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Abstract
Background: Accurate diagnosis of cancer subtypes remains a challenging problem. Building
classifiers based on gene expression data is a promising approach; yet the selection of non-
redundant but relevant genes is difficult.

The selected gene set should be small enough to allow diagnosis even in regular clinical laboratories
and ideally identify genes involved in cancer-specific regulatory pathways. Here an entropy-based
method is proposed that selects genes related to the different cancer classes while at the same time
reducing the redundancy among the genes.

Results: The present study identifies a subset of features by maximizing the relevance and
minimizing the redundancy of the selected genes. A merit called normalized mutual information is
employed to measure the relevance and the redundancy of the genes. In order to find a more
representative subset of features, an iterative procedure is adopted that incorporates an initial
clustering followed by data partitioning and the application of the algorithm to each of the
partitions. A leave-one-out approach then selects the most commonly selected genes across all the
different runs and the gene selection algorithm is applied again to pare down the list of selected
genes until a minimal subset is obtained that gives a satisfactory accuracy of classification.

The algorithm was applied to three different data sets and the results obtained were compared to
work done by others using the same data sets

Conclusion: This study presents an entropy-based iterative algorithm for selecting genes from
microarray data that are able to classify various cancer sub-types with high accuracy. In addition,
the feature set obtained is very compact, that is, the redundancy between genes is reduced to a
large extent. This implies that classifiers can be built with a smaller subset of genes.

Background
DNA microarrays have become ubiquitous in analyzing
the expression profiles of genes in the hope to distinguish
between various disease types, such as discriminating
between various cancer sub-types. Differential expression
of genes is analyzed statistically and genes are assigned to

various classes which may (or not) enhance the under-
standing of underlying biological processes. Alternatively,
a reduced set of genes may be singled out and used as
biomarkers for diagnosis and prognosis.
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Microarray data is typically used both to discover new
classes as well as in class prediction. Discovery of new
classes [1-4] is usually achieved with the help of clustering
techniques such as hierarchical clustering [5], k-means
clustering [6] and self organizing maps (SOM) [7]. Class
prediction, involving the assignment of labels to samples
based on their expression patterns, is typically based on
statistical or supervised machine learning methods. These
range from the application of simple techniques such as
nearest neighbor algorithms [8] to classical methods such
as linear discriminant analysis [9] to more advanced tech-
niques such as neural networks [10], support vector
machines [11-13], fuzzy logic [14] and decision trees [15].
The challenge in dealing with microarray data lies in the
fact that there are orders of magnitude differences
between the number of samples (typically less than a hun-
dred) and the number of genes (typically tens of thou-
sands) that are studied. The measurements also typically
contain both measurement noise as well as systemic
noise. This could have a significant impact on classifica-
tion accuracy. Classification must therefore be preceded
by a step known as feature selection where a subset of rel-
evant features is identified.

There are a number of advantages to feature set selection.
The first lies in reducing the cost of clinical diagnosis. It is
much cheaper to focus only on the expression of a few
genes rather than on thousands of genes for diagnosis
[16]. Feature set selection can also lead to a reduction in
computational cost as a result of a reduction in problem
dimensionality. Furthermore, feature set selection often
gives rise to a much smaller and a more compact gene set.
This could make it easier to identify genes of particular
importance to the problem under study. Moreover, given
the disparity in the magnitudes of the numbers of genes
and samples, it is difficult to justify the development of a
classifier based on a gene set where the number of genes
is greater than the number of samples.

One way to categorize feature set selection approaches is
to classify them as either filter (such as those based on sta-
tistical tests such as t-test, F-test etc.) or wrapper [17]
methods. These methods have the advantage of having
very low computational complexity as well as better gen-
eralization potential since they are uncorrelated to the
learning method.

Wrapper type approaches are those in which the feature
selection method is bundled together with the learning
method. This implies that the usefulness of a feature is val-
idated by the estimated accuracy of the learning method.
In consequence, often, a small subset of the feature set
with very high prediction accuracy can be obtained
because the characteristics of the features match well with
the characteristics of the learning method.

Another way of categorizing feature set selection
approaches is as univariate or multivariate [18]. Univari-
ate methods [1,19] consider the contributions of individ-
ual genes to the classification independently. In contrast
multivariate methods such as recursive feature elimina-
tion (RFE) [12], leave one out (LOO) method [13],
mutual information based approaches [20] etc., measure
the relative contribution of a gene to the classification by
taking the effect of other genes into consideration at the
same time.

