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Abstract

Neuroimaging studies commonly associate dorsolateral prefrontal cortex (DLPFC) and pos-

terior parietal cortex with conscious perception. However, such studies only investigate cor-

relation, rather than causation. In addition, many studies conflate objective performance

with subjective awareness. In an influential recent paper, Rounis and colleagues addressed

these issues by showing that continuous theta burst transcranial magnetic stimulation

(cTBS) applied to the DLPFC impaired metacognitive (subjective) awareness for a percep-

tual task, while objective performance was kept constant. We attempted to replicate this

finding, with minor modifications, including an active cTBS control site. Using a between-

subjects design for both DLPFC and posterior parietal cortices, we found no evidence of a

cTBS-induced metacognitive impairment. In a second experiment, we devised a highly rig-

orous within-subjects cTBS design for DLPFC, but again failed to find any evidence of meta-

cognitive impairment. One crucial difference between our results and the Rounis study is

our strict exclusion of data deemed unsuitable for a signal detection theory analysis. Indeed,

when we included this unstable data, a significant, though invalid, metacognitive impairment

was found. These results cast doubt on previous findings relating metacognitive awareness

to DLPFC, and inform the current debate concerning whether or not prefrontal regions are

preferentially implicated in conscious perception.

Introduction

Many studies support the view that the lateral prefrontal cortex, as well as the posterior parietal

cortex (PPC), are associated with conscious processes [1–11](See Bor & Seth, 2012; Dehaene &

Changeux, 2011; Koch et al, 2016 for reviews). However, the vast majority of these studies,

employing neuroimaging techniques, are correlational, and therefore are unable to test

whether the prefrontal parietal network is causally implicated in conscious perception. Pre-

frontal and parietal lesion studies could in contrast demonstrate a causal relationship between

this cortical network and consciousness. However, such studies have produced more equivocal

results, and tend to show at best subtle impairments in conscious detection [12, 13]. It is
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possible, however, that these cortical regions show especially plastic responses to damage, thus

protecting individuals from cognitive and conscious impairments [14].

Transcranial Magnetic Stimulation (TMS) provides an alternative method for investigating

whether a specific brain region is necessary for a certain function, by temporarily disrupting

localised neuronal activity for seconds or minutes. An advantage of TMS, besides its non-inva-

sive nature, is that TMS-induced changes are limited to short time periods so that more long-

term, uncontrolled-for, plastic changes that are possible in lesion studies are not an issue. Stud-

ies using this technique applied to the dorsolateral prefrontal cortex (DLPFC) [15] and right

PPC [16] have demonstrated impairments in conscious change detection. One potential con-

found of online TMS, applicable to such studies, is that the peripheral consequences of the

stimulation, (e.g. noise, facial nerve stimulation) could themselves create distractions that

cause transitory cognitive impairments, if the TMS is applied simultaneously, or within sec-

onds, of the task. Furthermore, it is commonly difficult in such online TMS studies to disen-

tangle conscious effects from lower level changes: for instance, impairments in change

detection could arise if TMS disrupted the unconscious processing of basic visual features.

However, offline continuous theta burst TMS (cTBS) can be used instead of online repetitive

TMS. This technique involves a very rapid sequence of TMS pulses, typically for 40 s. The spe-

cific protocol used in our study is thought to suppress cortical excitability for up to 20 minutes

[17]. In this way, TMS administration can be entirely separated from the behavioural task, and

therefore will not distract the participants from it. One key study by Kanai and colleagues used

cTBS to the PPC to elicit a decrease in switch rate in a binocular rivalry paradigm [18]. How-

ever, the lack of clear deficit here, and no DLPFC involvement, limits its causal implications

for the prefrontal parietal network’s role in conscious processes.

Rounis and colleagues [19] designed a study using 300 pulses of cTBS for 20 seconds to

each of the two DLPFC regions (i.e. bilaterally) to demonstrate that this region is necessary for

the conscious detection of perceptual stimuli. Rounis and colleagues used a metacontrast mask

binary perceptual task with stimulus contrast titration in order to maintain objective perfor-

mance at 75% accuracy. By combining this design with advanced methods in signal detection

theory (SDT) [20–22], they were able to isolate the effects of TMS-induced inhibition of

DLPFC on metacognitive sensitivity.

Metacognition tracks the extent to which an individual is aware of their own knowledge,

commonly in mnemonic or perceptual domains, by assessing how closely confidence relates to

decision accuracy. Since metacognitive sensitivity, in humans at least, is typically assumed to

index the extent of subjective awareness (of one’s own mental states), the Rounis study used a

particularly rigorous method to explore changes in conscious perception resulting from tran-

sient deactivation of specific cortical regions. Neuroimaging and electrophysiological studies

have previously linked either lateral prefrontal cortex [23–26] or posterior parietal cortex [27]

with metacognitive processes. In addition, a small (n = 7) patient lesion study showed that the

anterior prefrontal cortex (i.e. a region neighbouring the DLPFC) selectively impaired percep-

tual metacognition, though not memory-based metacognition, compared with patients who

had temporal lobe lesions [28]. However, Rounis and colleagues were the first to provide

persuasive non-patient-based evidence that DLPFC has a key causal role to play in reportable

conscious perception, by showing that cTBS to DLPFC, but not sham cTBS, reduced metacog-

nitive sensitivity for the perceptual task, while objective sensitivity remained unchanged.

