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Infectious diseases represent one of the largest medical challenges worldwide. Bacterial
infections, in particular, remain a pertinent health challenge and burden. Moreover, such
infections increase over time due to the continuous use of various antibiotics without
medical need, thus leading to several side effects and bacterial resistance. Our innate
immune system represents our first line of defense against any foreign pathogens. This
system comprises the innate lymphoid cells (ILCs), including natural killer (NK) cells that
are critical players in establishing homeostasis and immunity against infections. ILCs are a
group of functionally heterogenous but potent innate immune effector cells that constitute
tissue-resident sentinels against intracellular and extracellular bacterial infections. Being a
nascent subset of innate lymphocytes, their role in bacterial infections is not clearly
understood. Furthermore, these pathogens have developed methods to evade the host
immune system, and hence permit infection spread and tissue damage. In this review, we
highlight the role of the different ILC populations in various bacterial infections and the
possible ways of immune evasion. Additionally, potential immunotherapies to manipulate
ILC responses will be briefly discussed.

Keywords: innate lymphoid cells (ILCs), natural killer cells (NKs), bacterial infection, mucosal immunity, intracellular
bacteria, extracellular bacteria
1 INTRODUCTION

Bacterial infections were, are and will continue to remain a pertinent health challenge and burden.
The human body is under constant exposure to a plethora of bacteria, including commensal and
pathogenic bacterial species. The immune system is equipped to ward off pathogenic bacteria while
maintaining symbiosis with the commensal flora. However, some bacterial species have evolved to
evade the host protective responses and establish infections.

Innate lymphoid cells (ILCs), are innate lymphocytes that lack adaptive antigen receptors (Artis
and Spits, 2015). Nevertheless, they are equipped with a wide array of activating and inhibitory
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receptors. During fetal development, a subset of ILCs functions
as lymphoid tissue-inducer cells (LTi cells), that induce
lymphoid organogenesis and are involved in the formation of
secondary lymphoid organs (Mebius et al., 1997). Although ILCs
do not undergo antigen priming, they immediately respond in an
antigen-independent manner either upon engaging their
germline-encoded receptors or through cytokine stimulation
resulting in effector cytokine secretion (Glatzer et al., 2013).

ILCs are basically classified into three subgroups, namely
group 1 innate lymphoid cells (ILC1s) including natural killer
(NK) cells and interferon (IFN)-g secreting ILC1s, group 2 innate
lymphoid cells (ILC2s), and group 3 innate lymphoid cells
(ILC3s), based on their lineage-defining transcription factors
and cytokine secretion profiles (Spits et al., 2013; Elemam et al.,
2017). These subgroups are largely considered as the innate
counterparts of CD4+ T helper (Th)1, Th2, and Th17 cells
respectively, while the NK cells are analogous to CD8+

cytotoxic T cells (Vivier et al., 2018). As such, the
differentiation and function of ILC1s in response to IL-12 and
IL-18 depend on the expression of transcription factor T-box
expressed in T cells (T-bet, also called as TBX21), while NK cells
depend on the transcription factor eomesodermin (Eomes)
resulting in the production of IFN-g and tumor necrosis factor
(TNF)-a (Spits et al., 2013). Like Th1 cells, ILC1s respond to
intracellular pathogens such as bacteria and viruses. On the other
hand, ILC2s express GATA binding protein 3 (GATA3) and
produce cytokines IL-4, IL-13, IL-5 and IL-9, in response to IL-
25 and IL-33. Together with Th2 cells, ILC2s are involved in
responses to extracellular parasites/helminths, allergens and
tissue repair. ILC3s express retinoic acid-related orphan
receptor gamma t (ROR-gt) in response to IL-23 and IL-1b,
and produce IL-22, IL-17, granulocyte-macrophage colony-
stimulating factor (GM-CSF), and lymphotoxin (LT)-a1b2.
ILC3s and Th17 cells respond to extracellular pathogenic
bacteria and fungi. Therefore, the various ILC subsets, respond
to a wide array of pathogens ranging from bacteria, parasites,
viruses and fungi, albeit in a subset-specific manner. It is also
worth mentioning that plasticity exists among these cells in order
for them to adapt their transcriptional profile to the local
microenvironment cues and specific cytokine exposure (Vivier
et al., 2018).

In contrast to T cells, ILCs respond quickly to stress signals
from tissue-resident cells. Their production of effector cytokines
helps activate and regulate the activity of both innate and
adaptive immune cells such as T cells, B cells, dendritic cells
(DCs), eosinophils, neutrophils, macrophages, and epithelial
cells (Artis and Spits, 2015). ILCs work in synergy with T cells
where they interact and cross-regulate each other, thus
amplifying their response. Nevertheless, they also compete with
each other for the same growth factors and inducer cytokines.

Developmentally, ILCs are programed to migrate,
differentiate and populate mucosal tissues and lymphoid
tissues. They are primarily tissue-resident cells that are
constitutively present in mucosal tissues, such as the
respiratory and gastrointestinal tracts. The presence of ILCs in
close proximity to mucosal barriers leads to their exposure to a
wide variety of both commensal and pathogenic bacteria. Their
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
interaction with the microbiome is important for the
maintenance of tissue homeostasis. The orchestration of the
relationship between host and commensal bacteria in turn
influences the homeostasis of ILCs (Sonnenberg and Artis,
2012). Further, these cells are characterized by their rapid
response in mucosal defense against pathogenic bacteria and in
orchestrating other immune cells.

ILCs are crucial for mucosal tissue homeostasis and any
dysregulation of these cells could lead to a broad spectrum of
diseases, including bacterial infections. Multiple interactions
with various cell types regulate the function of ILCs. For
instance, neuroimmune circuits have been shown to integrate
extrinsic environmental signals such as light-dark cycles and
nutrient intake, to orchestrate ILC responses at barrier surfaces
to harmonize immunity. There is a reported interaction between
ILCs and the enteric nervous system (ENS), leading to ILC
activation and cytokine secretion (Han et al., 2019). On
another note, neurons and enteric glial cells (EGCs) were
found to interact with ILC3s through neurotrophic factor
signals, thus protecting the intestinal lining against
inflammation and microbial infection (Bessac et al., 2018).
Also, enteric neurons express and sense cytokines such as
TSLP, IL-4, and IL-31, where they crosstalk with ILCs, thus
promoting a type 2 response (Wilson et al., 2013; Oetjen et al.,
2017). In addition, the circadian rhythm controls ILC2 and ILC3
activation in the intestine to regulate intestinal homeostasis and
gut defense (Godinho-Silva et al., 2019; Talbot et al., 2020). There
is a proposed connection between ENS, gut microbiota and ILC
(Rolig et al., 2017). Furthermore, the neuropeptide vasoactive
intestinal peptide (VIP) expressed by enteric neurons exerts both
stimulatory and inhibitory effects on CCR6+ ILC3s and its
functional role appears to be context-dependent and impacted
by the commensal microbiota. On the other hand, a direct
stimulation of ILC2s by neurons through the released neuronal
messenger neuromedin U was reported, causing an induced
immune response (Han et al., 2019). In this review, we
highlight the role of ILCs in various bacterial infections and
their possible evasion by bacteria. Additionally, potential
immunotherapies to manipulate ILC responses will be
briefly discussed.
2 RESPONSE OF ILC SUBTYPES TO
BACTERIAL INFECTIONS

