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Abstract

Schistosomiasis is a significant parasitic infection creating disease burden throughout many of the world’s developing
nations. Iron deficiency anemia is also a significant health burden resulting from both nutritional deficit as well as parasitic
infection in these countries. In this study we investigated the relationships between the disease outcomes of Schistosoma
japonicum infection and iron homeostasis. We aimed to determine if host iron status has an effect on schistosome
maturation or egg production, and to investigate the response of iron regulatory genes to chronic schistosomiasis infection.
Wild-type C57BL/6 and Transferrin Receptor 2 null mice were infected with S. japonicum, and sacrificed at the onset of
chronic disease. Transferrin Receptor 2 null mice are a model of type 3 hereditary hemochromatosis and develop significant
iron overload providing increased iron stores at the onset of infection. The infectivity of schistosomes and egg production
was assessed along with the subsequent development of granulomas and fibrosis. The response of the iron regulatory gene
Hepcidin to infection and the changes in iron status were assessed by real-time PCR and Western blotting. Our results show
that Hepcidin levels responded to the changing iron status of the animals, but were not significantly influenced by the
inflammatory response. We also show that with increased iron availability at the time of infection there was greater
development of fibrosis around granulomas. In conclusion, our studies indicate that chronic inflammation may not be the
primary cause of the anemia seen in schistosomiasis, and suggest that increased availability of iron, such as through iron
supplementation, may actually lead to increased disease severity.
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Introduction

Schistosomiasis is a significant parasitic infection creating

considerable disease burden in many tropical and developing

nations. Currently, some 74 countries are endemic for schistoso-

miasis with an estimated 600 million people residing within regions

in which the parasite is prevalent [for review see 1]. Globally,

approximately 207 million people are infected with schistosomes

and 120 million of these suffer chronic symptoms [2]. Iron

deficiency anemia is a significant health burden resulting from

both nutritional deficit as well as parasitic infection in many of

these schistosomiasis-endemic nations. Chronic schistosomiasis has

been associated with the burden of anemia in these developing

regions for many years, although it has proven difficult to isolate

and substantiate the association owing to the number of

confounding factors that exist within these regions [3,4].

Schistosomiasis in humans is caused primarily by 3 species,

Schistosoma mansoni, S. japonicum and S. haematobium, which have

different geographic distributions throughout Africa, South

America and Asia. Despite differences in disease arising from the

site of patent infection [5], and subtle differences in immunological

responsiveness [6,7], the host disease progression of schistosomiasis

is essentially similar for all species. This similarity occurs because

disease pathology does not result from infection per se, but rather

from the intense granulomatous response to antigens secreted by

the larvae within the schistosome eggs that have become lodged

within host tissue [6,7]. As the granulomatous response advances,

activated hepatic stellate cells and alternatively activated macro-

phages are believed to be responsible for the deposition of

extracellular matrix resulting in hepatic fibrosis surrounding the

granulomas [8–10]. This fibrosis can lead to chronic obstruction of

the vasculature, and in humans result in periportal fibrosis, which

is responsible for severe long term disease outcomes [5]. Despite

having developed a significant understanding of the pathological

development of the schistosomiasis disease state, and its association

with anemia being reported anecdotally for decades, it is only in

recent years that the association of schistosomiasis and anemia has

been definitively linked.

Several recent cross-sectional multi-variant population cohort

studies have confirmed the association of anemia and the disease

state of schistosomiasis. These studies have shown that when

confounding factors such as nutritional deficiencies, co-infection of

other parasites, age, sex, and weight are accounted for,

schistosomiasis infection correlates inversely with hemoglobin
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levels, and can be significantly linked to the associated anemia [for

a review of the association of schistosomiasis and anemia see 3,4].

The strongest causal relationship between schistosomiasis and

anemia has been established for S. japonicum from the Philippines,

for which several studies have demonstrated an inverse relation-

ship between infection intensity and hemoglobin [11–14]. Along

with the confirmed linkage of anemia to schistosomiasis have come

a number of theories about its cause, though little direct evidence

exists to support the anecdotal explanations which exist within the

literature. Most commonly, three potential causes are offered

including extra-corporeal blood loss, splenic sequestration of iron,

and anemia of inflammation (AI) [3,4].

