
Cotton-Like Three-Dimensional Sb4O5Cl2 Structures: Synthesis and
Ammonium Hydroxide Sensing
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ABSTRACT: Nanostructured materials have emerged as valuable tools for
the advancement of novel electrocatalysts. Among them, three-dimensional
metal oxides have gained significant attention due to their excellent
conductivity, cost-effectiveness, and unique design. This study focuses on
the synthesis of cotton-like three-dimensional antimony oxychloride
(Sb4O5Cl2) structures through a straightforward precipitation method.
The nanostructures exhibit immense potential for sensing applications.
Electrochemical characterization reveals that the Sb4O5Cl2 heterostructure
demonstrates a remarkable double-layer capacitance of 662 F/cm2,
accompanied by excellent cyclic stability. The sensor’s performance was
tested for the detection of ammonium hydroxide (HA) in NaCl solution,
yielding sensitivities ranging from 0.95 to 0.140 mA mM−1 cm−2 and a
detection limit of 4.54 μM within a wide detection range of 0.3−250 mM.
The sensor device possesses a distinctive cotton-like structure and is synthesized through a simple and cost-effective route.

■ INTRODUCTION
The field of nanomaterials has recently witnessed significant
attention, owing to the development of new technologies that
offer faster, more sensitive, and highly efficient sensors,
optoelectronics, and energy storage devices. The properties
of nanostructures, including size, crystalline phase, and
morphology, are influenced by various factors such as reagents
employed, synthesis methodology, and reaction conditions.1−4

By carefully adjusting the synthesis parameters such as
temperature, pH, reagent concentration, synthesis time, and
cleaning, it becomes feasible to tailor nanostructures with
specific properties for targeted applications.1,5−9

Antimony oxychloride (Sb4O5Cl2) is a material commonly
synthesized in the monoclinic phase, offering intriguing optical,
electrical, and mechanical properties.10−12 It possesses a high
melting point, excellent thermal stability, and good electrical
conductivity, making it a compelling candidate for applications
in flame-retardant materials, catalysts, degradation processes,
sensors, and battery anodes.11−14 Notably, Yang et al.15

synthesized hollow microspheres of Sb4O5Cl2 through a
hydrothermal method, demonstrating its exceptional catalytic
performance for Rhodamine B (RhB) and gaseous isopropanol
(IPA). Additionally, Shi et al.16 utilized the hydrothermal
method to synthesize 3D flowerlike Sb4O5Cl2 structures, which
exhibited promising potential as anode materials in alkali
metal-ion batteries. Despite the promising applications of
antimony oxychloride, it has received limited attention, and the
lack of novel morphologies has hindered its progress in
technology-based applications.

Three-dimensional structures have proven successful in the
development of electrochemical and gas sensors.17−19 Various
materials, including organic compounds such as PANI20,21 and
PPy,22 as well as metal oxides like MoO3−x/Egaln,

23

GeSexOy,
24 CoVO/MXene,25 GaSe0.58O0.42,

26 ZnO,27,28

Mn3O4,
29,30 ZnO/NiO,31 AlOOH,32 and WO3,

33 have been
employed for this purpose. Due to their large surface area,
these structures have enabled enhanced sensitivity and
selectivity in detecting trace amounts of ammonium hydroxide
(HA),34,35 an aqueous solution of ammonia (NH3) charac-
terized by its colorless appearance and strong odor. HA is
highly toxic and can cause skin burns and severe damage to the
respiratory system. It finds applications in cleaning industries,
fertilizer production, drug manufacturing, and as a cleaning
agent for equipment and surfaces in the food industry.36,37 In
the meat industry, HA is used to raise pH levels and eliminate
Escherichia coli bacteria.38 Therefore, the detection of HA
holds utmost importance, as it directly affects human lives,
encompassing aspects such as quality control in industrial
processes, analysis of water and air, and leak detection. The
established maximum exposure limit is 25 ppm.37,39
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In this study, we present the synthesis of three-dimensional
monoclinic antimony oxychloride structures using a facile
precipitation method. Notably, the morphology achieved
through this synthesis approach has not been reported in the
literature for Sb4O5Cl2. The microstructures were extensively
characterized by using FE-SEM, TEM, SAED, XRD, Raman,
and FTIR techniques to evaluate their morphology, phase
composition, and crystal quality. Subsequently, these micro-
structures were employed for the detection of the contaminant
ammonium hydroxide utilizing cyclic voltammetry and
amperometric measurements. The results demonstrate high
sensitivity toward minute concentrations of the contaminant
and electrode stability upon reuse.

