnetic signals from the brain were first recorded by the
physicist David Cohen in 1968 [13]. Since then, MEG has developed into a sophisticated
technique involving approximately 300 sensors on the scalp, along with appropriate shield-
ing to minimize noise from background magnetic fields. Ion currents from post-synaptic
potentials make the biggest contribution to the MEG signal; the currents include intra-
cellular currents along the soma–dendritic axis and an opposite-direction extracellular
return current [14]. To generate a magnetic field detectable by scalp sensors, simultaneous
currents must occur in neurons with similar orientations. Therefore, the neocortical pyra-
midal neurons aligned perpendicular to the cortical surface generate the primary signals
detected by MEG, but action potentials and fast sodium ion spikes may also contribute if
synchronized [14]. Like EEG, MEG allows for analysis of neural oscillatory activity across a
range of frequency bands (e.g., delta, <4 Hz; theta, 4–8 Hz; alpha, 8–12 Hz; beta, 12–30 Hz;
gamma, >30 Hz). MEG has a similar temporal resolution to EEG, but MEG is less suscep-
tible to distortion from variations in tissue conductivity than EEG [14]. EEG, however,
can detect both radial and tangential currents, whereas MEG only detects the tangential
component of currents. Therefore, MEG and EEG may be combined for optimal neuronal
signal detection. Figure 1 demonstrates the orientation of electrical currents and magnetic
fields in relation to MEG and EEG sensors. Figure 2 demonstrates an overview of the MEG
processing steps, including filtering external and physiological artifacts, identifying epochs
and averaging signal from like epochs, and coregistration of the MEG sensor coordinates
with anatomical MRI for source analysis.

Given the high incidence and prevalence of TBI and the need for new technologies
for the diagnosis, prognosis, and monitoring response to treatments in TBI, this review
examines the current evidence for the use of MEG in TBI.
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Figure 1. (a) Pyramidal neuron with positive extracellular charge around the apical dendrites and negative extracellular 
charge around the somatic dendrites, as in the case of a net excitatory post-synaptic potential at the somatic dendrites 
and/or a net inhibitory post-synaptic potential at the apical dendrites. Purple arrow represents the extracellular electric 
current, and blue arrows represent the magnetic field associated with the extracellular current; (b) Cortical gyri and sulcus 
with pink arrows representing electric dipoles from synchronized neuronal activity and blue arrows showing the magnetic 
fields associated with these electric dipoles. The MEG magnetometer only detects magnetic fields from dipoles oriented 
tangential to the cortical surface, whereas the EEG electrodes can detect radial and tangential electric dipoles. MEG = 
magnetoencephalography; EEG = electroencephalography. 

 
Figure 2. Overview of the processing steps involved in magnetoencephalography from data acqui-
sition to data analysis. MEG = magnetoencephalography; ECG = electrocardiogram; EOG = elec-
trooculogram; MRI = magnetic resonance imaging. 

Given the high incidence and prevalence of TBI and the need for new technologies 
for the diagnosis, prognosis, and monitoring response to treatments in TBI, this review 
examines the current evidence for the use of MEG in TBI. 

2. Literature Search 

Figure 1. (a) Pyramidal neuron with positive extracellular charge around the apical dendrites and negative extracellular
charge around the somatic dendrites, as in the case of a net excitatory post-synaptic potential at the somatic dendrites
and/or a net inhibitory post-synaptic potential at the apical dendrites. Purple arrow represents the extracellular electric
current, and blue arrows represent the magnetic field associated with the extracellular current; (b) Cortical gyri and
sulcus with pink arrows representing electric dipoles from synchronized neuronal activity and blue arrows showing the
magnetic fields associated with these electric dipoles. The MEG magnetometer only detects magnetic fields from dipoles
oriented tangential to the cortical surface, whereas the EEG electrodes can detect radial and tangential electric dipoles.
MEG = magnetoencephalography; EEG = electroencephalography.
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Figure 2. Overview of the processing steps involved in magnetoencephalography from data acquisi-
tion to data analysis. MEG = magnetoencephalography; ECG = electrocardiogram; EOG = electroocu-
logram; MRI = magnetic resonance imaging.