AI has become the most commonly theorized cause of the

anemia following a number of studies that have shown that

increased levels of pro-inflammatory cytokines, in particular IL-6,

are produced during chronic schistosomiasis [12–16]. At signifi-

cant levels, the pro-inflammatory cytokines which are produced as

part of the inflammatory response, such as IL-6 and TNF-a, can

lead to AI [17,18]. It is of note though, that the association

between pro-inflammatory cytokines and infection only occurs at

the most intense levels of infection and hepatic fibrosis [12–16]. In

spite of the fact that AI is often put forward as either the cause or

as the major contributing factor toward the anemia, no research

has investigated the response of the iron homeostatic and

regulatory pathways to patent or chronic schistosomiasis. Thus it

remains uncertain whether the level of pro-inflammatory cytokines

associated with infection are sufficient to ‘override’ the influence of

the homeostatic drive on the regulation of the iron homeostasis

genes.

The central regulator of iron homeostasis is hepcidin, a 25

amino acid peptide expressed and secreted by hepatocytes.

Hepcidin is up-regulated in mammals by iron overload and is

suppressed by iron deficiency [for review see 19]. In iron deficient

states, hepcidin transcription is down-regulated resulting in

increased iron absorption by duodenal enterocytes and the release

of iron stores from hepatocytes [19]. The transcription of hepcidin

can also be influenced by inflammation induced by microbial

pathogens and chemical stimulants, a response which forms part of

an innate strategy of the host to combat infection by reducing the

bioavailability of iron to the pathogens. In this instance, hepcidin is

up-regulated and results in reduced iron absorption by the gut and

sequestration of iron into storage in the liver and macrophages

[17,18,20]. This has been shown in malaria patients in whom

slight increases in hepcidin levels lead to marked impairment of

iron incorporation into hemoglobin [21]. Unlike humans who

express only a single hepcidin gene, mice express two isoforms of

hepcidin, Hepcidin 1 (Hamp1) and Hepcidin 2 (Hamp2). While the

individual role of hepcidin 2 has not yet been confirmed, hepcidin

1 has been shown to function as the primary iron regulatory

molecule. Since anemia in schistosomiasis is attributed primarily to

AI, and a key mediator of AI is hepcidin [20], we undertook a

detailed study of hepcidin and iron regulation in experimental

schistosomiasis to determine whether anemia could be attributable

solely to AI and to examine the effect of schistosomiasis on the role

of iron regulatory molecules.

Hereditary hemochromatosis is a genetically heterogeneous

group of iron overload disorders caused by mutations in molecules

involved in the regulation of iron homeostasis. Mutations in the

gene encoding hepcidin (HAMP) or upstream regulators of

hepcidin such as hemojuvelin (HJV), HFE and transferrin receptor

2 (TFR2) lead to low levels of circulating hepcidin in relation to

iron stores and consequent iron loading [for review see 22].

Knockout and transgenic mice have been developed that confirm

the importance of these molecules in iron homeostasis and

hepcidin regulation. These knockout mice represent animal

models of dysfunctional iron regulation. We have previously

generated Transferrin Receptor 2 null mice (Tfr22/2), a model of type

3 hereditary hemochromatosis and shown that they have

dysregulation of hepcidin resulting in iron overload [23]. Detailed

analysis of the effects of Tfr2 dysfunction on iron homeostasis

demonstrate increased iron absorption within the gut along with

increased expression of iron transport genes [24].

In this study we investigated the relationship between the

disease outcomes of S. japonicum infection, iron status and

regulation. We aimed to determine if the host iron status has an

effect on schistosome maturation or egg production, and to

investigate the response of the iron regulatory gene Hepcidin to

chronic schistosomiasis infection. Wild-type C57BL/6 and Tfr22/2

mice were infected with S. japonicum, and sacrificed at the onset of

chronic disease. The infectivity of schistosomes and egg production

was assessed along with the subsequent development of granulomas

and fibrosis. The response of the iron regulatory gene Hepcidin to

infection and the changes in iron status was assessed within the

mice. We show that Hepcidin responds to the changing iron status of

the animals but is not significantly influenced by the inflammatory

response. We also show that with increased iron levels in the host

pre-infection there was greater development of fibrosis around

granulomas. Our studies indicate that chronic inflammation may

not be the primary cause of the anemia seen in schistosomiasis.