ILCs are a crucial component of the innate and adaptive immune
responses to bacterial infections. The type of pathogen largely
determines the selective ILC response during infections. As
pointed out earlier, intracellular bacteria elicit mainly an ILC1
and some ILC3 response, while extracellular bacterial and fungal
infections stimulate primarily the ILC3 subset. ILC2s are
involved in response to parasitic infections and tissue repair in
response to viral-induced tissue injury. ILC secretion of a variety
of chemokines and cytokines results in the recruitment of other
immune players and amplification of the inflammatory response
against these pathogens. There has been extensive research on
November 2021 | Volume 11 | Article 733564
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the role of ILCs in viral and parasitic infections as reviewed in
(Diefenbach, 2013; Vivier et al., 2018; Hildreth and O'Sullivan,
2019; Hirose et al., 2019; Loser et al., 2019; Panda and Colonna,
2019; Seo et al., 2020). Here, we discuss the involvement of the
ILC subsets across various bacterial infections (Figure 1).

2.1 Group 1 ILCs
2.1.1 NK Cells
Numerous studies have reported that intracellular and
extracellular bacteria activate NK cells (Harrington et al., 2007;
Small et al., 2008; Souza-Fonseca-Guimaraes et al., 2012;
Schmidt et al., 2016). These include Listeria monocytogenes,
Francisella tularensis, Chlamydia pneumoniae, and Yersinia
enterocolitica as well as sepsis (Bohn and Autenrieth, 1996;
López et al., 2004; Berg et al., 2005; Thäle and Kiderlen, 2005;
Etogo et al., 2008). The anti-bacterial potential of NK cells was
reported in various bacterial infections, where NK cells were able
to lyse Shigella flexneri, Legionella pneumophila, Mycobacterium
lepraemurium or Mycobacterium avium infected monocytes
(Klimpel et al., 1986; Blanchard et al., 1987; Katz et al., 1990;
Denis, 1991). Also, NK cells have displayed bactericidal effects
against macrophages infected with intracellular bacilli
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(Bermudez et al., 1990). Activated NK cells were found in the
airways of mice infected with Staphylococcus aureus or Bordetella
pertussis where they were found to play crucial roles in bacterial
clearance (Byrne et al., 2004; Small et al., 2008). The
immunoregulatory role of NK cells include cytokine
production, including IFN-g, GM-CSF, and TNF-a, that
contribute to the inflammatory environment during an
infection (Huntington et al., 2007; Lünemann et al., 2009).
Further, upon activation with cytokines such as IL-12, IL-15 or
IL-18, NK cells can also release IL-6, IL-10, transforming growth
factor (TGF)-b, IL-17 and IL-22 (Jewett et al., 1996; Cella et al.,
2009; Perona-Wright et al., 2009; Hall et al., 2010; Passos et al.,
2010), as well as various chemokines (Maghazachi and Al-
Aoukaty, 1998; Fehniger et al., 1999; Maghazachi, 2010).
Additionally, the cytotoxic molecules released by NK cells
(perforin and granzymes) possess an anti-bacterial effect on
intracel lular and extrace l lular bacter ia such as L.
monocytogenes, Salmonella typhimurium, Bacillus anthracis,
Escherichia coli, S. aureus and Mycobacterium tuberculosis
(Stenger et al., 1998; Ernst et al., 2000; Endsley et al., 2009;
Gonzales et al., 2012; Lu et al., 2014). Another cytotoxic molecule
secreted by NK cells is granulysin that disrupts the membrane of
FIGURE 1 | Interaction of pathogenic intracellular and extracellular bacteria with different groups of innate lymphoid cells (ILCs). Upon bacterial stimulation, various
accessory cells secrete cytokines that activate ILCs to perform their direct cytolytic activity on bacteria/infected cells, or release cytokines that mediate bacterial clearance.
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bacteria and has potent anti-microbial activity against various
gram-positive and gram-negative bacterial species (Krensky and
Clayberger, 2009; McSharry and Gardiner, 2010). A possible
mechanism of action of the bactericidal granulysin could be via
inducing lesions and distortions in the bacterial membrane
(Stenger et al., 1998). Further, other studies reported that
granulysin interferes with oxidative metabolism and energy
generation by the bacteria (Krensky and Clayberger, 2009). For
instance, granulysin was reported to directly kill the extracellular
M. tuberculosis by altering the membrane integrity of the
bacillus, while it further decreased the viability of intracellular
M. tuberculosis when combined with perforin (Stenger
et al., 1998).

During an infection, the crosstalk between NK cells and other
accessory cells, such as DCs or macrophages, enables them to
perform their anti-microbial activity. There was a reported
indirect activation of NK cells by various types of bacteria
including L. monocytogenes, S. aureus, Lactobacillus
johnsonii, and Mycobacterium infections. This could be due to
the recognition by mature DCs and secretion of cytokines such as
IL-12, IL-18, and type-1 interferons (Nomura et al., 2002;
Newman et al., 2006). IL-18 is a pro-inflammatory cytokine
that is crucial in restriction of bacterial growth as reported by
studies with hindrance of neutrophil-mediated lung damage
in M. tuberculosis infected mice as well as Legionella
pneumophila infection (Spörri et al., 2008; Schneider et al.,
2010). Moreover, IL-18 triggered NK cell activity and IFN-g
production upon administration of lipopolysaccharide (LPS) and
in Propioni-bacterium acnes infection (Takeda et al., 1998). Also,
IL-18 was found to trigger gdT cells to produce IL-17A, which
promotes IFN-g production by NK cells upon injection of LPS
(Andrews et al., 2011).

The secreted mediators by NK cells possess potent anti-
bacterial activity against a variety of gram-negative and gram-
positive bacteria (Garcia-Peñarrubia et al., 1989). At the same
time, NK cells are able to halt their own activation in fighting
bacterial infections including L. monocytogenes and Yersinia
pestis. For instance, NK cells can secrete the regulatory
cytokine IL-10 which inhibits IL-12 secretion by DCs (Perona-
Wright et al., 2009). Such a reaction could be required to prevent
immune pathology during systemic infections. In enteric
bacterial infections, it was found that NK cells play a vital role
in bacterial clearance such as that observed in Citrobacter
rodentium infection (Hall et al., 2013). This could be done
through cytokine release, direct cytotoxic effects to C.
rodentium and activation of other innate and adaptive immune
cells, leading to prevention of bacterial dissemination into the
systemic circulation (Hall et al., 2013). Similarly, this NK cell
behavior was observed in the infection of the lungs with M.
tuberculosis (Feng et al., 2006). Further, NK cells are able to
control murine M. tuberculosis infections upon their activation
with various cytokines, such as IL-12, IL-18, and IL-2 from CD4+