2. Literature Search

The authors conducted a PubMed search using the Medical Subject Headings (MeSH)
“traumatic brain injury” and “magnetoencephalography” and the filter for human studies.
The articles were screened by reviewing their abstracts for relevance to clinical and research
applications of MEG in adults with TBI. Articles were included in the review only if the
full text was available in English.
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There were 22 articles in PubMed fitting the search criteria. Screening the abstracts
yielded 18 articles relevant to clinical and research applications of MEG in people with TBI.
One of these articles was excluded because the full text was not available in English. From
the reference lists of the articles found in the PubMed search, we identified 11 additional
original research articles on the use of MEG in TBI. Together, the articles described the use
of MEG for detecting TBI, differentiating TBI from conditions with similar features, charac-
terizing changes in brain rhythm or connectivity from TBI, correlating imaging findings
with clinical features, and monitoring the response to treatments. These applications are
described in detail herein. Participant demographics for each study are shown in Table 1,
and MEG system and data analysis details are available in Table 2.

Table 1. Participant demographics for each study, listed in the order referenced. Sets are ranges unless otherwise specified
with “mean.” Fields marked with a hyphen indicate the information was not available. “N/A” indicates “not applicable.”
* Retrospective review. ‡ Applies to affected patient group only. ˆ Indicates years with post-traumatic stress disorder
symptoms as opposed to years since traumatic brain injury.

Study No. of Affected
Patients

No. of Healthy
Controls % Female Ages Time Since Injury

Lewine (1999) [15] 30 20 44 18–57 2–16 months

Lewine (2007) [16] 30 N/A * - ≥18 ≥1 year

Huang (2009) [17] 10 14 10 ‡ 12–43 1–46 months

Huang (2012) [18] 55 44 16 Mean 27 ± 8 4 weeks–3 years

Huang (2014) [19] 84 79 16 Mean 28 ± 9 4 weeks–5 years

Zouridakis (2012) [20] 10 10 30 20–46 >3 months

Vakorin (2016) [21] 20 21 0 21–44 <3 months

Dimitriadis (2015) [22] 31 55 42 ‡ Mean 29 ± 9 <24 h

Kaltiainen (2018) [23] 26 139 68 18–60 6 days–6 months

Li (2018) [24] 13 8 48 Mean 26 -

Tormenti (2012) [25] 5 5 50 16–57 ≤4 months

Da Costa (2015) [26] 16 16 0 20–40 2 months

Popescu (2016) [27] 32 N/A 0 Mean 40 6 months–11 years

Rowland (2018) [28] 18 10 0 Mean 39 ± 10 Mean 6 ± 3 years

Zhang (2020) [29] 23 21 0 18–48 1–4 years ˆ

Luo (2013) [30] 18 18 0 Mean 29 ± 6 ‡ ≥6 months

Dunkley (2015) [31] 20 21 0 Mean 31 ± 7 ‡ <3 months

Antonakakis (2016) [32] 30 50 43 ‡ Mean 29 ± 9 ‡ <24 h

Antonakakis (2017) [33] 30 50 43 ‡ Mean 29 ± 9 <24 h

Antonakakis (2020) [34] 30 50 43 ‡ Mean 29 ± 9 <24 h

Alhourani (2017) [35] 9 15 44 ‡ 14–62 3 months–8 years

Dunkley (2018) [36] 26 24 0 Mean 31 ± 7 ‡ <3 months

Popescu (2017) [37] 80 N/A 1 Mean 59 -

Li (2015) [38] 6 5 36 Mean 29 ± 7 -

Castellanos (2010) [39] 15 14 - 18–51 4–6 months

Castellanos (2011) [40] 15 14 13 18–51 2–6 months

Lawton (2019) [41] 4 N/A 0 15–68 -

Huang (2017) [42] 6 N/A 17 27–41 Mean 48 ± 25
months
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Table 2. Magnetoencephalography system and data analysis details for each study, listed in the order referenced. MNI = Montreal Neurological Institute; SVM = support vector machine;
CTF = CTF MEG International Services; ELM = extreme learning machine; ANOVA = analysis of variance; AAL = Automated Anatomical Labelling atlas; LOOCV = leave-one-out
cross-validation; AUR = area under receiver operating characteristic curve; rRF = recursive random forests; k-NN = k nearest neighbors; ENS = ensemble classification; AEC = amplitude
envelope correlation.