Further we demonstrate that increased iron at the onset of infection

leads to increased liver fibrosis resulting in a more severe long term

outcome.

Results

Iron Status with Infection
At the time of parasite perfusion, hepatic iron stores were

estimated by quantification of Perls’ Prussian Blue staining for non-

heme iron within liver sections (figure 1A and B). The quantification

of staining shows that only uninfected Tfr22/2 control animals had

hepatic iron levels significantly above background with 0.28% of

tissue stained with Prussian Blue (P,0.001). We next assessed the

level of transferrin receptor 1 (Tfr1) protein in livers. Tfr1 is

responsible for the uptake of transferrin-bound iron into hepatocytes

and its expression level is inversely regulated by the cellular iron

content. Tfr1 protein was significantly lower in uninfected Tfr22/2

control mice (figure 1C; P,0.001). Given the inverse relationship

between Tfr1 protein and hepatocyte iron content, this Tfr1 profile

reflects the iron content estimated by quantification of the Perls’

Prussian Blue staining (Figure 1B).

Uninfected Tfr22/2 control mice show significantly (P,0.001)

higher serum transferrin saturation (TS), as representative of

circulating iron, than wild-type animals with 96% and 48%

saturation respectively (figure 1D). In S. japonicum infected mice TS

was significantly (P,0.05) lower in both Tfr22/2 and wild-type

animals when compared to their respective uninfected controls

groups, a reduction of 76% and 14% respectively. Together these

results show that infection significantly reduces the iron status of

both strains of mice. The iron over-loaded status of the Tfr22/2

mice, as shown by the Perls’ quantification, Tfr1 protein levels and

TS provided the background to compare the effects of iron

availability on schistosome maturation, egg production, and liver

pathology.

Effects of Iron Status on Schistosoma Maturation and Egg
Production

In order for schistosome cercariae to mature into adult worms

capable of egg production they require substantial iron which they

Schistosomiasis and Iron
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must sequester from their host [25]. In spite of there being

significantly more iron available at the time of infection to

schistosomes in Tfr22/2 mice than in wild-type mice, there was no

statistically significant difference in the number of mature females

(figure 2). Adult female worms use significant amounts of iron for

egg-shell production [26], and it could be expected that iron

availability may be a limiting factor in egg production. However,

there was no significant difference observed in the number of eggs

per gram of liver, or the number of eggs per gram of liver per

female worm (figure 2).

Interaction between Iron Status, Inflammatory Response,
and Iron Regulatory Genes

The liver pathology of infected hosts develops as a result of the

immune inflammatory response to egg antigens, a response which

leads to granuloma formation around the lodged eggs resulting

from progressive immune cell infiltration and accumulation. Thus

measurement of granuloma size can provide a measure of the

intensity of the host’s inflammatory immune response to egg

antigen. In this aspect of host response, there was no difference

between the average sizes of the granulomas produced in wild-type

and Tfr22/2 mice (figure 3A).

Serum Amyloid-A (SAA) and Orosomucoid (Orm; also known as a-1

acid glycoprotein (AGP)) are acute phase response genes expressed by

hepatocytes and are representative of hepatic inflammation [27].

These markers show that significant hepatic inflammation

occurred in both wild-type infected and Tfr22/2 infected mice,

but not in uninfected control mice (figure 3B and C). There was no

significant difference in the expression levels of these hepatic

inflammatory markers between wild-type and Tfr22/2 for either

infected or uninfected mice, consistent with the similarity in

granuloma size between the two groups.

Expression levels of Hepcidin 1 (Hamp1) displayed a downward

trend in infected mice of both strains, while Hepcidin 2 (Hamp2)

expression was significantly reduced in both strains with infection

(figure 3D and E). The Hamp1 levels in Tfr22/2 control mice are

lower than that of wild-type controls in spite of having significantly

higher iron levels as a consequence of Tfr2 knockout and is the

expected phenotype for these animals [23]. Down-regulation of

Hamp1, as seen in infected animals, results in increased absorption

of iron in the gut and liberation of stored iron, thus representing a

normal response to the reduced iron status of the infected animals.