Given that the Rounis study is one of the most definitive to have indicated a causal link

between DLPFC and metacognitive sensitivity, it is somewhat surprising that it has not yet

been replicated. In experiment 1 we therefore sought to replicate the Rounis study, as well as

extend it to the posterior parietal cortex, since this region in neuroimaging studies is very com-

monly co-activated with DLPFC, both in studies of conscious perception [2, 3] and more
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widely for many cognitive processes [1, 29–33]. In addition, we included extra conditions

where TMS was either only applied to the left or right hemisphere, so that we could explore

laterality effects. Furthermore, we attempted to enhance the original Rounis design, by includ-

ing an active TMS control (vertex), rather than sham stimulation. In experiment 2, we

attempted for a second time to replicate the Rounis study, copying their design more closely

using a within subjects design, by examining cTBS to bilateral DLPFC, as they did, though still

with an active control instead of sham.

Experiment 1

This experiment was a direct replication and extension of the Rounis paradigm [19], except

that a between subjects design was used. Each volunteer was assigned to one of 5 cTBS groups:

i) bilateral DLPFC, ii) bilateral PPC, iii) left DLPFC and PPC, iv) right DLPFC and PPC, and

v) VERTEX (control). Other minor deviations from the previous protocol are described

below. All such minor deviations were carefully considered to improve the chances of detect-

ing valid effects, as we explain in each case.

Methods

Participants

90 healthy right-handed volunteers (49 women, mean age 22.7, SD age 5.1), with normal or

correct-to-normal vision, with no history of neurological disorders, psychiatric disorders, or

head injury were recruited from the local student population. Written informed consent

was obtained from all volunteers. The study was approved by the University of Sussex local

research ethics committee. Methods were carried out in accordance with the approved

guidelines.

Experimental design

The experimental design was taken directly from Rounis and colleagues [19], who also gener-

ously provided the experimental software, which was a COGENT program, running under

Matlab. Participants performed a two-alternative forced choice task (Fig 1). All testing was car-

ried out in a darkened room. Stimuli were presented approximately 40 cm distance from the

volunteers’ eyes on a CRT monitor with a 120 Hz refresh rate. Black stimuli were presented on

a white background. During each trial, a square and a diamond 0.8 degree wide each were pre-

sented for 33ms 1 degree either side of a central fixation cross. 100 ms after stimulus onset, a

metacontrast mask was presented for 50ms. Participants had to identify whether the diamond

had appeared on the left and square on the right, or vice versa (this is the perception, or type I

task). Both stimulus possibilities were presented in pseudorandom order with equal probabil-

ity. Simultaneously, volunteers provided subjective stimulus ratings (this is the metacognitive,

or type II task). In the Rounis paradigm [19], participants were asked to make a relative dis-

tinction between “clear” and “unclear” ratings, in the context of the experiment as a whole.

This was designed to generate roughly equal answers for each rating, so as to make the SDT

analyses more stable (personal communication). However, from summary data kindly sup-

plied by Rounis and colleagues, 13/20 participants in their study had at least one experimental

block with unstable data (where type I or II false alarm rate (FAR) or hit rate (HR) were >0.95

or<0.05). Therefore, based on our exclusion criteria, we only would have included 7/20 of

their subjects for analysis, indicating that their strategy for ensuring stable data were, by our

criteria, not successful.

TMS to prefrontal or parietal cortex fails to impair metacognition
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We were concerned that managing the relative frequency of subjective ratings of “clear”

and “unclear” labels across an experiment may have placed additional working memory

demands on participants, since they would need to keep a rough recent tally of each rating in

order to balance them out. In addition, these labels were difficult to interpret psychologically

on account of their relative nature. We therefore opted instead for the labels “[completely] ran-

dom [guess]” and “[at least some] confidence.” Using confidence instead of clarity labels is a

common practice, consistent with other recent metacognition studies [25, 26]. Although this

method could potentially introduce more unstable SDT values into the analysis, given that par-

ticipants could in principle give all answers as “random” or “confidence,” we excluded this

possibility by removing from the analysis any volunteers who had any HR and FAR values

Fig 1. Experimental design. Experimental design was identical to Rounis and colleagues [19], apart from exceptions described in

methods. Most notably, confidence in choice was used instead of visibility to determine metacognitive judgement. Participants were

presented with either a diamond on the left and square on the right or vice versa, followed by a metacontrast mask. They were then

required to make a combined judgement as to the stimulus configuration and their level of confidence in that decision. Adapted from

Rounis [19] with permission.

doi:10.1371/journal.pone.0171793.g001

TMS to prefrontal or parietal cortex fails to impair metacognition

PLOS ONE | DOI:10.1371/journal.pone.0171793 February 13, 2017 4 / 20



below 0.05 or above 0.95 (i.e. beyond the cut-off points for obtaining stable z-transforms from

which to compute SDT quantities; see Discussion and Barrett et al [2013]).

Each subject attended a single testing session, which involved an IQ test, instructions and

practice for the metacontrast mask task, the first 10 minute block of this task, TMS administra-

tion and then the second block of the task. Following the IQ test, the main experimental phase

began with an easy demonstration phase of 100 trials, followed by a practice phase, also of 100

trials. The practice phase was designed to further familiarize participants to the experiment,

and allow them to reach a steady state of performance. Objective performance was controlled

to be close to 75% throughout the experiment, by titrating the contrast levels of the stimuli

(with black the easiest contrast and a very light grey the hardest, all against a white back-

ground) using a staircase procedure [21]. Each trial was randomly assigned to either staircase

A or B. For staircase A, current trial contrast was increased (i.e. darkened) if the participant

responded incorrectly on the previous staircase A trial, and contrast was decreased (i.e. made

lighter), if the volunteer had correctly responded on the previous two staircase A trials. Stair-

case B worked in the same way, except that three prior consecutive correct responses were

required to reduce contrast. Contrast changes were made in 5% increments.