A serious deficiency of currently used multivariate
approaches for feature set selection is that they are based
on selecting genes which are maximally relevant with
respect to the classes. The problem with this approach is
that there might still be genes among the selected set that
are heavily correlated with each other and thus leading to
a redundancy in the selected feature set. Ding et. al. [20]
have used mutual information for gene selection that has
maximum relevance with minimal redundancy by solving
a simple two-objective optimization.

In the study presented here, a similar approach has been
followed for feature set selection by trying to maximize
the relevance and minimize the redundancy of the
selected genes. However, normalized mutual information
has been used instead of mutual information. In addition,
both Battiti's greedy selection algorithm [21] as well as a
simulated annealing based approach [22] have been used.
In order to find a more representative subset of features,
an iterative procedure was adopted that incorporates an
initial clustering followed by data partitioning and the
application of the algorithm to each of the partitions. A
leave-one-out approach then selects the most commonly
selected genes across all the different runs and the gene
selection algorithm is applied again to pare down the list
of selected genes until a minimal subset that gives a satis-
factory accuracy of classification is obtained. The algo-
rithm was applied to three different data sets and the
results obtained were compared to work done by others
using the same data sets. Additionally the algorithm was
also compared to work done by Ding and Peng [20] for
three different datasets.

Results
Datasets
Three public microarray data sets were used to assess the
performance of the algorithm.

SRBCT data
This data set includes 88 cDNA arrays for 63 training sam-
ples and 25 test samples from [10]. All samples were com-
bined together and the 5 non-SRBCT samples were
removed. The data set consists of four types of tumors in
childhood, including Ewing's sarcoma (EWS),
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rhabdomyosarcoma (RMS), neuroblastoma (NB), and
Burkitt lymphoma (BL). After filtering by [10], 2308 genes
remained in the data set. The data was transformed to nat-
ural logarithmic values. Finally, each sample was also
standardized to zero mean and unit variance.

Breast cancer data
This data set contains expression levels of 7129 genes in
49 breast tumor samples from [23]. The samples were
classified according to their estrogen receptor (ER) status.
25 samples were ER positive while the other 24 samples
were ER negative. In the pre-processing procedure, the
data was thresholded with a floor of 100 and a ceiling of
16000 Affymetrix intensity units. Then those genes with

 ≤ 5 or max - min ≤ 500 were excluded. The filtered

data was transformed to base 10 logarithmic values.
Finally, each sample was standardized to zero mean and
unit variance.

Colon cancer data
This data set contains expression levels of 40 tumor and
22 normal colon tissues. Only the 2000 genes with the
highest minimal intensity were selected by [24]. The data
waspre-processed by transforming the raw intensities to
base 10 logarithmic values and standardizing each sample
to zero mean and unit variance.

Results
The results of the application of the full algorithm using
both the greedy selection algorithm as well as the simu-
lated annealing algorithm for solving Problem 2 are
shown in Table 1. The associated clustering dendrograms
are shown in Figures 1, 3 and 5, respectively. For all the
dendrograms, the samples are presented along the x-axis
with the gene-set along the y-axis. Orange reflects up-
expression while yellow represents no or little expression.

The results for SRBCT were the best with a 100% accuracy
obtained. The number of genes selected in this case was 58
as opposed to the 96 genes selected by Khan et al. [10]. It
is interesting to note that when the binary optimization
algorithm was used to select genes for the SRBCT data, 50
of the genes selected were the same as those selected with
the greedy algorithm. The accuracy rate for breast cancer
data was similar for both cases with about 5 samples
being misclassified. The final gene set for this data set con-
tained 31 genes. For colon cancer data, there were 6 mis-
classifications, with an overall accuracy rate of 90.3%.
There were 29 genes in the final selected gene set.

There seems to be no quantitative or qualitative difference
when using the greedy selection or the binary optimiza-
tion algorithm. Moreover, since the simulated annealing
procedure requires an inordinate amount of computation

time (of the order of days) as compared to the greedy
selection algorithm (of the order of a couple of hours), the
iterative procedure was implemented with the greedy
algorithm. The iterative approach shown in Figure 8 was
used for all three data sets and the clustering dendrograms
with the reduced feature sets are shown in Figures 2, 4 and
6 respectively. It is interesting to note that the classifica-
tion accuracy is not affected by using a much reduced fea-
ture set. In fact, for colon cancer data, the accuracy
improved to 91.9%.