Study MEG System Sensor/Source Space;
Atlas, if Applicable

Functional
Connectivity Data Analysis Features Selection if

Machine Learning
Classifier if

Machine Learning

Lewine (1999) [15] Magnes Source N/A Z-score N/A N/A

Lewine (2007) [16] Elekta Source N/A Fisher exact test N/A N/A

Huang (2009) [17] Elekta Source N/A Nonparametric permutation
tests N/A N/A

Huang (2012) [18] Elekta Source; MNI-152 N/A Correlation coefficient N/A N/A

Huang (2014) [19] Elekta Source; MNI-152 N/A Z-score N/A N/A

Zouridakis (2012) [20] Magnes Sensor Static Machine learning Fisher’s criterion
ranking SVM

Vakorin (2016) [21] CTF Source; AAL Dynamic Machine learning LOOCV SVM

Dimitriadis (2015) [22] Magnes, Elekta Sensor Static Machine learning Tensor space
dimensionality reduction ELM

Kaltiainen (2018) [23] Elekta Source N/A Chi square N/A N/A

Li (2018) [24] CTF Source Static ANOVA N/A N/A

Tormenti (2012) [25] Elekta Source N/A Task-based activity, stepwise
linear discriminant analysis N/A N/A

Da Costa (2015) [26] CTF Source N/A Task-based activity, t-test,
ANOVA N/A N/A

Popescu (2016) [27] Elekta Source; Desikan-Killiany N/A
t-test, Mann–Whitney

rank-sum, Spearman’s rank
correlation coefficient

N/A N/A

Rowland (2018) [28] CTF Source Static Graph theory metrics,
ANOVA N/A N/A

Zhang (2020) [29] CTF Source; AAL Static Machine learning, AUR rRF SVM

Luo (2013) [30] Magnes Sensor N/A Lempel-Ziv complexity,
t-test N/A N/A
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Table 2. Cont.

Study MEG System Sensor/Source Space;
Atlas, if Applicable

Functional
Connectivity Data Analysis Features Selection if

Machine Learning
Classifier if

Machine Learning

Dunkley (2015) [31] CTF Source; AAL Static AEC, nonparametric
permutation tests N/A N/A

Antonakakis (2016) [32] Magnes Sensor Static Machine learning Tensor subspace analysis k-NN, ENS, ELM

Antonakakis (2017) [33] Magnes Sensor Static Machine learning Iterative bootstrap k-NN, SVM

Antonakakis (2020) [34] Magnes Source; AAL Dynamic Machine learning Rank-feature k-NN

Alhourani (2017) [35] Elekta Source; MNI-152 Static Phase synchrony, graph
theory metrics N/A N/A

Dunkley (2018) [36] CTF Source Static and dynamic AEC, nonparametric
permutation tests N/A N/A

Popescu (2017) [37] Elekta Source; Desikan-Killiany N/A Normalized evoked
response power, ANOVA N/A N/A

Li (2015) [38] CTF Source; Desikan-Killiany N/A Z-score maps N/A N/A

Castellanos (2010) [39] Magnes Sensor Dynamic
Distance-to-control

connectivity patterns,
Kruskal–Wallis

N/A N/A

Castellanos (2011) [40] Magnes Sensor Dynamic Graph theory metrics,
Kruskal–Wallis N/A N/A

Lawton (2019) [41] Elekta Source; MNI-152 N/A Task-based activity, t-test

Huang (2017) [42] Elekta Sensor N/A Z-score maps N/A N/A
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3. Detection of TBI

Whereas most patients with severe TBI have hemorrhage, edema, and/or ischemia
detectable via CT or anatomical MRI, many mild and sometimes moderate injuries do not
have features visible with these conventional techniques. As with other functional imaging
techniques, MEG has been shown to detect TBI that is otherwise silent in conventional imag-
ing. MEG features indicating mild TBI include abnormal resting state neural oscillations
and altered connectivity between brain regions, as described in detail in this section.