We were concerned that the Cogent experimental script of Rounis and colleagues [19]

could, under certain circumstances, fail to allow participants to reach a steady state during the

practice phase. Therefore we made minor changes to the script and paradigm at this stage: we

removed a small bug in the script, which caused the contrast levels to jump erratically at con-

trast levels close to the most difficult end; we changed the practice staircase procedure to be

identical to that of the main experimental blocks (previously it was significantly easier than the

main blocks, potentially leading to the steady state of participants set wrongly for the main

blocks); we also, unlike the Rounis paradigm, occasionally repeated the practice block if it was

clear from the performance graphs that the participant hadn’t yet reached a steady state in per-

formance; finally we noted in piloting the experiment that a small group of participants were

at ceiling on the task. Therefore we extended the contrast range: when participants were at the

95% white level (previously the final contrast setting), further 1% contrast increments were

introduced, up to 99% white.

After the practice stage, volunteers carried out a pre-cTBS block of 300 trials, to measure

baseline subjectivity ratings. Brief breaks were allowed after every 100 trials. The block took

approximately 11 minutes to complete. After the pre-cTBS block was completed, the cTBS

pulses were administered. Following cTBS administration, a further post-cTBS block of 300

trials was administered.

In addition, the Cattell Culture Fair IQ test 2a was given to participants before the main

experiment, in order to explore the modulatory effects of IQ on metacognition. Note that due

to time constraints, approximately a quarter of participants were unable to take the IQ test.

Theta-burst stimulation

A Magstim Super Rapid Stimulator (Whitland, UK), connected to four booster modules with a

standard figure of eight coil, was used to administer the cTBS pulses. For each cTBS adminis-

tration, a stimulation intensity of 80% of active motor threshold (AMT) for the left dorsal

interosseous hand muscle was used. The AMT was defined as the lowest intensity that elicited

at least 3 consecutive twitches, stimulated over the motor hot spot, while the participant was

maintaining a voluntary contralateral finger-thumb contraction. cTBS was delivered with the

handle pointing posteriorly and the coil placed tangentially to the scalp. The cTBS pattern

used, as with the Rounis study, was a burst of three pulses at 50 Hz given in 200 ms intervals,

repeated for 300 pulses (or 100 bursts) for 20 s. Following a 1 minute interval, this was repeated

TMS to prefrontal or parietal cortex fails to impair metacognition
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at a different site for a further 20s (or again on the vertex in the control condition), determined

by which group the participant was assigned to. The five groups were: i) bilateral DLPFC, ii)

bilateral PPC, iii) left DLPFC and PPC, iv) right DLPFC and PPC, and v) VERTEX (control).

Previous studies have demonstrated that a similar cTBS procedure (40 s cTBS on a single site),

when applied to the primary motor cortex, induces a decrease in corticospinal excitability last-

ing about 20 minutes [17]. Where stimulation involved two sites (all except the VERTEX

group), the choice of first stimulation site was counterbalanced between participants.

The DLPFC site was located, as with the Rounis study, 5cm anterior to the “motor hot

spot”, on a line parallel to the midsagittal line. The PPC site was located in the same way as the

DLPFC site, except for being 5cm posterior to the “motor hot spot.” The “motor hot spot” was

defined functionally as the maximal evoked motor response, when determining AMT.

Data analysis

Following Rounis and colleagues [19], a range of measures were used to assess the change in

metacognitive performance between the pre- and post- cTBS blocks. This included the phi cor-

relation between accuracy and subjective ratings, as well as meta d’, an SDT measure thought

to reflect the amount of signal available for a participant’s metacognitive disposal. There are

specific methodological advantages provided by meta d’, as compared to type II d’, for measur-

ing metacognitive sensitivity [19, 20, 22]. In particular, it is well known that type II d’ is highly

dependent on both type I and type II response bias whereas meta d’ is approximately invariant

with respect to changes in these thresholds and thus provides a more direct measure of meta-

cognitive sensitivity [20, 22]. For further discussion and detailed computational analysis of dif-

ferent methods to measure metacognitive sensitivity, see Barrett et al (2013) and [34].

We followed the Rounis approach to generate two estimates of meta d’, based on the partici-

pant’s type II HR and FAR, conditional on each stimulus classification type. The two estimates

were combined using a weighted average, based on the number of trials used to calculate each

estimate. There are currently two approaches to generate meta d’ values: sum of squared errors

(SSE) and maximum likelihood estimates (MLE). Here we report SSE, as in the Rounis paper,

although MLE results were also analysed and yielded very similar values. For completeness, we

also report type II d’ results, although we recognise that this measure has methodological dis-

advantages compared with meta d’ [20, 22].

In summary, using correlational, type II d’ and meta d’ approaches, we tested for any reduc-

tion in metacognitive sensitivity following administration of cTBS. The comparison of the

DLPFC group with the vertex control group on this measure was a direct attempt at replicating

the Rounis paradigm [19], although in our case a between groups design and an active, rather

than sham, control was used. Following Rounis, we report 1-tailed values, due to directional

hypotheses that metacognitive sensitivity will be reduced following cTBS to any non-control

pair of sites.

Results

Although in the Rounis paradigm no participants were excluded, in our study, for each group,

subjects were excluded from the analysis if: i) in either of the two main experimental metacon-

trast masking blocks there were extreme SDT values for type I or 2 HR and FAR (<0.05 or

>0.95); ii) in either of the two main experimental metacontrast masking blocks accuracy was

significantly below the 75% required (at least 10% lower): or iii) because of problems with the

TMS administration, for instance that the experimenter was unable to find an accurate AMT.