T cells (Evans et al., 2011). Another possible way of NK cell
elimination of M. tuberculosis is through the secretion of IL-22
upon stimulation with IL-15 and IL-23 (Dhiman et al., 2009).
Upon activation with IL-12, NK cells secrete IFN-g, leading to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the elimination of bacterial infections including those caused by
Y. enterocolitica, S. typhimurium, and L. monocytogenes, as well
as stimulation with LPS (Hunter et al., 1995; Bohn and
Autenrieth, 1996; Mastroeni et al., 1996; van de Wetering
et al., 2009). Furthermore, macrophages promote NK cell
activation by upregulation of surface CD69 upon exposure to
LPS as well as NK cell production of IFN-g in Legionella
pneumophila and L. monocytogenes infections (Blanchard et al.,
1988; Wherry et al., 1991; Scott et al., 2004). In turn, IFN-g can
favor the production of IL-12 from macrophages as reported
inMycobacterium bovis infection (Matsumoto et al., 1997). Being
the main cytokine released by NK cells, IFN-g, was reported to
play a crucial role in fighting bacterial infections by inducing
macrophage-mediated phagocytosis of bacteria or infected cells
(McSharry and Gardiner, 2010; Horowitz et al., 2012). This was
highlighted by a study where IFN-g deficient mice exhibited an
increase in the bacterial load and impairment in the anti-
bacterial immune response upon infection with Legionella
pnemophilia, L. monocytogenes, or mycobacteria (Cooper et al.,
1993; Huang et al., 1993; Spörri et al., 2006). Moreover, IFN-g
could affect chemokine production and recruitment of immune
cells to S. aureus infected tissues (McLoughlin et al., 2008).
Besides, IFN-g affected the availability of iron that is an
essential nutrient needed for bacterial replication, as reported
in S. typhimurium infected macrophages (Nairz et al., 2008). In
addition, NK cells and specifically IFN-g can modulate the
maturation and activation of other adaptive immune cells
populations by regulating the antigen presentation function
(Degli-Esposti and Smyth, 2005; Nedvetzki et al., 2007; Hall
et al., 2010; Horowitz et al., 2012). Another possible mechanism
of host protection by IFN-g, is the formation of granuloma post-
infection with intracellular bacteria, such as Mycobacterium
avium and Francisella tularensis, thus isolating infectious
lesions (Smith et al., 1997; Bokhari et al., 2008).

Another way of activation of NK cells is through their
expression of pathogen recognition receptors (PRRs) which
bind to pathogen-associated molecular patterns (PAMPs) on
the surface of certain bacteria (Chalifour et al., 2004; Souza-
Fonseca-Guimaraes et al., 2012; Adib-Conquy et al., 2014). In
response, several cytokines are released by NK cells that
contribute to the cytokine storm present in infections
(Cavaillon et al., 2003; Hargreaves and Medzhitov, 2005). Also,
this could lead to production of a-defensins which are anti-
microbial peptides that cause bacterial death by disruption of the
bacterial membrane (Agerberth et al., 2000; Doss et al., 2010).
This may also represent a direct cytotoxic pathway involved in
NK cell-mediated protection against bacteria such as that
observed in C. rodentium. Furthermore, NK cells can secrete
cathelicidin (LL37) as well as indoleamine 2,3-dioxygenase
(IDO) and nitric oxide (NO), that possess anti-bacterial effects
and can limit infections (Agerberth et al., 2000; Bogdan, 2001;
Zelante et al., 2009).

Among these PRRs are toll-like receptors (TLRs), a family
composed of ten receptors that recognize various microbial
components (Akira and Sato, 2003). TLR expression was
controversial in literature depending on the investigated NK
November 2021 | Volume 11 | Article 733564
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cell population (Adib-Conquy et al., 2014). However, the
majority of the TLR family (TLR1-9) are expressed on NK
cells (Hornung et al., 2002; Lauzon et al., 2006; Muhammad
et al., 2019). It is noteworthy that post-translational
modifications in NK cells could be the reason for the
variability in TLR expression in literature. TLR2 on NK cells
was found to be stimulated by peptidoglycan from M.
tuberculosis and protein A from Klebsiella pneumoniae
(KpOmpA) (Chalifour et al., 2004; Esin et al., 2013). On the
other hand, the anti-bacterial role of NK cells could be triggered
upon binding of TLR4 with the FimH protein of E. coli, TLR5
binding to flagellin of E. coli, and TLR9 binding to bacterial
unmethylated CpG motifs (Sivori et al., 2004; Tsujimoto et al.,
2005; Mian et al., 2010; Esin et al., 2013). LPS, a major
component of the outer membranes of gram-negative bacteria,
was found to stimulate TLRs on NK cells, resulting in their
activation (Schmidt et al., 2016). Further, TLR4 agonists
stimulate the production of IFN-a/b, which contribute to the
NK cell activation in bacterial infections (Nguyen et al., 2002).
Furthermore, such type 1 interferon secretion is associated with
the production of the chemokine CXCL10 from infected cells,
which promotes the chemotaxis of NK cells (Lande et al., 2003).
Previous work by Muhammad J.S. et al. reported that NK cells
are stimulated by LPS leading to the release of the
proinflammatory cytokine IL-1b through pyroptosis signaling
pathway (Muhammad et al., 2019). As mentioned earlier,
another possible way of NK cell mediated bacterial elimination
is through their indirect interaction with DCs. For instance, a
study by Oth T. et al. demonstrated that beside the direct sensing
of bacterial pathogens by NK cells and the induction of their
cytotoxic capacity, there is also an enhancement of NK cell-
mediated help for DC maturation (Oth et al., 2018). This was
mainly attributed to the soluble factors released by PAMP-
triggered NK cells, especially IFN-g, that was able to intensify
the pro-inflammatory cytokine response of DCs.

Other PRRs include the nucleotide-binding and
oligomerization domain (NOD)-like receptors (NLRs) and the
retinoic acid inducible gene I (RIG-I)-like receptors, that are
expressed on NK cells. For instance, NOD1 and NOD2 receptors
bind to motifs derived from peptidoglycan of gram-negative
bacteria and gram-positive bacteria, thus promoting NK cell
activation as indicated by CD69 expression and IFN-g
product ion . Also , NLRP3 , the key e lement of an
inflammasome, was reported to be expressed in NK cells (Qiu
et al., 2011). Further, NLRP3 activation in macrophages during
Bordetella pertussis infection, resulted in the production of IL-18
and IL-1b , thus promoting NK cell activation and
proinflammatory response against the bacteria (Kroes
et al., 2019).

NK cell receptors were reported to recognize and directly
interact with host cell proteins as well as viral and bacterial
proteins. For instance, studies have shown that the natural
cytotoxicity receptor, NKp44, could directly bind to ligands on
the surface ofM. tuberculosis and Pseudomonas aeruginosa (Esin
et al., 2008). Similarly, NK cells were able to recognize and
directly interact with bacteria such asMycobacterium bovis BCG,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
leading to their activation and release of cytokines such as IFN-g
and TNF-a, as well as cytolytic activity of target cells (Marcenaro
et al., 2008). This was attributed to the expression and function of
TLR2 on NK cells (Marcenaro et al., 2008). Besides, NKp46 was
found to be a potential receptor for vimentin protein that is
expressed on the surface of infected monocytes with M.
tuberculosis (Vankayalapati et al., 2002; Garg et al., 2006).
Additionally, UL16-binding proteins (ULBPs) and MHC class
I polypeptide–related sequence A/B(MICA/MICB), ligands of
NKG2D receptor were found to be expressed on infected
monocytes, leading to NK cell activation to perform their
cytolytic activity. Also, LPS-stimulated macrophages induce
NK cell proliferation, IFN-g production, and cytotoxicity as
well as increase the surface expression of ULBPs 1, 2, 3 and
MICA/B (Nedvetzki et al., 2007). Further, ULBP1 was
upregulated in M. tuberculosis-infected monocytes and alveolar
macrophages (Vankayalapati et al., 2005), while MICA was
elevated on the surface of epithelial cells in E. coli infection
(Tieng et al., 2002).