Among the first to investigate MEG in TBI, Lewine et al. in 1999 compared conven-
tional MRI, EEG, and resting-state MEG findings in 20 normal participants, 20 symptomatic
post-concussion patients, and 10 asymptomatic post-concussion patients [15]. The post-
concussion patients’ injuries occurred 2–16 months prior to the study. Compared with
MRI and EEG, MEG was significantly more sensitive for abnormalities in post-concussive
patients, and all of the patients with MRI abnormalities also had MEG abnormalities.
The MEG abnormalities were mostly characterized by abnormal low-frequency magnetic
activity (ALFMA). Similarly, Lewine et al. (2007) retrospectively reviewed MRI, SPECT,
resting-state MEG, and neuropsychological testing findings in 30 patients with symptoms
at least one year after mild blunt head trauma [16]. MEG was significantly more sensitive
than MRI or SPECT for identification of abnormalities in patients with cognitive symptoms,
and the notable MEG feature in this study was abnormal dipole slow-wave activity. Fur-
thermore, the functional brain region in which the abnormalities occurred in each patient
correlated with the patient’s specific cognitive symptoms (e.g., frontal lobe abnormal dipole
slow-wave activity in patients with executive dysfunction). These studies set the stage for
MEG as an important tool in the diagnosis of mild TBI and in highlighting the anatomic
correlation among patients with even mild functional deficits.

Further studies have confirmed that resting-state MEG is sensitive for detecting mild
TBI. Huang et al. (2009) analyzed MEG integration with diffusion tensor imaging (DTI) for
detection of mild TBI in a case–control series of 10 patients with subacute to chronic mild
TBI and persistent post-concussive symptoms for an average of 17 months and 14 matched
controls [17]. Abnormal MEG slow waves were found in all 10 patients with mild TBI,
whereas only seven patients with mild TBI had abnormalities in DTI and only one patient
with mild TBI had abnormal conventional MRI findings. Furthermore, the grey matter
surface area generating MEG slow waves was strongly correlated with the volume of
non-major white matter tracts with reduced DTI anisotropy; major white matter tract injury
was associated with much higher grey matter surface area with slow waves. The authors
theorized that pathologic slow waves were a result of grey matter deafferentation from
white matter tract injury, as has been shown in animal studies with EEG [43,44]. Later, in
2012, Huang et al. reported results from an automated abnormal low-frequency magnetic
activity (ALFMA) detection method in 45 patients with mild TBI and 10 patients with
moderate TBI [18]. Time from injury to the study ranged from 4 weeks to 3 years. ALFMA
was detected in 87% of patients with mild TBI and 100% of patients with moderate TBI, and
the number of cortical regions with ALFMA was significantly correlated with total post-
concussive symptom scores. Later, Huang et al. (2014) developed voxel-based whole-brain
MEG slow-wave imaging and used it to compare 84 patients with persistent symptoms
from subacute to chronic mild TBI (ranging between 4 weeks to 5 years post-injury) with
79 controls [19]. They reported an 84.5% detection rate for mild TBI (combining blast and
non-blast injury mechanisms). Again, they found a correlation between the brain region
with abnormal signal and the symptoms; MEG slow waves in prefrontal areas correlated
with personality change, difficulty concentrating, affect lability, and depression.

Beyond comparing MEG rhythm abnormalities among specific brain regions, the
connectivity between brain regions has also been used to detect TBI. Studies by Zouridakis
et al. and Vakorin et al. used resting-state MEG network connectivity and machine learning
to detect mild TBI [20,21]. Patients in the Zouridakis et al. study sustained TBI more than
3 months prior to the study, whereas patients in the Vakorin et al. study sustained TBI less
than 3 months prior to the study. Both groups of researchers recorded resting-state MEG
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activity in patients with mild TBI and age- and sex-matched controls. Zouridakis et al.
used Granger causality to assess connectivity between brain regions, whereas Vakorin et al.
used phase locking values (PLVs, values between 0 and 1, representing the degree of phase
synchrony between two brain regions) to assess connectivity. Both groups used support
vector machines to classify patients as having had a mild TBI or not. The method used by
Zouridakis et al. detected mild TBI with 85% accuracy. The method used by Vakorin et al.
detected mild TBI with 88% accuracy, and the classification confidence was correlated with
TBI symptom severity scores. A different study published in 2015 by Dimitriadis et al. also
used machine learning with PLVs from resting-state MEG data to classify patients with
acute, mild, or no TBI [22]. Instead of a support vector machine, they used the extreme
learning machine classifier, and they reported 100% classification accuracy. The findings of
these investigators demonstrated that combining MEG connectivity analysis with machine
learning can represent a powerful tool for detecting mild TBI.