■ EXPERIMENTAL SECTION
Materials and Chemicals. The following reagents were

used in the synthesis of the 3D Sb4O5Cl2 structures. Ammonia
solution (2.0 M in ethanol) and PEG-4000 were purchased
from Sigma-Aldrich. Ethanol (C2H5OH, reagent grade,
≥99.8%), antimony chloride (SbCl3, reagent grade, ≥99.8%),
and ammonium hydroxide (24−26% PA) were purchased from
Honeywell, Alfa Aesar, and Exodo, respectively. Ultrapure

deionized water (≥18 MΩ cm) was obtained using a
GEHAKA Master System All setup. Nitrogen purge gas
(99.999% purity) for the electrochemical experiments was
purchased from White Martins. All reagents were acquired
from chemical industries and used without further purification.
Synthesis. The synthesis of the three-dimensional

Sb4O5Cl2 structures was carried out using a precipitation
process.40 Initially, 5 mL of deionized water (DI) and 2.5 mL
of ammonia were mixed at room temperature, followed by
cooling the mixture to 15 °C under vigorous mechanical
stirring. Subsequently, 1 g of PEG-4000 was added, and after
complete dissolution of PEG, 5 mL of ethanol was introduced
to the synthesis vessel. The mixture was stirred for 1 h. Then,
100 mg of SbCl3 dissolved in 2 mL of ethanol was added
dropwise to the mixture and left stirring for an additional hour.
The resulting mixture was allowed to stand for 3 h, filtered
using a Whatman no. 4 filter paper (pore size 20−25 μm), and
washed with ample amounts of water and ethanol. The
obtained product was dried at 60 °C for 72 h.
Structural and Morphological Characterization. The

morphology of the obtained nanostructures was investigated
by field emission scanning electron microscopy (FE-SEM)
with a secondary electron detector and transmission electron

Figure 1. Structural characterization of the Sb4O5Cl2 cotton-like three-dimensional structures: (a) SEM and (b) TEM of the Sb4O5Cl2 samples,
and (c) X-ray diffraction pattern, (d) SAED images with concentric rings showing different orientations, (e) Raman spectrum, and (f) FTIR spectra
of the samples.
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microscopy (TEM) for bright and dark field imaging. The FE-
SEM analysis was performed using a TESCAN model MIRA 3
instrument, while the TEM analysis was carried out using a
Tecnai model G2-F20 instrument.

The structural and crystalline phase analysis was conducted
by X-ray diffractometry (XRD) using a PANalytical X’Pert Pro
diffractometer equipped with a Cu Kα tube (λ = 1.540 Å) and
a step scan of 0.02°. Selected area electron diffraction (SAED)
was used to complement the XRD analysis.

Raman spectroscopy and attenuated total reflection infrared
spectroscopy (ATR-FTIR) were employed for the optical
characterization and compositional verification of the samples.
Raman spectroscopy measurements were performed using the
Horiba LabRAM HR Evolution spectrometer in a back-
scattering geometry configuration equipped with a 514.5 nm
line of an Ar+ laser at room temperature. The ATR-FTIR
spectra were collected using a PerkinElmer Spectrum 100
instrument in the range of 600−4000 cm−1.
Electrochemical Measurements. The electrochemical

experiments were conducted in a conventional three-electrode
electrochemical cell, utilizing a Ag/AgCl electrode (saturated
NaCl) as the reference electrode, a gold (Au) spiral wire as the
counter electrode, and a modified glassy carbon electrode as
the working electrode.