One of the main concerns while carrying out a multi-
objective optimization is the presence of the weight factor
β. The selection of β is usually heuristic. Battiti suggested
in [21] that the value of β between 0.5 and 1.0 is appro-
priate for most cases. The effect of changing β was studied
by changing its value from 0 to 1 in steps of 0.2. using the
colon cancer data set and the classification accuracy calcu-
lated (Table 2). A value of (0.5 – 1.0) for β seems appro-
priate. Also, the order of selection of the first 10 genes was
examined (Table 3). It appears that varying β does affect
the gene selection order to a certain extent. For example,
comparing the gene selection orders for β = 0.6, 0.8
reveals that genes 267 and 513 swap places while genes
1256 (for β = 0.6) and 1727 (for β = 0.8) are not common
to both cases. However, it must be kept in mind that the
selection order in this case is not indicative of the relative
importance of the genes since a greedy algorithm is being
used.

We also compared our methodology to that of Ding and
Peng [20] for three different datasets. The first dataset is
the colon cancer dataset [24]. The second dataset is the
leukemia dataset [1]. The third and final dataset used was
the NCI dataset [25]. The results are tabulated in Table 4.
As can be observed, the Uncertainity-based (UB) method
(our method) seemed to do better than the DP (Ding and
Peng) method for the colon dataset. On the other hand,
for the leukemia dataset, DP proved superior to our
method. For the NCI dataset, both methods performed
poorly with the DP method having a slight edge. It must
however be noted that the NCI dataset consists of 9 classes
and only 60 samples. As a result, classifying the dataset
with a very small sample size into 9 different classes and
using only 15 genes is very difficult.

A further difficulty in comparing different methodologies
lies in the fact that the initial pre-processing step could
also play a role in classification accuracies. In the absence
of a uniformity of preprocessing of the datasets, it is diffi-
cult to draw general conclusions regarding the relative
performances of two different methodologies.

As commonly observed when analytical algorithms are
compared, the performance shows mixed results. While

max

min
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Ding and Peng algorithm outperformed the one presented
here (see table 4), it should be noted that the description
of methods in their article did not allow us to compare
both algorithms on equal terms as no gene ranking was
provided, and thus the biological significance of their
findings could not be assessed.

A comparison between the accuracies obtained by the
original papers (from which the datasets were obtained)
and our method is given in Table 5. The list of genes
selected for each dataset and their ranks in the original
papers are given in the supplementary file.

Clustering dendrogram of SRBCT data – First IterationFigure 1
Clustering dendrogram of SRBCT data – First Iteration.
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Discussion
The details of the selected genes and the comparison with
the original data are listed in the supplementary material
for all three data sets. This section presents a discussion of
the comparison of genes selected by the algorithm pre-
sented in this work with those presented in earlier work
(or as in the case of Breast cancer and SRBCT data, in the
original work).

SRBCT data set
There were a total of 41 genes that overlapped between the
selection methods presented in this work and those by
[10]. The common genes were from all rank levels of the
original method. Left out genes coded often, but not
always for proteins from a functional system similar to
those still selected here, as in the case of no. 233721 insu-
lin-like growth factor binding protein (not selected here)

Clustering dendrogram of SRBCT data – Reduced Feature SetFigure 2
Clustering dendrogram of SRBCT data – Reduced Feature Set.
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and no. 296448 (insulin- like growth factor 2) and
207274 (insulin-like growth factor 2, exon 7 and addi-
tional ORF), which were selected by both methods.
Interestingly, two viral oncogene sequences were not
selected (nos. 417226 and 812965, v-myc avianmyelocy-
tomatosis viral oncogene homologs), nor were some
extra- cellular matrix associated genes (nos: 122159 and
809901, collagens type III and XV) both without replace-

ment from similar genes. The seventeen newly selected
genes that were not part of the original selection come
from various functional systems. Of interest here is that
while the original gene no. 245330 (Human krueppel-
related zinc finger protein H-plk) was left out, gene no.
767495 (GLI-Krueppel family member GLI3) was newly
selected. Such "nuclear localization signals" have been

Clustering dendrogram of breast cancer data – First IterationFigure 3
Clustering dendrogram of breast cancer data – First Iteration.
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shown to be involved in processes determining proper
nuclear localization [26], but may also be determinants of
progression towards cancer [27].