As the specific role of Hamp2 has not yet been clarified, it cannot

Figure 2. Iron status has no effect on S. japonicum maturation or
egg production. Wild-type and Tfr22/2 mice were sacrificed 6 weeks
after infection with S. japonicum. The number of worm pairs perfused
from the portal vein was then counted and the number of eggs per
gram of liver was calculated following egg recovery from liver samples.
In spite of significantly higher levels of iron stores in the Tfr22/2 mice,
this did not affect the number of worms which matured or the number
of eggs produced either in total or per female (Light grey wild-type,
black Tfr22/2; Error bars 6 SEM).
doi:10.1371/journal.pone.0009594.g002

Figure 1. Schistosomiasis infection results in a significant reduction in iron status. Perls’ staining as a measure of hepatic iron, Tfr1 protein
levels, and serum transferrin saturation were measured in wild-type and Tfr22/2 control and schistosome infected mice. A. Perls’ Prussian Blue
staining of liver sections shows the various levels of hepatic iron stores; (I) wild-type control, (II) wild-type infected, (III) Tfr22/2 control, (IV) Tfr22/2

infected. B. Quantification of Perls’ Prussian Blue staining for non-heme iron within hepatocytes showed that while significantly more iron was
present in Tfr22/2 uninfected animals, the level was reduced to levels similar to wild-type mice in infected Tfr22/2 animals. C. Quantification of
Western blotting for Tfr1 protein from hepatocytes shows the expected inverse down-regulation of the protein in the Tfr22/2 uninfected animals
with high iron stores. D. Serum transferrin saturation is significantly lower in both wild-type and Tfr22/2 infected mice when compared to uninfected
controls. (*P,0.001 compared to respective control group; **P,0.001 compared to all others; Error bars 6 SEM).
doi:10.1371/journal.pone.0009594.g001
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be determined if its down regulation is representative of a response

to the iron status of the animal or a response to the infection itself.

Effects of Iron Status on Hepatic Fibrosis
Progression of the granulomatous response leads to the

deposition of collagen in the tissue surrounding the granuloma.

The degree of fibrosis development is highly dependent on the

length of time the eggs have been lodged in the tissue as the extent

of collagen deposition varies greatly between granulomas even

within individual animals (figure 4A). In spite of this variability,

and even at the early stage of chronic disease onset in infected

animals, significantly (P,0.05) more collagen was detectable in the

livers of infected Tfr22/2 mice than infected wild-type mice with

29.7% and 20.2% of tissue stained with Sirius Red respectively

(figure 4B). Brown dots seen within the tissue section represent

lipofuscin accumulation in autophagolysosomes.

Figure 3. Interaction of iron status, inflammation, and iron regulatory genes. The response of inflammatory markers and iron regulatory
genes was assessed in schistosomiasis infected and control wild-type and Tfr22/2 mice 6 weeks post infection date. Granuloma size was estimated by
point-counting stereology on liver sections, and gene expression was assessed by quantitative real-time PCR from liver RNA. A. Comparison of the
average granuloma area within wild-type and Tfr22/2 mice shows no difference in response in infected animals. B and C. Hepatic inflammatory
markers Serum Amyloid-A and Orosomucoid show a significant response to infection, but no difference in the levels of response between wild-type
and Tfr22/2 animals reflecting granuloma size. D and E. Hamp 1 shows a trend and Hamp 2 shows significant down-regulation in response infection.
This pattern of regulation is consistent with the identified iron status of the animals and appears unaffected by the inflammatory response identified
(*P,0.05 compared to respective control group; Error bars 6 SEM).
doi:10.1371/journal.pone.0009594.g003

Figure 4. Iron status affects development of fibrosis. The development of fibrosis surrounding granulomas was measured in the livers of
schistosomiasis infected and uninfected wild-type and Tfr22/2 mice 6 weeks post infection date by quantification of the Sirius Red staining of
collagen. A. Sirius Red staining shows the varying dispersion of the collagen within individual wild-type (panel I) and Tfr22/2 animals (panel II). Brown
dots represent lipofuscin accumulated in autophagolysosomes. B. Quantification of Sirius Red staining of collagen indicating development of fibrosis
shows greater deposition within Tfr22/2 animals than in wild-type animals. (*P,0.05; Error bars 6 SEM).
doi:10.1371/journal.pone.0009594.g004
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Discussion