See Table 1 for a summary. Note that our proportion of subjects having extreme SDT values

was considerably less than in the Rounis study (27/90 (30%) compared to 13/20 in the Rounis

TMS to prefrontal or parietal cortex fails to impair metacognition
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study (65%)), though given in their within-subjects design participants had 4 experimental

task blocks instead of 2, our results, in terms of proportion of subjects excluded per experimen-

tal block, are roughly comparable to theirs.

Unsurprisingly, given that accuracy was dynamically controlled throughout the experiment,

to approximate to 75% correct, there was no difference between accuracy levels (Fig 2a) before

or after TMS (F(1,48) = 0.67, p>0.1; effect size: partial eta2 = 0.013), nor was there a TMS time

x group interaction for performance (F(4,48) = 0.26, p>0.1; effect size: partial eta2 = 0.021).

A more interesting comparison is the mean contrast level to keep accuracy constant at 75%.

In the Rounis study [19], the mean contrast level was, on average, more difficult (lower) in the

post-TMS stage, compared with the pre-TMS stage, for both real and sham TMS. In the pres-

ent study, in contrast, we found no reduction in mean contrast levels (Fig 2b) between stages

(F(1,48) = 2.46, p>0.1; effect size: partial eta2 = 0.049), nor a TMS time x group interaction for

contrast levels (F(4,48) = 0.61, p>0.1; effect size: partial eta2 = 0.048). Similarly, the Rounis

study reported a decline in the fraction of stimuli that were visible (analogous to the confi-

dence ratings in this study) following TMS treatment (independent of whether it was real or

sham), but in the current study, we found neither a decline in confidence (Fig 2c) following

TMS (F(1,48) = 1.36, p>0.1; effect size: partial eta2 = 0.028), nor a TMS time x group interac-

tion for confidence (F(4,48) = 1.44, p>0.1; effect size: partial eta2 = 0.107). Rounis and col-

leagues attributed the changes they observed to a possible “learning effect”, although another

possible factor may have been an overly easy practice stage, which would have led to the main

blocks having too liberal a starting contrast level. This in turn would have decreased the likeli-

hood of stable contrast levels, especially in the first (pre-cTBS) block. Therefore at least part of

the reason for their “learning effect” could have been that a portion of the first block involved a

transition to a stable contrast. In any case, our data show that our modifications to ensure sta-

ble contrast values at the start of the main block were effective.

In contrast to these differences, consistent with the Rounis study [19] we found faster RTs

for correct responses (Fig 2D) in the second experimental block (F(1,48) = 9.36, p = 0.004;

effect size: partial eta2 = 0.163), but no interaction between RT mean experimental block score

and TMS group (F(4,48) = 1.73, p>0.1; effect size: partial eta2 = 0.126).

For the critical analysis of whether TMS reduced metacognitive sensitivity, we found no evi-

dence for this in any of our groups. There was no TMS group x time interaction for the corre-

lation between accuracy and confidence, phi (F(4,48) = 0.14, p>0.1; effect size: partial eta2 =

0.002), nor for meta d’—d’ (F(4,48) = 0.06, p>0.1; effect size: partial eta2 = 0.005), nor type II

d’ (F(4,48) = 0.162, p>0.1; effect size: partial eta2 = 0.013). In order to further verify this failure

to replicate the Rounis results, we carried out t tests and Bayes factor analyses on the above 3

measures for all test groups against the vertex control. The Bayes factor analyses used the

Table 1. List of inclusions and exclusions for experiment 1 participants.

Group Original

n

Excluded due to extreme

(unstable) SDT values

Excluded due to

Accuracy problems

Excluded due to TMS

administration problems

Remaining n for

analysis

Bilateral DLPFC 17 4 0 1 12

Bilateral PPC 16 3 1 2 10

Left DLPFC and

PPC

18 6 1 1 10

Right DLPFC

and PPC

21 9 1 2 9

Vertex (control) 18 5 0 1 12

TOTALS 90 27 3 7 53

doi:10.1371/journal.pone.0171793.t001
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Fig 2. Task performance. Pre and post-TMS performance measures for the different groups. a) Proportion

correct. B) Mean contrast C) Mean confidence D) Reaction Time for correct responses. DLPFC = bilateral

DLPFC group, PPC = bilateral posterior parietal cortex group, LEFT = left posterior parietal cortex and DLPFC

group, RIGHT = right posterior parietal cortex and DLPFC group. All error bars are SE.

doi:10.1371/journal.pone.0171793.g002

TMS to prefrontal or parietal cortex fails to impair metacognition
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correlation and meta d’ priors from the Rounis study to constrain the calculation (assuming

that the other experimental groups would show the same difference as the bilateral DLPFC

group). These priors were -0.4 and -0.05 for the post- minus pre-TMS difference of DLPFC

condition versus sham control for meta d’—d and the accuracy-visibility correlations, respec-

tively. However for type II d’, which wasn’t reported in the Rounis study, lower and upper

bounds of the average type II d’ scores for all current experimental blocks (0.93) were used in

lieu of a prior. Another method of calculating the Bayes factor here is to take a ratio of the aver-

age type II d’ scores for both experimental blocks to the average meta d’—d’ scores (0.930/

0.147 = 6.3) and multiply this by the meta d’—d’ Rounis prior (6.3�-0.4 = -2.528), as an esti-

mate of the type II d’ difference Rounis and colleagues would have observed. If we use this

method instead, all Bayes factor scores are less than 0.2 (i.e. robust null results).