Bacteria release toxins that are so called superantigens, that
activate NK cells. For example, the streptococcal pyrogenic
exotoxin A (SPEA) was found to induce IFN-g production as
well as NK cell cytotoxic activity (Cavaillon et al., 1982; Sacks
et al., 1991; Dobashi et al., 1999). Similarly, the staphylococcal
enterotoxin B and the exotoxin A produced by Pseudomonas
aeruginosa were reported to activate NK cells and their function
including cytotoxicity and IFN-g release (D'Orazio et al., 1995;
Mühlen et al., 2004).

NK cells could be a friend or foe for bacterial infections,
depending on the environment. In fact, the detrimental effects of
NK cells in fighting bacterial infection were previously reported.
Some studies claim that depleting NK cells may be beneficial and
result in bacterial clearance including E.coli, Streptococcus
pneumoniae and Pseudomonas aeruginosa (McSharry and
Gardiner, 2010). Also, excessive LPS stimulation of IFN-g
production by NK cells could lead to an uncontrolled secretion
of pro-inflammatory cytokines that could lead to lethal septic
shock (Doherty et al., 1992; Emoto et al., 2002; Sherwood et al.,
2004; Etogo et al., 2008; Souza-Fonseca-Guimaraes et al., 2012;
Adib-Conquy et al., 2014). Therefore, a balance should be
maintained in the immune response in order to have a
beneficial anti-bacterial effect. On the contrary, NK cell
cytotoxic activity was found to be impaired in patients with
sepsis (Maturana et al., 1991). Additionally, some pathological
effects of IFN-g were reported in bacterial infections. For
example, it was found that IFN-g could cause death in
polymicrobial peritonitis, P. aeruginosa infection and upon
administration of LPS in mice (Miles et al., 1994; Heremans
et al., 2000; Murphey et al., 2004).

2.1.2 Other Group 1 ILCs
Besides NK cells, group 1 ILCs have shown to be central players
in the protection against bacterial infections (Beck et al., 2020).
ILC1s are potent producers of TNF-a and IFN-g upon
stimulation with IL-12, IL-15 and IL-18, that allow them to
play key roles in immune protection and chronic inflammation
November 2021 | Volume 11 | Article 733564
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(Fuchs, 2016). Additionally, such cytokine stimulation, and
especially IL-15 aids in their development and contribution to
enhanced immunity against infectious diseases including several
viruses and bacteria (Diefenbach et al., 2014; Klose et al., 2014;
Kwon et al., 2019; Poniewierska-Baran et al., 2019). For example,
Rag1−/− mice lacking T and B cells when infected with
Clostridium difficile bacteria, displayed ILC1-associated
proteins such as IFN-g, TNF-a and nitric oxide synthase
(NOS)2. On the contrary, mice lacking all innate lymphoid
cells, especially ILC1s, witnessed an increased susceptibility
to C. difficile infection (Abt et al., 2015). In vitro studies of the
gram-negative and pathogenic S. typhimurium infection revealed
that infection of human colonic lamina propria cells led to IFN-g
production by ILC1s and NK cells (Klose et al., 2013). Similarly,
the ILC response and their respective cytokines such as TNF, IL-
23, IL-17, and IFN-g were critical players in the clearance
of Klebsiella pneumoniae infection (Moore et al., 2002; Xiong
et al., 2016). Also, there was a significant decrease in ILC1 and
ILC3 populations in the peripheral blood of sepsis patients
(Cruz-Zárate et al., 2018). On the contrary, another study
reported an increase in ILC1 but a decrease in ILC3 in the
peripheral blood of patients with septic shock (Carvelli et al.,
2019). Such a discrepancy in the studies could be attributed to
the plasticity of ILC populations.

2.2 Group 2 ILCs
Analogous to Th2 cells, ILC2s mediate a type 2 immune
response. They produce characteristic Th2 cytokines, including
IL-4, IL-5, IL-9 and IL-13 (Moro et al., 2010; Neill et al., 2010;
Price et al., 2010). Human ILC2s are characterized by the
expression of chemoattractant receptor, CRTH2 and NK cell
marker, CD161 (Mjösberg et al., 2011) and respond to cytokine
cues including IL-25, thymic stromal lymphopoietin (TSLP), and
IL-33. ILC2s are known to play a vital role in extracellular
parasitic infections (Bouchery et al., 2015), allergic diseases
such as asthma, rhinitis, atopic dermatitis (Tojima et al., 2019;
Akdis et al., 2020), and tissue repair (Monticelli et al., 2015; Rak
et al., 2016).

Recently, their role in bacterial infection is gaining interest.
ILC2 activity has been reported to be regulated by various
triggers, including signaling via cytokine receptors, lipid-,
metabolite-driven, neuro-immune and microRNA modulation
(Burrows et al., 2019). IL-33 production by the gut and lung
epithelium is important for maintaining gut and lung
homeostasis through the recruitment of ILC2s. Tuft cells are
important responders to bacterial presence in the intestinal
mucosa. During type 2 immune responses, tuft cells are
capable of influencing the gut microbiome by regulating the
intestinal ILC2-epithelial response circuit. Upon chemosensory-
like sensing of pathogens, tuft cell-derived IL-25 triggers IL-13
secretion by resident ILC2s which in turn activated goblet cells to
release mucus that aided in the clearance of bacterial pathogens
(von Moltke et al., 2016). Metabolite-triggered small intestinal
tuft cell-ILC2 circuit also orchestrated epithelial remodeling in
the small intestine thereby shaping epithelial responses to
intestinal pathogen that impaired their infestation (Schneider
et al., 2018). The surface expression of TLR1, 4 and 6, on ILC2s
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
enables them to respond to TLR ligands by secreting cytokines,
such as IL-5 and IL-13, and inducing the production of
immunoglobulins IgM, IgG, IgA, and IgE by B cells, which are
important in shaping the microbial flora (Maggi et al., 2017).

Gastric Helicobacter pylori infection of the gut is a highly
prevalent condition. H. pylori infection induces a skewed type 2
immunity and immunosuppressive microenvironment that is
mediated by ILC2s (Li et al., 2017a). Commensal stomach
bacteria favor an ILC2 environment by inducing the
production of IL-7 and IL-33 cytokines, thereby making it the
predominant ILC subset in the stomach (Satoh-Takayama et al.,
2020). ILC2-dependent IgA response protected the stomach by
eliminating IgA-coated bacteria including pathogenic H. pylori
(Satoh-Takayama et al., 2020). The increasing prevalence of
antibiotic heteroresistance among H. pylori strains is a matter
of grave concern (Rizvanov et al., 2019). Better understanding of
the underlying involvement of ILC2s may therefore, lead to
better therapeutic approaches.