The preparation of the working electrode involved polishing
the glassy carbon surface with alumina paste (0.05 μm) and
deionized water. A thin film of the material was then applied to
the mirror surface of the glassy carbon electrode by pipetting
suitable amounts of a suspension of the material in isopropyl
alcohol (mass ratio 3:1) and allowing it to dry at room

temperature. The estimated material loading on the electrode
was 83.3 μg/cm2.

All electrochemical measurements were performed using a
diluted 0.1 mol/L NaCl aqueous solution as the supporting
electrolyte at room temperature under a constant flow of N2
gas to prevent the dissolution of atmospheric oxygen. Cyclic
voltammetry (CV) and chronoamperometry experiments were
carried out using a Princeton Applied Research potentiostat
(PAR 283) controlled by Power Suite software. Current
densities were calculated with respect to the geometric area of
the working electrode (0.071 cm2).

■ RESULTS AND DISCUSSION
Morphological and Structural Characterization. As a

first step in characterizing the as-grown material, the
morphology of the structures was examined by using FE-
SEM and TEM techniques.

Figure 1a shows that the synthesized products are rounded
cotton-like three-dimensional structures composed of aggre-
gated petals (highlighted in Figure 1a) that resemble a rosebud
in the micrograph. The TEM image in Figure 1b reveals that
the cotton-like structures have micrometric dimensions
(diameter ranging from 1.6 to 4.4 μm), while the composing
petals are nanosized and thick (28−78 nm). The nanometric
dimensions of the petals, combined with the presence of void
spaces, contribute to the increased surface area of the cotton-
like structures, which is desirable for various applications.
Lakshmi et al.41 and Jiang et al.42 recently reported the
synthesis of three-dimensional spherical structures of Sb2S3/
Sb4O5Cl2 and Sb4O5Cl2, respectively, using the hydrothermal

Figure 2. (a) Cyclic voltammograms of Sb4O5Cl2 at different scan rates. The inset shows the plot of 2Δi versus the scan rate and the linear fitting
used to determine the specific capacitance. (b) Comparative CV profiles of HA oxidation on the Sb4O5Cl2 electrode. (c) Chronoamperometry
measurement in a 0.1 M NaCl + 35 mM HA solution on the Sb4O5Cl2 electrode. (d) Plot of current (I) versus scan rate square root obtained from
VC experiments in a 0.1 M NaCl + 35 mM HA solution.
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method. This suggests that the unique morphology observed in
our study results from precipitation in an acidic medium.

The XRD pattern of the as-grown material is shown in
Figure 1c. The diffraction peaks correspond to the monoclinic
Sb4O5Cl2 phase (JCPDS 01-073-1534) with lattice parameters
a = 6.229 Å, b = 5.107 Å, and c = 13.500 Å and the P21/c (no.
14) space group.15,43 The sharp and strong diffraction peaks
indicate good crystalline quality, while the peak broadening, as
shown in Figure 1c, can be attributed to the nanometric
thickness of the petals in the cotton-like structures, known as
“size broadening”.44 The SAED pattern in Figure 1d confirms
the presence of concentric rings, indicating that the sample is
composed of monocrystalline particles with different orienta-
tions, consistent with the XRD analysis. The crystalline planes
detected in the SAED pattern also correspond to monoclinic
Sb4O5Cl2, confirming the sample composition. To the best of
our knowledge, this is the first report on the synthesis of
cotton-like three-dimensional structures of Sb4O5Cl2 in the
literature.