As shown in Tables 2, 3 and 4, no comparison between control or experimental group

approached significance, even using 1-tailed statistics, on meta d’, type II d’, and the correla-

tion between accuracy and confidence, respectively (see also Fig 3). In addition, effect sizes

were extremely small, supporting the suggestion that there were no differences between the

experimental and control groups. Furthermore, the Bayes factor analyses were either

approaching or lower than the lower bound of 0.33, which is considered substantial support

for the null hypothesis [35]. Given the relatively small sample sizes of approximately 11 per

group, the fact that the Bayes factor scores didn’t reach a robust null in some cases might be

Table 2. Meta d’ table of t tests, effect sizes and Bayes factors analyses between conditions and control (NB for the Rounis study, post—pre TMS

meta d’—d’ Mean DLPFC versus sham control was -0.4).

Contrast post—pre Meta d’—d’ Mean Exp versus control Meta d’—d’ test p 1 tailed Meta d’ Effect Size Cohen’s d Meta d’—d’ Bayes factor

DLPFC versus Vertex 0.06 0.41 0.09 0.46

RIGHT versus Vertex -0.04 0.45 0.06 0.62

LEFT versus Vertex 0.05 0.37 0.10 0.41

PPC versus Vertex -0.02 0.46 0.05 0.53

doi:10.1371/journal.pone.0171793.t002

Table 3. Type II d’ table of t tests, effect sizes and Bayes factors analyses between conditions and control (NB no type II d’ results were reported in

the Rounis study. Lower/upper bounds of average type II d’ scores were used instead).

Contrast post—pre Type II d’ Mean Exp versus control Type II d’ t test p 1 tailed Type II d’ Effect Size Cohen’s d Type II d’ Bayes factor

DLPFC versus Vertex 0.04 0.38 0.13 0.20

RIGHT versus Vertex -0.06 0.35 0.18 0.24

LEFT versus Vertex 0.09 0.29 0.08 0.62

PPC versus Vertex 0.03 0.42 0.09 0.18

doi:10.1371/journal.pone.0171793.t003

Table 4. Correlation between accuracy and confidence table of t tests, effect sizes and Bayes factors analyses between conditions and control

(NB for the Rounis study, post—pre TMS accuracy-visibility correlation DLPFC versus sham control was -0.05).

Contrast post—

pre

Correlation Mean Exp versus

control

Correlation (phi) t test p 1

tailed

Correlation Effect Size Cohen’s

d

Correlation Bayes

factor

DLPFC versus

Vertex

0.03 0.27 0.26 0.48

RIGHT versus

Vertex

0.02 0.32 0.21 0.53

LEFT versus Vertex 0.02 0.31 0.22 0.44

PPC versus Vertex 0.02 0.31 0.22 0.47

doi:10.1371/journal.pone.0171793.t004

TMS to prefrontal or parietal cortex fails to impair metacognition
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Fig 3. Metacognitive measures. Pre- and post-TMS metacognitive measures for the different groups. a)

meta d’—d’. b) type II d’. c) Accuracy-confidence phi correlation. Group labels as Fig 2. All error bars are SE.

doi:10.1371/journal.pone.0171793.g003
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due to lack of power. This situation is partially rectified in the second experiment where data

from both experiments can be combined.

In case there were either short-lived or delayed cTBS effects, we reran all of the above meta-

cognitive analyses using either only the first or last 100 of the 300 trials per block. We still

found no significant differences in any comparison (all p>0.2).

In order to explore the effects of including unstable values in our analysis, we generated his-

tograms of meta d’—d’ scores for both experimental blocks together for all conditions, either

for SDT stable data only, or for all the data (see Fig 4). These suggest that adding the unstable

values transforms the data from Gaussian to non-Gaussian, specifically by adding a separate

group of very high meta d’—d’ values to the sample. Using the Shapiro-Wilk test, the stable

data were not significantly non-Gaussian (W = 0.988, df = 126 p = 0.317). However, when con-

sidering all data, including unstable data, the Shapiro-Wilk test indicated non-Gaussianity

Fig 4. Histogram of distribution of meta d’—d’ values. Histograms, using 0.4 sized bins, of meta d’—d’ for

a) stable data only, per subject experimental block; and b) all data (including unstable). Whereas the stable

data is Gaussian, the unstable data is not.

doi:10.1371/journal.pone.0171793.g004
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(W = 0.871, df = 180 p<0.001), which was also true for unstable data only (W = 0.887, df = 54,

p<0.001). Given the Rounis study did not exclude unstable subjects, there is a chance, there-

fore, that their data were also non-Gaussian, meaning that it would have been invalid to use

parametric statistics as they did. Furthermore, we found a significant difference between the

stable and unstable meta d’—d’ values (Mann–Whitney U = 2552, n1 = 126 n2 = 54, P< 0.008

two-tailed), suggesting that data including the unstable values should not count as a single

homogeneous sample.

In order to further assess potential issues with including unstable subjects, we analysed the

data when including those participants we had previously excluded because of extreme HR

and FAR values, using parametric statistics as in the Rounis study. Although no other effects

were significant, in this analysis we did find significant differences between the DLPFC and

vertex group on meta d’—d’ scores (t(31) = 1.85, p(1-tailed) = 0.037; effect size Cohen’s

d = 0.623). This appeared, though, to be driven more by an unpredicted boost to metacogni-

tion in the control group (0.45) than a reduction in metacognition in the DLPFC group

(-0.29). We should emphasise, however, that this significant result, aside from being uncor-

rected for multiple comparisons, is not to be trusted as it includes data that invalidates the

(parametric) assumptions underlying the analysis. We merely include this analysis to demon-

strate how the inclusion of unstable values could potentially generate spurious significant

results.

Finally, when exploring the relationship between IQ and metacognition, we failed to find

any correlation on any of our three measures. However, we did discover a significant negative

relationship between IQ and contrast level (r2 = 0.22 t(1,40) = 3.36, p = 0.002; effect size Cohen

f2 = 0.282) (see Fig 5), such that higher IQ participants were presented with more difficult per-

ceptual stimuli. Similarly, there was a positive correlation between IQ and type I d’ (r2 = 0.10 t-

(1,40) = 2.07, p = 0.045; effect size Cohen f2 = 0.111).