Similarly, Clostridium difficile colonizes the epithelial cells of
the gut, releasing toxins that triggers cell death pathways and
colonic inflammation. C. difficile infection upregulated IL-33
production that in turn activated ILC2s leading to prevention
of epithelial death and disruption (Frisbee et al., 2019).
Therefore, IL-33-mediated ILC2 activation is a key defense
mechanism against C. difficile colitis.

Lungs constitute a unique organ as they are under constant
exposure to the external environment since birth. The
immunological milieu in the lungs is specialized to protect
them from damage and infection. In a study by Saluzzo S. et
al., the epithelium-derived IL-33 was found to be increased after
the first day of life in newborn mice and this was closely followed
by IL-13 secretion from ILC2s (Saluzzo et al., 2017). The
homeostatic role of ILC2s in the lungs entailed the recruitment
of alveolar macrophages and their IL-13 driven-polarization to
an anti-inflammatory M2 phenotype (Saluzzo et al., 2017).
However, this led to a delayed immune response to S.
pneumoniae infection in mice during adult life.

2.3 Group 3 ILCs
Abundantly found in the intestines, ILC3s are indispensable in
the maintenance of intestinal immunity and microbiota-host
homeostasis. Microbial stimulation leads to the development of
these cells after birth and various environmental signals, such as
bacterial and dietary metabolites, regulate ILC3 differentiation
and function (Qiu et al., 2012; Mielke et al., 2013). ILC3s are
characterized by their production of IL-22 and/or IL-17, and are
thus, the innate equivalent of Th17 cells. IL-22, however, is the
predominant cytokine produced by these cells which contributes
to intestinal homeostasis.

ILC3s are crucial in wading off bacterial infections as well as
in the interactions with commensal bacteria. Occasionally,
commensal bacteria can penetrate the mucosal barrier and
thus, the human body has evolved mechanisms to re-establish
homeostasis by minimizing inflammation. The intestinal
microbiome interacts indirectly with ILC3s by promoting
crosstalk between innate myeloid and lymphoid cells (Mortha
et al., 2014; Gury-BenAri et al., 2016; Castleman et al., 2019).
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Both commensal as well as pathogenic bacteria induce accessory
cells in the milieu, such as CD11c+ myeloid DCs to generate IL-
23 and IL-1b which then contribute to IL-22 secretion from
ILC3s (Castleman et al., 2019). In turn, IL-22 helps restrict the
dissemination of commensal bacteria by inducing the expression
of anti-microbial peptides (AMPs), including peptides of the
S100 family, RegIIIb and RegIIIg (Sonnenberg et al., 2011a).
AMPs possess potent anti-microbial as well as anti-biofilm
activity. Also termed host defense peptides, these positively
charged amphipathic molecules selectively target a broad
spectrum of bacteria and kill them via several mechanisms.
Their main mechanism of action is attributed to disrupting the
bacterial cell membrane causing cell lysis and death.
Additionally, they also form transmembrane channels in the
membrane initiating cytoplasm leakage and cell death.
Furthermore, they have demonstrated intracellular inhibitory
activities by inhibiting essential intracellular functions by
binding to intracellular proteins or nucleic acids (Le et al.,
2017). In addition to their involvement in the innate immune
response to extracellular bacteria, these IL-22 producing cells
promote selective anatomical containment of lymphoid-resident
commensal bacteria thereby preventing systemic inflammation
(Cella et al., 2009; Sonnenberg et al., 2012; Hepworth et al., 2013).
Along with IL-22 production, they also secrete IL-17 and regulate
adaptive Th17 responses (Hepworth et al., 2013). GM-CSF is
another cytokine that is produced by both mice and human
ILC3s (Mortha et al., 2014). While the cell surface expression of
NKp46 characterizes ILC3s in mice, NKp44 expression is
observed in humans (Cupedo et al., 2009; Sanos et al., 2009).
ILC3s also express CD127 (IL-7 receptor a-chain) and CD161.
Although ILC3s are predominantly dependent on the
transcription factor RORgt, T-bet expression is observed in a
subset of NKp46+ cells and is essential for IL-22 and IFN-g
production in these cells (Sciumé et al., 2012; Klose et al., 2013;
Rankin et al . , 2013). Further, expression of major
histocompatibility complex class II (MHC class II) by CCR6-
expressing lymphoid tissue inducer (LTi)-like ILC3 is another
mechanism by which they downregulate pathological CD4+ T
cell responses against commensal bacteria thereby limiting
spontaneous intestinal inflammation (Hepworth et al., 2013).

Infection by S. typhimurium causes diarrhea and
gastroenteritis. IFN-g response of innate origin is crucial in
restricting the growth of S. typhimurium (Muotiala and
Mäkelä, 1990; Songhet et al., 2011). In addition to expanding
the armory in the fight against intracellular pathogens (Yrlid
et al., 2001), IFN-g also modulates goblet cell function during S.
typhimurium infection (Songhet et al., 2011). Mucosal RORgt+

ILCs are emerging as important players in the immunity against
intestinal infections. Studies indicate that ILC3s and not NK cells
are the major source of IFN-g during S. typhimurium infection
(Vonarbourg et al., 2010; Klose et al., 2013). Graded expression
of T-bet was found to determine the fate of a distinct lineage of
CCR6- RORgt+ ILCs by influencing their expression of IFN-g
and the natural cytotoxicity receptor NKp46 (Klose et al., 2013).
During Salmonella enterica infection, IFN-g from these CCR6-

RORgt+ ILCs was essential for the secretion of mucus-forming
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glycoproteins that ensures epithelial barrier integrity (Klose et al.,
2013). IL-23 orchestrated inflammatory mucosal response
during S. typhimurium infection. This involved the early
production of IL-22 and IL-17A by T cells and ILC3s (Godinez
et al., 2009; Siegemund et al., 2009).

Another possible anti-bacterial mechanism of ILC3s is
through the induction of the expression and secretion of
lipocalin-2 via IFN-g and IL-22 at barrier surfaces (Sonnenberg
et al., 2010; Zhao et al., 2014). This limits bacterial growth by
sequestrating the iron scavenged by bacteria during infection
(Flo et al., 2004). Commensal bacteria are known to induce
fucosylation of intestinal epithelial cells by adding L-fucose to
glycolipids and glycoproteins on epithelial cells. The fucose
moiety serves as a dietary carbohydrate for these bacteria,
where they are metabolized into beneficial metabolites such as
short-chain fatty acids. In addition, ILC3s induce the IL-22-
mediated intestinal expression of fucosyltransferase 2 and
subsequent epithelial fucosylation that promote barrier integrity
in the intestinal tract (Goto et al., 2014). ILC3-mediated intestinal
epithelial cell glycosylation reduces the susceptibility and improves
host tolerance to S. typhimurium infection.

NK-derived IFN-g is largely implicated in controlling the
dissemination of intracellular bacteria such as L. monocytogenes.
Oral infection by L. monocytogenes was observed to induce IFN-g
production by NKp46+ RORgt- ILCs or NK cells and IL-22
production by NKp46+ RORgt+ ILC3s as well (Reynders
et al., 2011).