In this study we show that schistosomiasis infection resulted in a

substantial reduction in iron indices, with infected wild-type and

Tfr22/2 mice having significantly lower TS and hepatic iron than

uninfected mice. This reduction in iron status reflects the

phenotype seen in human patients, a disease outcome most

commonly attributed to AI. In general, AI results from two

processes induced in response to inflammation: first, iron may be

sequestered within tissues reducing its availability within the body,

and second, iron absorption by gut enterocytes is blocked thereby

eliminating the dietary source of iron [reviewed in 28]. In the

model used in this study (10 week old C57BL/6 mice) infected

mice were studied 6 weeks post-infection, approximately 1–2

weeks after the onset of parasite egg laying, their entrapment in the

liver and the induction of host granulomatous response. The

intense inflammatory response directed against eggs might be

expected to lead to AI, typified by an inhibition of iron absorption

through the up-regulation of hepcidin [6]. Schistosoma japonicum

infection in these mice, however, led to down-regulation of

hepcidin (as measured by expression levels of Hamp1 and 2).

Decreased hepcidin expression results in increased iron absorp-

tion, the opposite of what is required for inflammation to result in

AI [20]. Thus, it is unlikely in this murine infection that decreased

iron absorption induced by AI contributed significantly to the

reduced iron status of the infected animals. Moreover, liver iron

stores were decreased in these schistosomiasis-infected mice,

whereas in other infections liver iron stores are increased in AI

[28]. Thus iron sequestration by normal pathways can be excluded

as a cause of AI in schistosomiasis. It is therefore unlikely that AI is

the primary cause of the reduced iron status associated with the

schistosomiasis infection.

Friis and co-workers investigated the use of macro-nutrient

supplements in treatment of Kenyan school children suffering

chronic S. mansoni infection [29]. Their study found macro-

nutrient supplementation improved hemoglobin levels to the same

level observed with treatment with the anti-schistosome drug

praziquantel. Both macro-nutrient supplementation alone and

praziquantel treatment alone resulted in significantly higher

hemoglobin levels than for subjects given placebo, bringing

hemoglobin levels of treated individuals into the normal range

(13–18 mg/dL). Our studies, which show decreased hepcidin

expression, with likely increase in absorption of dietary iron,

provides experimental evidence in support of Friis and colleagues.

In the situation of AI however the opposite occurs, hepcidin is up-

regulated decreasing the ability of the gut to absorb iron from the

diet. In the presence of AI, macro-nutrient supplementation

should not be effective at increasing hemoglobin levels.

Within the schistosomiasis literature the presence of anemia is

often attributed to AI because of the failure of occult blood loss to

account for the anemia [14], and the detectable levels of

inflammatory markers. Leensta et al suggested that AI is likely to

be a significant contributor to the anemia seen in schistosomiasis

following their findings that anemia was commonly present in the

absence of iron deficiency (ID) [12,13]. However, in their study the

absence or presence of ID was assigned to subjects on the basis of

their serum ferritin (SF) levels. A literature review conducted by

WHO in 2007 reported that the use of SF levels in the presence of

inflammation is likely to result in significant misclassification of ID

subjects as iron replete [30]. WHO now recommends that SF is

not a useful indicator of ID when inflammation is present [30].

Therefore, it is possible that in the study of Leensta et al, subjects

with anemia who were classified as iron replete based on their SF

may have actually been ID.

In another cohort study, Cherian and co-workers investigated

the relationship of hepcidin and iron status in refugee children

[31]. They demonstrated that hepcidin levels among children with

ID correlated with the iron status, and not the infection or

inflammatory status of the child. Furthermore, in this study ID was

defined on the basis of $2 abnormal age-corrected iron

parameters, assisting in better identification of ID in the presence

of infection and inflammation [31]. These findings support our

results which show that hepcidin, the master regulator of iron

homeostasis and the key regulatory gene responsible for AI is not

affected by the levels of infection and inflammation seen in these

studies.

Tfr22/2 mice have a greater amount of bioavailable iron for

invading schistosomes than wild-type mice at the time of infection.