Fig 5. Relationship between IQ and average contrast. The relationship between Cattell Culture Fair IQ

score and average contrast. Each blue diamond represents a single participant’s average score for both

experimental blocks. The black line is a linear best fit of the data. There was a significant negative relationship

between IQ and contrast, such that higher IQ participants tended to achieve a more difficult contrast level.

doi:10.1371/journal.pone.0171793.g005
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Experiment 2

Experiment 1 comprehensively failed to replicate the main result of Rounis and colleagues

[19]. However, it is possible that this experiment was underpowered compared to that of Rou-

nis and colleagues: after subject exclusions, our sample size, although more than double that

used by Rounis et al, was smaller per group; in addition, we used a between subjects design,

unlike the within subjects design of Rounis and colleagues. Therefore, we carried out a second

experiment, using a double-repeat within-subjects design.

Methods

Participants

27 healthy right-handed volunteers (18 women, mean age 21.3, SD age 2.59), with normal, or

corrected-to-normal vision, with no history of neurological disorders, psychiatric disorders, or

head injury were recruited from the local student population. Written informed consent was

obtained from all volunteers. The study was approved by the University of Sussex local

research ethics committee. Methods were carried out in accordance with the approved

guidelines.

Experimental design

The behavioural, data analysis and TMS components of each session were identical to that in

experiment 1. However, unlike in experiment 1, the session was repeated for each participant 1

to 3 times on subsequent days, depending on performance on each day. The first day always

involved bilateral cTBS to DLPFC (exactly like the DLPFC group in Experiment 1). If the meta

d’—d’ score difference between pre- and post- cTBS administration on the first day was greater

than 0.4 (in either direction, i.e. a metacognitive enhancement or impairment following

DLPFC cTBS), then the participant was invited to a second day’s session, involving cTBS to

the vertex. This threshold of 0.4 was the average effect found in the Rounis study. If in this sec-

ond session the meta d’—d’ score difference between pre- and post- cTBS administration was

less than 0.2 (in other words, an appropriate control result) then the participant was invited to

a 3rd day’s session, where bilateral cTBS to the DLPFC was administered. If on this 3rd day

there was again a meta d’—d’ score difference between pre- and post- cTBS administration

greater than 0.4 then the participant was invited to a 4th day’s session for cTBS to the vertex. In

this way, we could rigorously explore the within subject likelihood of both a metacognitive

impairment (or enhancement) following DLPFC cTBS and no metacognitive change following

vertex cTBS, with a potential single subject replication of this pattern.

Results

Of the 27 participants in this experiment, 9 were excluded because of extreme SDT values for

type I or 2 HR and FAR (<0.05 or >0.95), and 1 further subject was excluded because of an

exceptionally high type II FAR rate. The remaining 17 participants are summarized in Table 5.

Ten of these participants had no meta d’ changes on the first DLPFC session, and thus were

not asked to return for subsequent sessions. Of the remaining 7 participants, 3 showed the

expected impairment, while 4 showed a clear metacognitive enhancement following DLPFC

cTBS. 6 of these 7 participants also showed a clear metacognitive change for the vertex control

session, and thus were not asked to return for the 3rd session (2nd DLPFC). Only 1 participant

that showed a clear DLPFC cTBS metacognitive change in the first session also showed no

change for the 2nd vertex cTBS session, and thus was brought back for the 3rd session (2nd

DLPFC). This session, unfortunately, included unstable SDT values, and thus the participant
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was not asked to return for a 4th session. If these instabilities are ignored, though, the metacog-

nitive change for the 3rd session was very similar to the 1st session. Both sessions, however,

showed a robust enhancement of metacognition for this single subject following DLPFC cTBS,

as opposed to the impairment found in the Rounis study.

In summary, not a single subject of those 17 without instabilities showed both a metacogni-

tive impairment in the DLPFC session, and no change in the vertex control session. The mean

meta d’—d’ change following DLPFC cTBS was 0.07, almost identical to that found in experi-

ment 1 (0.06), and very different in magnitude and direction to that reported in the Rounis

study (-0.35). When the first session DLPFC data from experiment 2 is combined with experi-

ment 1, not only is there a clearly non-significant meta d’—d’ difference between sessions (t

(31) = 0.14, p(1-tailed) = 0.44; effect size Cohen’s d = 0.029), but also a Bayes Factor of 0.34,

which is at the threshold for a robust null result (1/3).

Discussion

We carried out two experiments to attempt to replicate Rounis and colleagues’ key finding that

theta-burst TMS to DLPFC reduced metacognitive sensitivity [19]. We also attempted to

extend these findings, by testing for a similar pattern of results for the PPC, and for only the

left or right portion of the prefrontal-parietal network. In every case, we failed to demonstrate

any modulatory effects of TMS on metacognition, when compared with an active TMS control

site. No result even approached significance, on any of three measures of metacognition (type

II d’, meta d’ and accuracy-confidence correlation), and all results either were close to, or

passed a Bayes factor test for a robust confirmation of the null hypothesis. This was even the

case when the control site was ignored, and the effects of DLPFC TMS were examined by

themselves. We have therefore not only failed to replicate the Rounis result, but provided evi-

dence from our own experiments that on this paradigm there is no modulatory effect of theta-

burst TMS to DLPFC on metacognition.

There were several differences between our experiments and that of Rounis and colleagues.

Perhaps the most notable divergence concerns data quality: we excluded subjects with unstable

Table 5. Experiment 2 values for meta d’—d’ post TMS minus pre (above threshold results in bold).