Citrobacter rodentium is known to cause acute infection of the
colonic epithelium leading to mild colitis. Infection with C.
rodentium is associated with IL-23 dependent CD4+ LTi cell
responses (Sonnenberg et al., 2011b). Further, these cells are early
responders to infection through the production of IL-22. Depletion
of CD4+ LTi cells led to a decline in the expression of infection-
induced IL-22 and anti-microbial peptides that impaired innate
immunity in the intestine. While ILC3s are important responders in
the initial phase ofC. rodentium infection, B lymphocytes and CD4+

T cells are crucial for resolution ofC. rodentium infection (Simmons
et al., 2003). In addition to activation of the surface receptors,
various other mechanisms such as surrounding phagocytes, diet-
and bacteria-derived metabolites can contribute to ILC3 activation
during C. rodentium infection (Beck et al., 2020). LTi-ILC3s are
equipped with a wide variety of receptors, including MHCII, NK
cell receptor P1 (NKR-P1R), G-protein-coupled receptors (GPCRs)
(GPR183, free fatty acid receptor 2 (Ffar2)), aryl hydrocarbon
receptor (AHR) that sense environmental cues to mount an
appropriate response against C. rodentium when triggered by the
pathogen (Lee et al., 2011; Chu et al., 2018; Li et al., 2018; Chun
et al., 2019; Melo-Gonzalez et al., 2019). Myeloid-ILC3 crosstalk also
shapes the ILC3 response against C. rodentium infection. For
example, the release of CXCL16 from DCs activates CXCR6
signaling in ILC3s stimulating the release of IL-22 and secretion
of antimicrobial peptides (Longman et al., 2014; Satoh-Takayama
et al., 2014). Further, depletion of the chemokine receptor CX3CR1
led to reduced expression of IL-22, antimicrobial peptides RegIIIb
and RegIIIg, and subsequently delayed clearance of C. rodentium
(Manta et al., 2013). Similarly, depletion of these CX3CR1

+
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mononuclear phagocytes led to increased severity of colitis and
mortality upon C. rodentium infection (Longman et al., 2014). In
addition to nutrient sensing AHR, dietary vitamin A promotes
intestinal homeostasis by recruiting immune cells and improving
the integrity of the mucosal barrier (Li et al., 2017b; Xiao et al.,
2019). Furthermore, the active vitamin A metabolite retinoic acid
regulates the transcription factor RORgt thereby controlling the
ILC3 response against C. rodentium infection (Goverse et al., 2016).

C. difficile is an opportunistic enteric pathogen that causes
infection upon antibiotic-induced gut microbiota alterations.
While ILC1s are critical for protection against acute C. difficile
infection, ILC3s also play a supporting role where their depletion
of IL-22 production was associated with a minor contribution to
resistance (Abt et al., 2015). Also, a recent study demonstrated
the role of short-chain fatty acids (SCFAs), in particular acetate,
in ameliorating the infection by activating the free fatty acid
receptor 2 (FFAR2) on ILC3s and neutrophils (Fachi et al., 2020).
This ligand-receptor signaling led to increased neutrophil-
mediated inflammasome activation and release of IL-1b, which
boosted IL-1R expression on ILC3s and IL-22 production.

Non-gastric Helicobacter species such as Helicobacter
apodemus and Helicobacter typhlonius, while activating ILCs
and inducing gut inflammation, were found to negatively
regulate RORgt+ ILC3s and weaken their proliferative capacity
in immunocompromised mice (Bostick et al., 2019). Further,
antigen-presenting ILC3s through their interaction with T
follicular helper cells (Tfh) and B cells limited mucosal IgA
responses to H. typhlonius in order to preserve mucosal-dwelling
commensal microbiota (Melo-Gonzalez et al., 2019).

In response to S. pneumoniae infection, the release of IL-23
from DCs led to rapid accumulation of ILC3s in the lungs and
their activation in an MyD88-dependent manner leading to IL-
22 secretion (Kinnebrew et al., 2012; Van Maele et al., 2014).
Further treatment with TLR5 agonist flagellin exacerbated ILC3-
mediated IL-22 production, that helped provide defense against
lethal infection (Van Maele et al., 2014). Furthermore, intestinal
commensal bacteria protect neonatal mice against bacterial
pneumonia immediately after birth by directing ILC3s influx
into the lungs and IL-22-dependent host resistance to
pneumonia (Gray et al., 2017). ILC3-derived IL-22 and IL-17
have also been implicated in host defense against Klebsiella
pneumoniae, a bacteria that displays high-level of acquired
antibiotic resistance (Chen et al., 2016; Murakami et al., 2016).
During K. pneumoniae infection in mice, inflammatory
monocytes rapidly migrate to the lung and secrete TNF,
leading to the increased activation of IL-17-producing ILCs
(Xiong et al., 2016). IL-17 and IL-22-producing ILC3s are
essential for host response and defense against chronic
pulmonary infection caused by Pseudomonas aeruginosa,
possibly by moderating neutrophil-mediated lung damage
(Bayes et al., 2016; Broquet et al., 2017). The crosstalk between
myeloid cells and ILCs promotes clearance of pneumonia.

ILC3s are known to mediate an early protective response to
tuberculosis, and in particular to M. tuberculosis (Ardain et al.,
2019). Acute infection with pulmonary tuberculosis is associated
with a depletion of circulating ILC subsets which are later
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
restored upon treatment. In response to infection, ILC subsets,
in particular ILC3s, accumulate in the lungs resulting in a robust
innate immune response in containing the infection (Ardain
et al., 2019).
3 DYSREGULATION OF ILC SUBSETS IN
BACTERIAL INFECTIONS

Bacterial pathogens have evolved strategies to evade, inhibit or
manipulate the innate immune response to their advantage.
Some of these strategies include subversion of antimicrobial
peptides, modulation of innate immune signal transduction
cascades, immune receptor localization and cytokine secretion
(Figure 2). These mechanisms have been comprehensively
reviewed in (Reddick and Alto, 2014).

3.1 NK Cells
Over the past decades, numerous studies have reported the
strategies developed by bacteria to evade the NK cell response
leading to bacterial persistence. For example, Pseudomonas
aeruginosa could eliminate NK cells via phagocytosis-induced
apoptosis (Chung et al., 2009). Further, toxins from various
bacteria including diphtheria toxin, pertussis toxin and P.
aeruginosa exotoxin A halt NK cell activity and promote NK
cell apoptosis (Waters et al., 1990; Whalen et al., 1992;
Michałkiewicz et al., 1999). Bacillus anthracis toxin was
reported to inhibit NK cell cytotoxicity and IFN-g secretion
(Klezovich-Bénard et al., 2012). Similarly, cell wall components
of mycobacteria affect DC maturation, hinder NK cell activity
and IFN-g production as well as promote immunosuppressive
IL-10 secretion (Geijtenbeek et al., 2003). Also, leukotoxin
produced by Actinobacillus actino-mycetemcomitans as well as
the membrane virulence protein of Yersinia pestis, inhibit the
expression of NK cell activation markers and IL-15 receptor,
respectively (Shenker et al., 1994; Kerschen et al., 2004). Another
approach by various bacterial species is promoting the
production of prostaglandin E2 (PGE2), which suppresses NK
cell response to cytokines, migration, IFN-g production and
cytolytic function, as illustrated in Figure 2A (Walker and
Rotondo, 2004; Szymanski et al., 2012).