While we did not measure iron absorption and thus iron

availability directly during infection in our study, previous studies

on Tfr2 dysfunction in mice have demonstrated increased iron

absorption through the gut along with increased expression of iron

transport genes [24]. Further to this we have demonstrated

decreased Hepcidin expression concurrent with S.japonicum infec-

tion. It is therefore likely that elevated dietary iron absorption

occurs concurrently with infection, providing ongoing increased

iron availability within the Tfr22/2 host animals. Despite the high

requirements of invading schistosomules for host iron, and an

expectation that the greater availability of iron in Tfr22/2 mice

might lead to higher burdens in those mice, there were no

differences in adult worm numbers between wild-type and Tfr22/2

mice. The progression toward iron depletion in schistosomiasis may

be initiated with the onset of egg-laying, which occurs approxi-

mately 4 weeks post infection for S. japonicum, resulting in transfer of

iron from the host into the eggs. If on-going iron availability is a

rate-limiting factor in the progression toward some aspect of chronic

disease, then the level of a host’s pre-infection iron stores may

contribute to the rate of onset of severe symptoms, i.e. the larger the

available iron pool, the faster the onset of chronic symptoms. In the

same manner, iron supplementation to resolve the anemia

associated with schistosomiasis may actually increase the develop-

ment of long term pathology by providing on-going increased iron

availability.

Ironically the anemia associated with schistosomiasis may

actually provide a degree of protection for hosts against the more

severe long term pathological consequences of chronic infection.

The development of fibrosis surrounding granuloma formation

can lead to significant health consequences resulting in morbidity

and mortality. We showed that infected Tfr22/2 mice with high

iron indices develop a significantly increased fibrotic response

surrounding the granulomas when compared to infected wild-type

mice. Activated hepatic stellate cells (HSC) and alternatively

activated macrophages are responsible for the deposition of

extracellular matrix resulting in hepatic fibrosis surrounding the

granulomas [8–10]. Ramm et al have also shown a direct

correlation between the hepatic iron concentration (HIC) and

the activation of HSCs [32], showing that increased HIC increases

both the activation of HSCs prior to the deposition of collagen,

and the amount of collagen deposited [32]. This correlation

between HIC and fibrosis is believed to result from increasing

exposure to the oxidative stress resulting from intracellular iron

[32]. As such, the reduced HIC status of schistosomiasis infected

mice may result in a decreased level of HSC activation, which in

turn results in lower deposition of collagen.

Denic and Agarwal propose that iron deficiency provides an

evolutionarily-selected survival advantage [33]. They suggest that

following the agricultural revolution which resulted in significantly

decreased dietary iron intake, iron deficiency provided a survival

Schistosomiasis and Iron
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advantage to those with endemic diseases such malaria, plague

and tuberculosis [33]. Further to this, other studies such as the

correlation of HIC and fibrosis, suggest that iron deficiency may

also provide a survival advantage in chronic disease states

including schistosomiasis.

The disease outcomes associated with schistosomiasis have a

significant impact throughout many of the world’s developing

nations. The anemia associated with schistosomiasis is often

labeled as anemia of chronic inflammation: however our findings

suggest that this is likely not to be the case. We show that the iron

regulatory gene Hepcidin responds to the decreased iron status.

Furthermore, we have shown than increased iron available from

pre-infection stores and possible ongoing iron absorption leads to

increased fibrotic deposition within the liver. Together these

results suggest that increasing the iron status of infected subjects

may actually result in an increased disease burden. In light of this

the utilization of dietary iron supplementation to resolve anemia

associated with chronic schistosomiasis may result in more severe

long term disease outcomes.

Materials and Methods

Animals
All mice (female; 10 weeks of age) were maintained on standard

laboratory chow (Norco Stockfeeds, South Lismore, Australia).

Wild-type C57BL/6 mice were purchased from the Animal

Resource Centre, Perth, Australia. Tfr22/2 mice on the C57BL/6

background were bred in-house and have been described

previously [23] All animals received humane care according to

the criteria outlined in the ‘‘Guide for the Care and Use of

Laboratory Animals’’ prepared by the National Institutes of

Health [34]. All experimental protocols were approved by the

Queensland Institute of Medical Research Animal Ethics

Committee.