Sub no. Session 1: DLPFC Session 2: Vertex Session 3: DLPFC Session 4: Vertex

1 1.29 0.14 1.55 (Unstable)

2 1.00 -0.80

3 -0.66 0.78

4 0.65 0.52

5 -0.61 -0.46

6 0.40 -0.42

7 -0.59 -0.50

8 0.13

9 -0.24

10 -0.13

11 -0.31

12 -0.01

13 0.38

14 0.00

15 0.30

16 -0.13

17 -0.33

doi:10.1371/journal.pone.0171793.t005
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signal detection theory behavioural results (type I or 2 HR or FAR<0.05 or >0.95). Including

such extreme results in the analysis is very likely to introduce instabilities in measures reliant

on type I and II SDT quantities, including type II d’ and especially various implementations of

meta-d’ (see [20] for a discussion of this issue). Specifically, since the z function (i.e. the inverse

of the standard normal cumulative distribution) approaches plus or minus infinity as HR or

FAR tends to 0 or 1, SDT measures such as meta d’ can take on extreme and highly inaccurate

values with such inputs. In practice, we demonstrated from our data that unstable meta d’—d’

values are significantly different from stable values, and that including them causes the sample

to become non-Gaussian. Therefore, at the very least, any statistics on a sample including

unstable SDT values should be non-parametric. Preferably, though, such data should be

excluded entirely, to avoid false positive results. Indeed, when including these unstable values

with parametric tests (as the Rounis study did), we did discover a significant effect of DLPFC

TMS on meta d’, though one we know is invalid (namely a boost to metacognition in the con-

trol group).

This key difference, namely Rounis and colleagues included unstable SDT data, whereas we

by default excluded it, might on its own entirely explain the differences between our two stud-

ies. In experiment 1 only 27/90 (30%) of our subjects produced unstable SDT data, and yet

including these was sufficient to make the group level SDT data very significantly (p<0.001)

non-Gaussian. In the Rounis study the proportion of subjects yielding unstable data was more

than twofold greater (13/20, 65%). Therefore, it is almost certain that across subjects their SDT

data were non-Gaussian distributed, even though they carried out only parametric statistical

tests.

Another difference between the current experiments and that of Rounis and colleagues is

that we employed an active TMS control site, instead of sham TMS. Although our control

results look similar to those of Rounis and colleagues, i.e. no modulatory effect of control TMS

on metacognition, nevertheless it is still possible that this different approach to controls con-

tributed to the different results. The DLPFC is amongst the most challenging sites to adminis-

ter TMS, because of the peripheral facial nerves that can be activated, commonly causing facial

twitching and minor pain. The participants in the Rounis study would have noticed a very dra-

matic difference between DLPFC and sham TMS, raising the possibility of demand character-

istics influencing reported metacognitive deficit following DLPFC cTBS, compared to sham

cTBS. The control paradigm used in the present study reduces this potential psychological

confound. We acknowledge that there is generally less peripheral nerve stimulation for vertex

stimulation, compared to the DLPFC, meaning the control site isn’t perfectly matched to the

DLPFC site. However, there is still a considerable improvement in terms of controlling for

general TMS effects (including generalised cortical stimulation) compared to sham TMS. Also,

the between-subjects design of experiment 1 further minimizes potential influences of demand

characteristics. In this experiment, some participants only had vertex stimulation, others only

DLPFC and others only PPC (while others had a combination of DLPFC and PPC). Therefore,

no single subject could have compared (for instance) vertex stimulation with DLPFC stimula-

tion. Finally, if peripheral nerve stimulation had indeed been a significant factor in determin-

ing behavioural results, then there should have been a greater effect for DLPFC compared with

PPC as well, since PPC stimulation also produced considerably less peripheral nerve effects

than DLPFC stimulation. We did not observe this (see Fig 3).

A third difference between our experiments and that of Rounis and colleagues is that they

used relative visibility judgements for the metacontrast mask task, where participants

attempted to give “clear” responses for 50% of their answers and “unclear” for the other 50%.

Our experiments, instead, included non-relative responses of “random guess” and “at least

some confidence” in the perceptual decision. We reasoned that this approach should have
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increased the sensitivity of our experiments to changes in metacognitive sensitivity, since our

metacognitive labels are simpler for participants to categorise and process, with no working

memory demand to maintain an equal number of answers for each label.

A further minor difference between our study and that of Rounis and colleagues is the

method used here to determine the TMS AMT. We used visual observation of hand movement

of the left hand, whereas Rounis and colleagues combined this with electromyography (EMG),

and on the right hand. In a direct comparison of visual observation and EMG, Westin and col-

leagues [36] reported that the non-EMG method yielded higher thresholds, provisionally indi-

cating that our study would have used stronger TMS on average per participant, compared to

that of the Rounis study. However, given that Rounis and colleagues used a different approach

from the standard EMG approach of setting an amplitude criterion at 200 microvolts, it is

unclear whether this is actually the case. Furthermore, in terms of the AMT hand differences

(our study using the left hand, Rounis and colleagues the right), Civardi and colleagues

reported TMS facilitation for the dominant right hand compared to the left for right handers

[37], which again provisionally indicates that our study would have used stronger TMS on

average per participant. However, we acknowledge the exact consequences of this methodolog-

ical difference between our study and that of Rounis and colleagues are difficult to determine.

One intriguing positive finding from experiment 1 is that higher IQ participants tended to

perform better on the objective part of the task, leading them to be presented with more diffi-

cult contrast levels. Although there were no similar relationships at the metacognitive level,

this might be because higher IQ participants were effectively performing a more difficult per-

ceptual task than lower IQ participants. The relationship between IQ and metacognition is still

an open question. Nevertheless, future metacognitive studies in this area may benefit from

recording IQ scores, or even restricting their sample to a narrow IQ range.