3.2 Other ILCs
Bacterial infections have evolved to cause substantial damage to
epithelial barrier surfaces and its subsequent loss of protective
function. Interestingly, this correlated with infection-induced
perturbations in ILC frequency and function. The effect of
ILCs on intestinal homeostasis is largely dependent on the
bacteria-specific protective or deleterious cytokine response. In
addition to fostering intestinal homeostasis in response to
bacteria, ILCs may also promote an exaggerated inflammatory
response. Inflamed mucosal tissues and inflammatory diseases of
the gut [inflammatory bowel diseases (IBDs) and Crohn’s disease
(CD)] were associated with increased frequency of IFN-g/IL-
17A-producing ILCs (Geremia et al., 2011; Bernink et al., 2013)
and reduced frequency of IL-22-producing ILCs (Takayama
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et al., 2010; Bernink et al., 2015). The increased presence of IFN-g
at mucosal surfaces compromises the epithelial tight junctions
and upregulates TNF-a receptor expression on epithelial cells,
which induces intestinal epithelial barrier dysfunction (Wang
et al., 2005; Beaurepaire et al., 2009).

S. typhimurium is known to manipulate macrophage
polarization to a M2 state which enables their persistence within
the macrophage leading to the establishment of persistent infection
(Pham et al., 2020). ILC2s preferentially mediated the alternate
activation of macrophages (Kim et al., 2019) that reportedly
enhanced bacterial dissemination and long-term persistence in S.
typhimurium infection (Figure 2B) (Eisele et al., 2013).

Depending on the cytokines in the milieu, ILC3s demonstrate
plasticity in their effector cytokine production (Bernink et al.,
2015). IFN-g-producing ILC3s may contribute to the breakdown
of the gut epithelial barrier. A compromised epithelial barrier
promotes intrusion of gut bacteria into the lamina propria
resulting in immune cell exposure to a wide variety of bacterial
species at varying magnitudes and induction of potentially
pathogenic immune responses (Pastorelli et al., 2013). The
production of IFN-g/IL-17 in response to S. typhimurium or
Helicobacter hepaticus reportedly promotes bacteria-driven
innate colitis (Buonocore et al., 2010; Klose et al., 2013).
Therefore, IL-23-responsive ILC3s could also mediate intestinal
immune-mediated pathology.
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As discussed above, ILC3-derived IL-22 is induced in
response to bacterial infections and plays an important role in
host defense at mucosal surfaces. At the same time, IL-22 has
been reported to suppress the commensal bacteria while
promoting the colonization of the pathogenic bacteria
(Behnsen et al., 2014). In the study by Behnsen, J. et al., it was
demonstrated that IL-22 induced AMPs, including lipocalin-2
and calprotectin, that are responsible for sequestering essential
metal ions from microbes, were compensated in S. typhimurium
by alternative pathways. Moreover, IL-22 preferentially boosted
the colonization of S. typhimurium, while suppressing
commensal Enterobacteriaceae species that are susceptible to
AMPs (Figure 2C). Thus, the production of IL-22 by ILC3s is
exploited by pathogenic bacteria to enhance their colonization
on mucosal surfaces at the cost of their competing commensals.

Furthermore, the production of IL-23 and IL-1b by accessory
cells such as mDCs, monocytes and macrophages, helps induce
and regulate IL-22 secretion from ILC3s (Manta et al., 2013;
Castleman et al., 2019). The depletion of CX3CR1

+ phagocytes in
mice reduced IL-22 expression in ILC3s, leading to increased
microbial translocation and delayed clearance of C. rodentium
(Manta et al., 2013). Thus, pathogenic bacteria may potentially
exploit this mechanism by either reducing the frequency of
accessory cells or depleting the cytokines responsible for IL-22
production by ILC3s in order to promote bacterial dissemination.
A B

C

FIGURE 2 | Possible mechanisms for dysregulation of ILCs in bacterial infections. Several bacterial species may manipulate the immune (A) NK cells, (B) Group 2,
and (C) Group 3 ILCs, promoting bacterial persistence and inhibiting their elimination.
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4 POSSIBLE THERAPEUTIC
APPROACHES USING ILCS IN
BACTERIAL INFECTIONS
Considering their relatively recent discovery, ILCs are now actively
studied to decipher their contribution to immune response in
health and disease, and to manipulate them for clinical benefit.
However, therapeutic strategies targeting ILCs should follow after
firmly establishing a unique and non-redundant protective or
deteriorating role for ILCs in diseases. Variety of strategies are now
available to therapeutically target ILCs, including cytokine
administration, adoptive transfer, anti-cytokine antibodies,
antibody depletion of ILCs, modulating ILC plasticity and/or
function, inhibiting ILC migration and function, and immune
checkpoint modulation, as elaborately described in (Cobb and
Verneris, 2021). With increasing preclinical and clinical studies, it
is evident that ILCs play a role in the initiation, regulation and
resolution of bacterial infections suggesting a potential beneficial
role in therapeutically targeting ILCs in bacterial infections.

NK cells were heavily investigated and utilized as a therapeutic
modality in various diseases including infections and cancer. Several
studies have suggested using certain bacterial strains to activate NK
cells, thus boosting their cytotoxicity effects against cancer cells. For
example, the live vaccine strain BCG was proposed as a successful
immunotherapy for bladder cancer due to the induced
inflammation and recruitment of NK cells (Koga et al., 1988).
Another example is L. monocytogenes infection which was found to
initiate the anti-tumor NK cell response specifically against hepatic
metastasis, due to their tropism in the liver (Yoshimura et al., 2007).

On the other hand, the role of ILC1s in Crohn’s disease
highlighted its potential in being a therapeutic target. In CD
patients, the frequency of CD127+ ILC1s was found to increase at
the cost of ILC3s in inflamed intestinal tissues (Bernink et al.,
2015). Here, the plasticity of ILCs can be exploited to
differentiate IFN-g-producing CD127+ T-bet+ c-Kit− NKp44−

ILC1s into IL-22-producing NKp44+ ILC3s in the presence of IL-
1b and IL-23, thereby re-establishing homeostasis which may
demonstrate a therapeutic effect in Crohn’s disease.

While ILC3s are essential for the maintenance of gut homeostasis
(Vivier et al., 2018), their dysregulation may also contribute to
intestinal inflammation. For instance, increased colonic secretion of
IL-17 and IFN-g by ILC3s was associated with bacteria-driven innate
colitis (Buonocore et al., 2010). In cases of redundancy between ILCs
and T cells, neutralizing the common effector cytokines from ILCs
and T cells may prove beneficial. Although targeting both IL-17 and
IFN-g appeared promising in pre-clinical studies (Buonocore et al.,
2010), neutralizing these cytokines or blockade of IL-17R failed to
demonstrate clinical efficacy against Crohn’s disease (Hueber et al.,
2012; Kaser, 2014). In this case, targeting the upstream cytokines,
such as IL-12 and IL-23 simultaneously or IL-23 alone, that stimulate
the ILCs to produce IL-17 and IFN-g may serve as a more effective
strategy in treating patients with Crohn’s disease (Sands et al., 2017;
Rutgeerts et al., 2018).