In another study of brain region connectivity with resting-state MEG, Kaltiainen et al.
included data from the same participants at multiple points in time. The authors analyzed
resting-state MEG in 26 patients with mild TBI that occurred 6 days to 6 months prior
to the study [23]. In 12 of the patients, follow-up MEG was done 6 months later. Of the
26 patients, seven had abnormal low-frequency MEG activity greater than 2 standard
deviations from the mean of that seen in 139 controls. At 6-month follow-up, however,
only three of those seven patients had persistently abnormal low-frequency MEG activity.
Li et al. (2018) similarly reported attenuation of MEG abnormalities over time in patients
with mild TBI [24]. Using resting-state MEG signal source analysis and Granger causality
to determine in-going and out-going connections between brain regions, they compared
connectivity networks between 13 patients with mild TBI and eight matched controls.
There were significantly more strong connections in the delta frequency band in patients
with mild TBI, but the difference dissipated over three successive visits for MEG recording.
These studies suggest a temporal relationship for the presence of abnormal MEG signals
and indicate a potential for MEG to be used for mild TBI diagnosis and also as a radiological
biomarker for brain “healing.” This will be discussed further in the “Monitoring Response
to Treatments” section of this review.

Beyond resting-state MEG, task-based MEG has also proven useful in detecting TBI.
Tormenti et al. published data from MEG recordings during a language and spatial task in
five patients with a history of concussion within the past 4 months and five controls [25].
The participants responded with whether each of a series of three figures containing
geometric shapes matched the preceding sentence (e.g., “The blue square is below”). They
pressed a button after each word in the sentences and for each response on figures matching
the sentences or not. The researchers recorded button response times and MEG activity
from about 100 brain recording sites per participant. They used statistical analyses to
construct classification rules to categorize patients as concussed or not based on MEG data.
Compared with controls, patients with previous concussions had significantly different
normalized response times to the words and figures presented in the trials. Pairing MEG
data from the occipitoparietal and temporal regions, the researchers constructed a rule that
correctly categorized eight of the 10 patients as concussed or not.

Da Costa et al. (2015) also used task-based MEG in 16 patients with mild TBI within
2 months of the study [26]. Patients with mild TBI showed delayed reaction times and
different sequences of brain region activation compared with matched controls performing
the same tasks.

In conclusion, both resting-state and task-based MEG have proven sensitive for detect-
ing TBI even when conventional CT or MRI is normal. MEG may even be more sensitive
than other advanced imaging modalities such as SPECT. In the resting state, abnormal
low-frequency MEG signals are associated with TBI, and the brain regions with the low-
frequency signals correlate with the injury locations and symptoms. Moreover, MEG may
be used as an adjunctive study for determining recovery from brain injury.
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4. Differentiating Mild TBI from Post-traumatic Stress Disorder

Whereas abnormal low-frequency MEG activity may be sensitive for detecting TBI, it
is not specific to TBI. Other neurologic and psychiatric conditions also feature abnormal
low-frequency activity, including brain tumors, infarcts, epilepsy, Alzheimer disease, and
schizophrenia [45]. Clinical history can diagnose epilepsy, and anatomical imaging such as
CT and MRI can be used to diagnose brain tumors and infarcts. However, dementia and
psychiatric disorders cannot always be differentiated from mild TBI using conventional
diagnostic methods.

Contrasting brain abnormalities between post-traumatic stress disorder (PTSD) and
TBI is especially relevant because these conditions are frequently comorbid, and mild TBI
may exacerbate PTSD symptoms [46–48]. Postconcussive symptoms, including anxiety or
depression, apathy, changes in personality, dizziness, fatigue, headaches, irritability, and
sleep disturbance, are commonly attributed to TBI, but the symptoms overlap with those
of PTSD [49]. Clinically, it is important to distinguish between the two diagnoses because
the natural history differs between psychological conditions and neurostructural damage.
Therefore, attributing PTSD symptoms to TBI could give patients and providers the wrong
expectations for recovery [49]. Furthermore, the treatments for each condition are different.
Dunkley (2015) theorized that the two disorders could be distinguished based on MEG and
that increased high-frequency phase synchronization seen in PTSD could be the result of
a psychological state, whereas increased low-frequency amplitude coupling in mild TBI
could be the result of neurostructural alteration [50].