The result of Rounis and colleagues has recently gained a new significance given the emer-

gence of so called “no-report” paradigms, which question the involvement of prefrontal-parie-

tal regions in reportable perceptual transitions [38, 39]. For instance, Frassle and colleagues

used a binocular rivalry fMRI paradigm, and contrasted a standard report version with a ‘pas-

sive’ condition in which subjects did not explicitly report perceptual transitions, which instead

were inferred from reflexive eye movements (nystagmus) [40]. In the passive condition, activ-

ity in the prefrontal parietal network was greatly reduced, especially in DLPFC, suggesting that

many studies that associate this network with consciousness might be erroneously finding an

association with the cognitive machinery necessary for overt response, rather than conscious

perception per se. More recently, Brascamp and colleagues took this a step further, by using a

binocular rivalry paradigm where reportability itself could be manipulated [38]. They used a

clever stimulus arrangement which evoked perceptual transitions that were not perceived (and

hence not reportable) by the subject: in other words, ‘change of perception’ without ‘percep-

tion of change’. In this condition, there were no detectable prefrontal parietal network changes

at all, accompanying the perceptual transitions. Leaving aside the contentious issue of whether

unreportable perceptual transitions should be classed as conscious, these recent studies are

providing a fascinating alternative viewpoint to the previously dominant assumption that the

prefrontal parietal network is critical for generating conscious contents. Our results are consis-

tent with this emerging position.

However, there are alternative interpretations for our experiments. First, it may well be that

cTBS of cortex, at the medically safe stimulation thresholds commonly employed (80% of

active motor threshold) is just not intense enough to induce a subtle cognitive effect, such as a

reduction in metacognitive sensitivity. To our knowledge, only a few published papers to date,

besides that of Rounis and colleagues, have reported the general efficacy of DLPFC cTBS in

modulating cognitive performance [41–44], and each used a slightly different cTBS paradigm
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to that of the Rounis study. First, using cTBS 600 (i.e. 40 s on a single region) to either the left

or right DLPFC, Kaller and colleagues found only RT, rather than error effects on a planning

task, when compared with a sham control [44]. Schicktanz and colleagues reported deficits on

a 2 back working memory task, but—strangely—no deficits on a 0 or 3 back task, when com-

paring left DLPFC cTBS 600 with sham [43]. Neither of these studies, however, employed an

active control, and so their effects could be attributed to participant expectations (i.e. demand

characteristics). In contrast to the Rounis study, Ko and colleagues did use an active control in

their set-shifting study (vertex), in addition to using either the left or right DLPFC; however,

they used a series of three cTBS 300 sequences instead of two. They reported a significant

increase in errors for left DLPFC compared to right, but did not report any behavioural com-

parison to vertex [42]. Therefore, without such a control comparison it is unclear whether they

found a behavioural deficit at all, and certainly this would not have been the case for right

DLPFC. Finally, Rahnev recently applied cTBS 600 to a range of sites on a metacognitive task

and found that cTBS actually boosted metacognition for DLPFC and anterior prefrontal cor-

tex, compared to a control site [41]. In other words, these results collectively do not support

those of Rounis and colleagues.

Adding other tasks associated with the prefrontal parietal network to metacognitive para-

digms like ours, for instance involving working memory, may therefore be useful. If we had

found clear working memory impairments following DLPFC cTBS, for instance, but not meta-
cognitive impairments, this would have demonstrated the general effectiveness of DLPFC

cTBS. Given that we were focusing on closely replicating the Rounis paradigm, we were unable

to include these extra conditions, but future experiments that further investigate these effects

may consider modifying the paradigm in this way.

A second alternative interpretation for our null result is that cTBS of cortex, especially

when it involves highly flexible, semi-redundant areas like the prefrontal parietal network,

might, after all, induce rapid functional and/or structural plasticity effects that compensate for

any possible functional impairment. For instance, when cTBS was applied bilaterally to

DLPFC in the current experiments, it may be that posterior parietal cortex transiently takes

on a larger role in metacognitive decisions while DLPFC neurons were being moderately

suppressed.

Finally, we recognize that our study may have differed from Rounis et al. in how effectively

the DLPFC was targeted by TMS. Factors affecting targeting efficacy include variations in mea-

surement of stimulation site, coil location and orientation, head shape, and the like. Although

we assumed, given we used exactly the same TMS targeting method as Rounis and colleagues,

that such variability would have been roughly similar between studies, future studies may par-

tially address these issues by using individual structural MRI data to guide TMSin combination

with ‘neuronavigation’ methods that allow targeting of TMS to specific cortical regions with

increased fidelity [45]. However, the fact that we did not observe metacognitive impairment

reliably in any single subject in experiment two speaks against interpreting our null results

simply in terms of missing the DLPFC during cTBS, since at least some of these subjects

should have had cTBS closely over DLPFC (site locations for each condition were fixed

between sessions).

Although it is difficult to know which of these interpretations is more likely, our results nev-

ertheless indicate that the cTBS approach is not, so far, sensitive enough to establish a causal

link between DLPFC and metacognitive processes. They also emphasize the importance of giv-

ing careful methodological consideration both to the design of effective control conditions,

and (especially for metacognitive studies), of excluding unstable data which may otherwise

confound sophisticated statistical analyses. Overall, our results contribute to the evolving dis-

cussion concerning the role of the prefrontal-parietal network in conscious visual perception.
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Future studies that take into account both our data and the Rounis et al results, alongside

emerging “no-report” paradigms, may yet resolve this critical issue in consciousness science

and metacognition.
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