In addition, ILC3-derived GM-CSF is an important element in
ILC-driven colitis, where they are responsible for the recruitment
and maintenance of intestinal inflammatory monocytes (Pearson
et al., 2016). The IL-23/GM-CSF–mediated autocrine feedback
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loop may sustain the crosstalk between myeloid cells and ILC3s.
Further, GM-CSF may mobilize the ILC3s from within lymphoid
aggregate cryptopatches into adjacent intestinal mucosa, as seen
following the induction of colitis. Neutralization of GM-CSF
prevented the egress of ILC3 from cryptopatches and bore
promising results in mouse models (Pearson et al., 2016).
However, GM-CSF may not be a straightforward target in IBD
as GM-CSF governs clear host protective functions in the intestine
(Bernasconi et al., 2010; Hirata et al., 2010).

In fact, several biological therapies that target ILCs are currently
approved for the treatment of CD. Patients with CD are generally
characterized by high intestinal levels of ILC1s and low ILC3s.
Ustekinumab, monoclonal antibody against IL-12/23 p40,
normalized the ILC frequencies, thereby contributing to intestinal
mucosal healing in these patients (Li et al., 2016). In addition to
ustekinumab, the inhibition of TNF-a and a4b7 integrin inhibitor
(vedolizumab) are approved for Crohn’s disease (Crohn’s and Colitis
Foundation, 2021). NCR+ ILC3s constitute an important source of
intestinal IL-22 and were found to be reduced in the intestinal
mucosa of CD patients in favor of pro-inflammatory ILC1s. In a
study of 54 CD patients, increased ILC1 levels and significantly lower
NCR+ ILC3 levels were detected at baseline (Creyns et al., 2019).
However, biological therapy with anti-TNF, ustekinumab or
vedolizumab was found to restore the NCR+ ILC3 levels to
homeostatic proportions in the intestine. Interestingly, the
circulating NCR+ ILC3s increased only in the anti-TNF and
ustekinumab treatment groups but not with vedolizumab therapy.
Taking into consideration the critical role of a4b7 integrin in the
development and migration of ILCs (Sonnenberg and Artis, 2015;
Tufa et al., 2020), the effect of vedolizumab on the frequency of
peripheral ILC3s may suggest the lack of ILC homing from the blood
to the gut (Forkel et al., 2019) but rather a selective inhibition of ILC
migration from cryptopatches into intestinal mucosa. The biological
efficacy of these therapeutics could thus, be attributed at least partially
to its impact on ILC differentiation, migration and/or function, and
hence re-establishing homeostatic intestinal conditions.

Various other therapies that are currently in the pipelinemay also
target ILCs. Multiple agents targeting IL-23 are in late-phase clinical
trials for patients with CD and/or ulcerative colitis (Moschen et al.,
2019) (NCT03650413). JAK inhibitors, through their ability to
modulate IL-12 and IL-23 cytokine signaling may affect ILC
plasticity and are promising candidates in trials. A monoclonal
antibody targeting NKG2D is also being tested in a phase II
clinical trial (NCT02877134). Since the gut microbiome is known
to reciprocally regulate ILCs (Gury-BenAri et al., 2016), a small-
molecule FimH antagonist, Sibofimloc, that was created to impede
bacterial adherence to the gut, thus decreasing intestinal permeability
and reducing innate immune activation, is being investigated in a
phase II study (https://www.enterome.com/). Sphingosine-1-
phosphate receptor 1 (S1PR1) regulates ILC egress from secondary
lymphoid organs (Eken et al., 2019) and S1PR1 agonists, such as
fingolimod, are expected to modulate their migration and function
(Bell et al., 2018).With parallel action to regulatory T cells, regulatory
ILCs (ILCregs) are proposed to promote the resolution of intestinal
inflammation by suppressing the activation of ILC1 and ILC3
through IL-10 secretion. These therapeutic approaches have been
reviewed in (Moschen et al., 2019).
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5 FUTURE PERSPECTIVES AND
CONCLUDING REMARKS

Bacterial molecules can activate ILCs via a direct and indirect
mechanisms, hence highlighting the crucial roles for these innate
cells in bacterial infections (Table 1). The past 10 years or so have
been instrumental in shaping our understanding of the functional
diversity of ILCs. Nevertheless, there are still a lot of open-ended
questions that need to be answered to fully comprehend the complex
roles of these cells in health and disease. ILCs are known to regulate
key signaling circuits to establish tissue homeostasis; however, upon
further dissection, new circuits may be revealed. Furthermore,
unraveling the crosstalk between ILCs and the various other innate,
adaptive immune players and non-hematopoietic cells may open up
further avenues of research. Similarities in the molecular profiles
between ILCs and T cells limits the specific targeting of ILCs without
simultaneously affecting lymphocytes. ILCs are importantmediators
in the innate immune response to bacterial infections, particularly by
regulating tissue-specific immunity. The traditional treatment
regimens of bacterial infections are usually antibiotics. Over the
past decades, bacteria have managed to develop evasion strategies
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
including antibiotic resistance. Hence, alternative therapeutic
modalities are needed. Being the first innate defense members in
the anti-bacterial response, ILCs represent a newpromising target for
anti-bacterial therapy. Further research needs to focus on the
immunoregulatory pathways controlled by ILCs and ways of
therapeutically harnessing them.
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TABLE 1 | Response of different ILC groups in various intracellular and extracellular bacterial infections.

ILC Group Bacterial Infections Role/Response

NK cells Shigella flexneri
Mycobacterium lepraemurium
Mycobacterium avium
Listeria monocytogenes
Salmonella typhimurium
Bacillus anthracis
Escherichia coli
Staphylococcus aureus
Mycobacterium tuberculosis
Lactobacillus johnsonii
Propioni-bacterium acnes
Yersinia pestis
Citrobacter rodentium
Yersinia enterocolitica
Mycobacterium bovis
Legionella pneumophila
Francisella tularensis
Bordetella pertussis
Pseudomonas aeruginosa
Streptococcus pneumoniae

Cytotoxicity/Lysis via perforin and granzymes
Cytotoxicity/Lysis via granulysin
IFN-g and TNF-a production
Activation by dendritic cell released cytokines including IL-12, IL-18, and type-1 interferons
Secretion of IL-10 to inhibit dendritic cell
Activation of adaptive immune cells
Secrete antibacterial mediators: cathelicidin, IDO, nitric oxide and a-defensins

ILC1s Clostridium difficile
Salmonella typhimurium
Klebsiella pneumoniae

Production of IFN-g, TNF-a, IL-23, IL-17 and nitric oxide synthase 2

ILC2s Helicobacter pylori
Clostridium difficile
Streptococcus pneumoniae

Production of IL-4, IL-5, IL-9
and IL-13 cytokines

ILC3s Salmonella typhimurium
Salmonella enterica
Citrobacter rodentium
Listeria monocytogenes
Clostridium difficile
Helicobacter apodemus
Helicobacter typhlonius
Streptococcus pneumoniae
Klebsiella pneumoniae
Pseudomonas aeruginosa
Mycobacterium tuberculosis

Secretion of cytokines including IL-17, GM-CSF, IL-22
Production of anti-microbial peptides such as RegIIIb and RegIIIg, calprotectin and lipocalin-2
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Cruz-Zárate, D., Cabrera-Rivera, G. L., Ruiz-Sánchez, B. P., Serafıń-López, J.,
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