Building on this theory, Popescu et al. published a study in 2016 in which they
analyzed resting-state MEG recordings in 32 active-duty service-member patients with
mild TBI and persistent post-concussive symptoms [27]. Each patient completed the PTSD
Check List—Military version (PCL-M); 15 had low PTSD symptoms severity (PCL-M
scores ≤44) and 17 had high PTSD symptom severity (PCL-M scores >44). To reduce the
effect of confounding psychological conditions, the researchers excluded patients with
depression and matched patients in the high and low PTSD symptoms severity groups for
scores of generalized anxiety. They found reduced MEG activity in the alpha frequency
band in the dorsolateral prefrontal cortex of patients with high PTSD symptom severity
compared with those with low PTSD symptom severity. The study showed that reduced
alpha activity in the prefrontal cortex may be a biomarker for PTSD in patients with mild
TBI, but it was not designed to elucidate the significance of the prefrontal alpha activity in
the pathophysiology of PTSD in patients with TBI.

In another study investigating MEG activity in veterans with mild TBI and PTSD,
Rowland et al. examined six veteran patients with both PTSD and chronic mild TBI, six
patients with only chronic mild TBI, six patients with only PTSD, and 10 controls [28]. The
participants completed the PCL-M. The researchers recorded resting-state MEG signals,
then identified nodes of peak activity in the brain. They measured phase consistency
between each pair of nodes to create functional connectivity networks for each participant.
Analyzing these networks, they found that patients with PTSD had decreased structure
and increased randomness in their functional connectivity networks. Patients with mild
TBI had greater structure and less randomness. The authors’ methods could be useful in
differentiating mild TBI and PTSD, which are often comorbid in military patient groups
as well as intimate partner violence patient groups. However, as described in the Fifth
Independent Medical Expert Group report, further research is required before MEG can be
used as a diagnostic test for TBI or PTSD [51].

In a step closer to using MEG clinically to diagnose PTSD, Zhang et al. (2020) devel-
oped a machine learning classifier to identify military service members with PTSD [29].
They compared resting-state MEG data from 23 soldiers diagnosed with PTSD with those
from 21 soldiers without PTSD but who had similar traumatic experiences in battlefield
deployment. The support vector machine (SVM) area under the receiver operating char-
acteristic curve was 0.9, demonstrating very good accuracy. However, this study did not



Med. Sci. 2021, 9, 7 10 of 15

directly look for TBI in conjunction with or as opposed to PTSD, so additional research is
still needed for MEG to distinguish TBI from PTSD accurately.

5. Characterizing Connectivity Abnormalities and Correlating with Clinical Features

Although detecting mild TBI and differentiating it from other conditions with similar
features can be clinically important for tailoring existing treatment regimens, understanding
the pathophysiology of persistent symptoms after TBI is important to developing and
testing new treatment modalities. Previous studies have used both resting-state and task-
based EEG to study the effect of TBI on brain rhythm and connectivity, and MEG has also
become useful for this [52–55]. As discussed in the previous sections, researchers have used
MEG connectivity analyses with a focus on detecting and differentiating TBI [17,20–28,50].
In this section, we will focus on discussing the use of MEG connectivity analysis studies in
exploring the pathophysiology of persistent symptoms after TBI.

Luo et al. (2013) were among the first to show a correlation between MEG signal and
specific cognitive symptoms in patients with TBI [30]. Using resting-state MEG data from
18 military veterans with known or suspected TBI at least 6 months prior to the study
and 18 age- and sex-matched controls, they applied Lempel–Ziv complexity (LZC), which
estimates complexity by the number of patterns in finite sequences. Participants were also
administered a number of neuropsychological tests, producing 44 neuropschological values
representing attention, executive function, global cognitive function, language, memory,
motor functions, processing speed, and visual–spatial skills. Not only were there multiple
brain regions with significantly lower LZC in patients with TBI compared with controls,
but there were also four neuropsychological values that significantly correlated with LZC
in distinct brain regions. The functional significance of positive vs. negative correlations
between LZC and neuropsychological values requires further investigation, but the results
from this study suggest that LZC applied to MEG may be a tool for analyzing motor,
reasoning, and visual perception dysfunction after TBI.