The Raman spectra of the as-synthesized samples are shown
in Figure 1e. The spectrum exhibits sharp peaks at 114, 141,
and 174 cm−1, which are associated with the Sb−Cl stretching
vibrations, while the peaks between 211 and 601 cm−1 are
related to the Sb−O bond vibrations of the Sb4O5Cl2
structures. These results are in agreement with the previous
report by Shi et al.13 and further confirm the XRD and SAED
findings. Subsequently, FTIR characterization was performed
to analyze the composition and detect possible residual organic
molecules on the sample surface. The FTIR spectrum of the as-
grown Sb4O5Cl2 (Figure 1f) shows high transmittance (≥80%)
across a wide spectral range (1000−4000 cm−1). The peaks at
650 and 1100 cm−1 are associated with the stretching
vibrations of Sb−O.45 The absence of additional peaks in
both the Raman and FTIR spectra indicates that the structures
have clean surfaces without residual organic compounds or
PEG radicals, confirming the efficiency of the synthesis and the
quality of the obtained samples.
Electrochemical characterization. Based on the mor-

phological and structural characteristics mentioned above, it is
important to highlight that despite the toxicity of the material,
these unique characteristics were exploited in the development
of the device. In this context, tests were conducted to evaluate
the performance of this device in detecting ammonium
hydroxide (HA) using the cotton-like structures as the basis.
Prior to evaluating the detection properties of Sb4O5Cl2 for
HA, cyclic voltammetry studies were performed on the cotton-
like structures in a 0.1 M NaCl solution to obtain intrinsic
information about the as-grown material (Figure 2a).

Figure 2b shows the CV curves obtained for Sb4O5Cl2 in this
supporting electrolyte at scanning rates ranging from 50 to 200
mV/s. The CV curves of the cotton-like structures exhibit
similar behavior at all scan rates, without any peaks within the
potential window, indicating a pseudocapacitive material.46,47

From the Gileadi method,48 these measurements estimate the
double-layer capacitance of Sb4O5Cl2 to be 662 μF/cm2 (the
inset in Figure 2a). This value indicates that Sb4O5Cl2 has a
good charge retention capacity compared to other oxides
reported in the literature, such as β-MnO2,

49 Co3O4,
50

MoSe2,
51 TiO2,

52 and CH3CuS53 (Table S1). To the best of
our knowledge, this is the first report on the double-layer
capacitance of Sb4O5Cl2 in the literature.

Subsequently, the response of the Sb4O5Cl2 electrode for the
detection of ammonium hydroxide (HA) was investigated by

using cyclic voltammetry and chronoamperometry studies.
Figure 2b shows the CV curves obtained with different
fractions of HA diluted in a 0.1 M NaCl solution for Sb4O5Cl2.
The measurements indicate an increase in the current density
proportional to the addition of HA in the solution for
potentials greater than 1.1 V. For example, when the HA
fraction in the solution increases from 0 to 35 mM, the current
density becomes approximately 300% higher compared to that
in the pure solution. These data suggest the good capability of
Sb4O5Cl2 to detect HA.

Chronoamperometry experiments at a fixed potential (1.4
V) were also performed to evaluate the electrocatalytic activity
of the Sb4O5Cl2 electrode (Figure 2c). The long-term
experiment demonstrates that the material maintains an almost
constant charge density of 110 μA/cm2 after 30 min of
polarization, indicating good stability. Additionally, Figure 2d
shows a linear correlation between the current density and the
square root of the scan rate, indicating that the mass transport
mechanism at the electrode interface is diffusion-controlled
(Figure S2), following the Randles−Sevcik equation.54−56

Based on the excellent activity of the cotton-like three-
dimensional structures for HA detection, the material was
tested as an amperometric sensor. The calibration curve was
constructed by measuring the current in chronoamperometry
experiments at a fixed potential (1.4 V) after 180s of HA
addition in the supporting electrolyte (Figure 3).