Animal Infection
Oncomelania hupensis hupensis snails, infected with Chinese (Anhui)

strain of S. japonicum, were imported from the Institute of Parasitic

Diseases, Shanghai, China. Mice were infected percutaneously

with 30 cercariae shed from snails, and adult worms were perfused

6 weeks after challenge as described previously [8]. Livers were

removed from mice for egg counts and histology as described [8].

Histochemistry and Measurement of Iron Indices
Liver tissue was fixed in 4% formalin for 24 hours prior to

embedding in paraffin wax and sectioning. Fibrosis was detected in

sections by staining for collagen with Sirius red which was

performed by the histology department at QIMR. Iron was

detected in sections using the Perls’ Prussian Blue staining method.

Briefly, liver sections were deparaffinized and rehydrated. Slides

were incubated in Perls’ Staining Solution (comprising equal parts

of potassium ferrocyanide and HCl), washed, counterstained with

Nuclearfast Red, dehydrated, cleared in xylene and mounted using

Depex mounting medium. Transferrin saturation (TS) was

measured using an iron and iron binding capacity kit (Sigma-

Aldrich, Castle Hill, Australia). Sections were scanned using the

Aperio ScanScope XT (Aperio, Brisbane, Australia) with doubler

inserted for x40 scanning. Sirius Red and Perls’ Prussian Blue

stains were quantified within the sections using the ImageScope

Version 10.0.36.1805 software and the ColorDeconvolution_v9

algorithm calibrated to the sections.

Real-Time PCR
Total RNA from mouse liver was isolated using Trizol

(Invitrogen, Mulgrave, Australia) and treated with DNase to

remove any genomic DNA. One mg was reverse transcribed into

cDNA with Superscript III (Invitrogen, Mulgrave, Australia).

Real-time reaction mixes contained cDNA transcribed from 15 ng

RNA, 200 nM each primer and LightCycler 480 SYBR Green

Mix (Roche, Brisbane, Australia). Reactions were performed on

the LightCycler 480 (Roche, Brisbane, Australia) using the

following conditions: 2 minutes denature at 95uC followed by 45

cycles of 95uC for 15 seconds, 55uC for 15 seconds and 72uC
degrees for 15 seconds. The fluorescence due to SYBR green

binding to double stranded DNA was measured during the

extension steps. Melt curve analysis was routinely performed to

monitor primer dimer levels by raising the temperature from 50uC
to 99uC at 1 degree/minute whilst monitoring fluorescence

continuously. All experiments were performed in duplicate, and

a single batch of cDNA was used for b-actin, Hamp1, Hamp2, Tfr1,

Tfr2 [23], Orm (forward: TGGAAGCTCAGAACCCAGAA,

reverse: AGCCGCACCAATGAAAAAC), Saa (forward: AGTG-

GCAAAGACCCCAATTAC, reverse: GGTAGGAAGAAGCC-

CAGACC). All targets were normalized to the respective b-actin

levels by subtracting the threshold cycle (CT) of b-Actin from the

CT of the target (DCT). Results were then transformed to log base

2 to represent fold change and normalized to 1 for comparison.

Western Blotting
Tissues were homogenized in phosphatase inhibitor lysis buffer

(200 mM Tris pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5% NP-

40, 10% glycerol, 1 mM NaF, 1 mM sodium orthovandate, 1 mM

sodium pyrophosphate, 1:1000 protease inhibitor cocktail, 2 mM

PMSF) containing 10 mg/mL DNase. Twenty five micrograms of

total liver homogenates were electrophoresed on a 10% SDS-

PAGE and then transferred onto Hybond-C+ membrane. Blots

were blocked in 10% skim milk powder, 0.5% Tween 20 in PBS

(blocking buffer) overnight at 4uC. One mg/mL each of anti-TfR1

(Invitrogen) or anti-actin (Sigma) antibody, diluted in blocking

buffer, was applied to the blot for 1 hour at room temperature.

The blots were washed extensively with 0.1% Tween 20 in PBS

and then incubated with anti-rabbit or anti-mouse horse-radish

peroxidase for 1 hour at room temperature. Blots were washed

extensively and Immobilon Western chemiluminescent HRP

substrate (Millipore WSBLKS0500) was applied for 5 minutes to

the blot and then exposed to film.
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