As described in the section on TBI detection, Dimitriadis et al. (2015) analyzed MEG
connectivity based on PLVs with machine learning to detect mild TBI with high accuracy,
but they also used graph theory to better characterize the different regional brain network
connectivity between patients with mild TBI and age-matched controls [22]. The control
participants had strong local connections and some long-range connections that accounted
for 20% of the total number of identified connections. Conversely, patients with mild TBI
had weak local connections but strong long-range connections that accounted for 60% of
the total. Furthermore, the long-range connections in the controls mainly linked frontal to
central regions or central to peripheral regions, but the long-range connections in patients
with mild TBI mainly linked peripheral regions. Dunkley et al. (2015) and Antonakakis
et al. (2016, 2017) also showed differences in brain connectivity across multiple frequency
bands between patients with mild TBI and controls [31–33].

In 2020, Antonakakis et al. studied spontaneous network microstates in patients with
TBI [34]. Using resting-state MEG data from 30 patients with mild TBI and 50 healthy con-
trols, they constructed dynamic functional connectivity graphs from PLVs. Subsequently,
they used a vector quantization process to compute network microstates for each partic-
ipant and analyzed how these network microstates changed over time segments. Then,
using a machine learning classifier with network microstate features, they reported 94%
accuracy in classifying patients with mild TBI and healthy controls. The patients with mild
TBI had lower time-resolved organization in their brain connectivity networks compared
with controls.

A study by Alhourani et al. (2017) also used PLVs from resting-state MEG data to
characterize functional connectivity in patients with chronic, mild TBI (3–96 months after
injury) and persistent post-concussive symptoms [35]. Using graph theory, they found
that local communication efficiency was reduced in all frequency bands in patients with
mild TBI compared with controls. The researchers also reported reduced connectivity
predominantly in the parietal and occipital lobes of patients with mild TBI compared
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with controls. They noted that specific regions with significantly reduced connectivity
included major hubs in the default mode network (DMN), a network active during rest
and associated with memory and attention [35]. In 2018, Dunkley et al. expanded on
the significance of the DMN in TBI [36]. The researchers obtained resting-state MEG
recordings in 20 patients with a concussion within 3 months prior to the study and 20 age-
and sex-matched controls. The participants also underwent cognitive behavioral testing
including the Sports Concussion Assessment Tool 2 (SCAT-2). The researchers calculated
amplitude envelope correlations (AECs), which are values measuring the temporal correla-
tion between waveform amplitudes in separate brain regions, independent of their phases.
They used the AECs to construct graphs of intrinsic connectivity networks. As opposed
to Alhourani et al. (2017), they found increased DMN connectivity in the alpha and beta
frequency bands in patients with previous concussions. Furthermore, after controlling
for comorbidities, the authors found that DMN connectivity had a significant, positive
correlation with concussion symptoms.

Another study correlating post-concussion symptoms with brain connectivity findings
was published by Popescu et al. in 2017 [37]. Rather than using a general symptom scale
score, these authors focused on word finding difficulty associated with mild TBI. They
recorded task-based MEG data in 57 right-handed military service members with a history
of mild TBI and persistent symptoms who were stratified into three cognitive performance
groups based on the Rivermead Behavioral Memory Test. During MEG recording, the
participants were presented with 80 pictures of common objects and tasked with naming
them. The authors reported early activation of widely distributed networks for visual and
linguistic processing in the dominant hemisphere after presentation with an object to be
named. They also found widespread decreased amplitude of the response in patients with
mild TBI and low cognitive performance scores compared with those with mild TBI and
medium or high cognitive performance scores.

Finally, MEG can also be combined with EEG to characterize activity in the brain
associated with TBI. In 2015, Li et al. published a study in which they analyzed resting-state
MEG and EEG activity at 68 brain regions of interest [38]. Comparing brain activation
maps between patients with mild TBI and controls, they found significant differences in
low-frequency activity on both EEG and MEG. The sample size was limited to six patients
with mild TBI and five controls, but further research combining EEG and MEG may prove
useful in characterizing detailed rhythm and connectivity abnormalities after TBI and
explaining how these abnormalities relate to symptoms.

6. Monitoring Response to Treatments

Multiple studies have shown that MEG abnormalities in TBI dissipate with time since
the injury and/or with recovery from the injury [23,24,56], and others have demonstrated
that MEG abnormalities correlate with symptoms severity [18,21]. Further studies have
taken an additional step by incorporating treatment programs into the research protocol
and using MEG to look for responses to the treatments. This is an important area of research
that could have significant clinical implications.