Remarkably, the current exhibits a linear response to the HA
concentration in two distinct regions: the first region at low
HA concentrations, between 0.3 and 3.6 mM, shows higher
sensitivity (q = 0.95 mA mM−1 cm−2), while the second region
at higher HA concentrations, between 43 and 177 mM, shows
lower sensitivity (q = 0.14 mA mM−1 cm−2). The correlation
factor R2 calculated for both regions is greater than 0.96,
indicating a good fit of the model to the experimental data.
The detection limit of HA was determined to be 4.5 μM/L
using the method described by da Silva et al.57

Rahman et al. have investigated ammonia hydroxide sensors
based on β-Fe2O3

58 and CuO.ZnO nanoparticles.59 Both
studies utilized a Pd wire as the counter electrode and Au and
Ag electrodes coated with nanoparticles as the working
electrodes in a phosphate buffer solution (PBS), respectively.
The sensitivity of the nanoparticles for ammonia hydroxide
obtained in the chemical sensor was 0.530 μA mM−1 cm−2 for

Figure 3. Calibration curve for HA detection on the Sb4O5Cl
electrode.
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β-Fe2O3 and 1.549 μA mM−1 cm−2 for CuO.ZnO (both from
the 0.77 μM to 0.77 M ammonia hydroxide fraction). The
detection limits were 21.8 μM for β-Fe2O3 and 8.9 μM for
CuO.ZnO. It is noteworthy that the cotton-like three-
dimensional Sb4O5Cl2 structures exhibit enhanced sensing
activity compared to these materials. In both cases, Rahman et
al. describe the detection of the contaminant based on
oxidation or reduction processes of the sensor materials
depending on the presence of dissolved oxygen in the medium.
The described reduction process emphasizes that the studied
materials capture electrons from the solution, causing the
materials’ resistance to decrease and, consequently, causing an
increase in conductivity.58,59

We believe a similar process occurs for Sb4O5Cl2, where the
detection of HA can be described through oxidation and
reduction reactions that occur on the surface of the film
deposited on the GC electrode. The electrochemical reaction
of NH4OH molecules occurs at the working electrode,
producing elements such as nitrogen, hydrogen ions,
hydroxide, and electrons through the oxidation of HA.60,61

Meanwhile, water molecules are formed at the counter
electrode through the reaction with the released oxygen from
the working electrode. The cotton-like three-dimensional
Sb4O5Cl2 structures exhibit high sensitivity and detection
limit values compared to those reported for other oxide-based
HA sensors, owing not only to their composition, which
includes 5 oxygens, but also to their large surface area. Table 1
presents a comparison of the values obtained in this work to
those found in the literature.

Notably, the sensor reported here has the additional
advantage of exhibiting a higher sensitivity at low HA
concentrations and does not have an upper saturation limit,
indicating that this sensor could be efficiently used across a
wide range of concentrations. Stability and reproducibility are
important parameters for practical applications, and tests were
conducted to evaluate these electrode characteristics (Figure
4).

Cyclic voltammetry experiments were first performed in a
0.1 M NaCl + 35 mM HA solution using the same electrode.
Between measurements, the electrode was removed from the
cell and gently rinsed with deionized water to eliminate any
reaction byproducts adsorbed on the surface. The reuse tests
demonstrate good charge retention even after six consecutive
measurements, indicating that the catalyst on the surface did
not show any deactivation, thus maintaining its stability.65,66

These results provide a new perspective and expand the field of
developing novel sensors for the detection of ammonia
hydroxide and indicate the excellent sensitivity of these

samples in detecting HA, making this material promising for
future applications in detection devices.

■ CONCLUSIONS
The cotton-like three-dimensional Sb4O5Cl2 structures were
obtained through the precipitation method, which is a simple
and cost-effective approach. The XRD and Raman analyses
confirmed the presence of a monoclinic phase with good
crystallinity, while the FE-SEM and SAED images revealed a
nanometric size and a large surface area. The I−V analysis
demonstrated a significant change in surface current upon each
injection of the target component into the bulk solution,
indicating a detection limit (4.54 μM) and sensitivity (0.950
and 0.140 mA mM−1 cm−2) that are in good agreement with
the values reported for other oxide-based HA sensors. The
Sb4O5Cl2 electrode exhibited good charge retention. These
findings suggest promising applications of this material in
various fields and contribute to the advancement of its
potential use.
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