In early studies on response to TBI treatment, Castellanos et al. (2010) compared
resting-state MEG recordings in patients with chronic TBI (range 2–6 months after injury)
before and after a neuropsychological rehabilitation program [39,40]. The patients had
severe cognitive impairment, and the rehabilitation programs involved cognitive therapy
and lasted 7–12 months. The authors used graph theory to analyze MEG data and found
that, compared with controls, patients with TBI had increased network strength in the delta
frequency band and decreased network strength plus network reorganization in the alpha
frequency band [39]. After rehabilitation, the network characteristics in each frequency
band became more similar to those of the control participants. In 2011, Castellanos et al.
reported similar network changes in patients pre- and post-rehabilitation for chronic
TBI (range 4–6 months after injury) but also found correlations between region-specific
connectivity values and neuropsychological test scores for various cognitive functions.
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These studies identified parameters that are correlated with pre- and post-rehabilitation
status in TBI patients, but they were not designed to determine whether time since injury
or the rehabilitation program was responsible for the MEG changes and cognitive recovery.

MEG has also been used to evaluate a more specific therapeutic intervention, percep-
tion attention therapy (PATH), which is a visual timing training task involving movement
discrimination. Lawton and Huang (2019) studied four patients with cognitive deficits
attributed to TBI who underwent working memory task-based MEG before and after
8 weeks of PATH neurotraining [41]. After the intervention, the MEG activity during the
working memory task increased in the participants’ frontoparietal attention networks and
dorsal stream, as did their performance on standardized tests of attention, reading, and
working memory skills.

Besides rehabilitation programs requiring active participation, a passive TBI treatment
intervention has also been tested with MEG. Huang et al. (2017) recorded MEG data in
patients with chronic TBI and persistent post-concussive symptoms (average duration
48 ± 25 months) before and after a 6-week passive neurofeedback intervention using
low-intensity pulse transcranial electrical stimulation with EEG monitoring [42]. They
reported reductions in both abnormal MEG slow waves and post-concussive symptom
scores after the intervention. Similarly to the studies by Castellanos et al., this study lacked
a null/sham intervention group so whether the intervention or the timing was responsible
for the changes is unclear. However, both research groups have shown that MEG can
be used as a supplement to neuropsychological testing to assess recovery after TBI and
that MEG parameters could be used as outcome measures for future studies assessing the
efficacy of TBI clinical treatment interventions.

7. Limitations of MEG

Although the temporal resolution of MEG is very good, its spatial resolution is inferior
to that of MRI. For functional brain activity maps, MEG data are often co-registered with
anatomical MRI for MEG source imaging, requiring patients/participants to undergo an
MRI scan in addition to the MEG data acquisition session. However, even with MRI-aided
source modelling, Kaltiainen et al. (2018) demonstrated limited sensitivity of MEG to
traumatic lesions deep in the brain (>3 cm from the cortex) [23]. Therefore, functional
imaging methods with strong spatial resolution such as fMRI are important complements
to MEG in TBI research. Additionally, longitudinal studies that assess the progression
of MEG symptom abnormalities and the relation of these signals to cognitive and other
outcome over time are quite limited; this was identified as a major gap in the clinical utility
of MEG in TBI in a consensus panel summit convened by the United Kingdom Office of
the Surgeon General in 2020 to specifically address the relative utility of MEG and other
imaging techniques [57].

MEG machines are also very expensive and require a magnetically shielded room.
Specialized expertise is also required for analysis and interpretation. Thus, it is not available
in many institutions. The benefit of MEG as an adjunct in choosing depth electrode sites for
epilepsy surgery planning may be worth the additional cost [58]. However, MEG does not
yet have a concrete clinical application in TBI with a cost–benefit ratio proven favorable.

8. Conclusions

MEG is a functional brain imaging technique with high temporal resolution and
reasonable spatial resolution when co-registered with anatomical MRI. TBI researchers
have demonstrated a variety of uses for MEG, especially in the detection of mild TBI and the
characterization of functional network connectivity changes from TBI that cannot be seen
with conventional anatomical imaging techniques. Combining MEG with other techniques,
such as EEG or DTI, can support efforts to understand connectivity changes from TBI.
MEG research has also been directed toward differentiating TBI from other conditions
with similar clinical features, such as PTSD, as well as toward assessing responses to
TBI treatment interventions. Although presently the utility of MEG is mostly limited to
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research in TBI, future research may eventually identify a clinical role for it in TBI as it has
in epilepsy.
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