Breast cancer data set
Out of the 31 genes selected here, 16 were not selected in
the original publication [23], which selected 60 genes.
The 45 genes not selected by the present method covered
a large variety of physiological functions, without a spe-
cific pattern becoming obvious. Two genes linked to the
ILGF were left out (no: s37730 and m62403), with no

replacement. ILGF is linked to the development of a
number of cancers (review in [28]). The fact that ILGF-
linked genes are left out here may be discussed in two dia-
metrically opposite ways. For once, leaving these genes
out of the classification set may cause an oversight of the
tissue's potential to induce further cancerous growth.
More likely, though, it seems like whatever physiological
role these genes play in the tissue, they do not contribute
to distinguishing between various types of cancer.

Clustering dendrogram of breast cancer data – Reduced Feature SetFigure 4
Clustering dendrogram of breast cancer data – Reduced Feature Set.
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Colon cancer data set
Contrary to the other two test sets, in the case of colon
cancer, the original publication did not rank the gene set
retrieved, so that a direct comparison of results was not
possible. The same dataset, however, has been re- ana-
lyzed previously by Silvio Bicciato [29], using an auto

associative neural network model, which yielded a ranked
gene list. With the exception of Tetraspan-1, which heads
the rank list with a weight of 0.9391, the top genes found
by Bicciato for the reconstruction of the normal class con-
cur with the rank list presented here, while only one gene
(Heat shock 60 kD protein 1) is selected by both methods

Clustering dendrogram of colon cancer data – First IterationFigure 5
Clustering dendrogram of colon cancer data – First Iteration.
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when compared to the gene list in [29] for the reconstruc-
tion of the tumor class. This tetraspan family of proteins
is involved in cell adhesion processes at the gap junctions
and one related protein was enhanced in highly metastatic
gastric cancer [30].

Conclusion
Compared to the classification methods described in the
original articles or previous third party analysis, the algo-
rithm described here compares favorably in its capacity to
select small sets of genes that distinguish between various
cancer types. The observation that it leaves out several
genes known to be involved in cancer development may
indicate that this method's advantage lies more in good
classification, but not in the detection of new dysfunc-
tional regulatory mechanisms.

Although preliminary results using a greedy selection
algorithm are encouraging, additional work needs to be
done in order to develop alternative methodologies for
multi-objective optimization that can select a more opti-
mal and representative set of genes for discriminating
between various cancer sub-types.

Methods
Algorithms for microarray data analysis typically focus on
obtaining a set of genes that can distinguish between the
different classes in a given sample set. Thus, the primary
concern is to ensure the relevance of the genes to the
classes under consideration.

Given a microarray data set with m samples belonging to
k known classes and n genes, we want to select out those
genes which are able to predict the differences in the gene

expression patterns in different sample classes. Define ;

|c| = k, as the vector labeling the classes of samples and ;

i ∈  n as the gene expression profile of gene i. Let  be the
feature set of all genes and let S be the set of selected
genes. Then, the feature set selection problem can be
defined as follows:

Problem 1

Select a set S of genes, S ⊂   such that ∀  gene s ∈  S the rel-

evance of s with is maximized.

However, the feature set of genes selected will contain a
number of redundant genes with sometimes little rele-
vance to the classes. This is due to the fact that the pres-
ence of genes that are closely related to each other imply
that there is a possibility of genes orthoganal to those in
the selected set being left out of the final feature set. More-
over, the presence of genes with little relevance to the
classes leads to a reduction in the "useful information".

Ideally, selected genes should have high relevance with
the classes while the redundancy among the selected
genes is low. Most previous studies emphasized the selec-
tion of highly relevant genes. Ding et. al. [20] addressed
the issue of the redundancies among the selected genes.
The genes with high relevance are expected to be able to
predict the classes of the samples. However, the prediction
power is reduced if many redundant genes are selected. In
contrast, a feature set that contains genes not only with
high relevance with respect to the classes but with low
mutual redundancy is more effective in its prediction
capability.

Problem formulation
To assess the effectiveness of the genes, both the relevance
and the redundancy need to be measured quantitatively.
An entropy based correlation measure is chosen here.
According to Shannon's information theory [31], the
entropy of a random variable X can be defined as:

Entropy measures the uncertainty of a random variable.
For the measurement of the interdependency of two ran-
dom variables X and Y, some researchers [20,21] used
mutual information, which is defined as:

I(X, Y) = H(X) + H(Y) - H(X, Y) (2)

Table 1: Classification accuracies and the number of selected genes for the two different optimizationmethods (Greedy and Simulated 
Annealing (SA)). For Greedy selection, the accuracies as well as the number of genes selected in iterations 1 and 2 are shown. The 
reported accuracies are LOOCV accuracies while the number of genes is the smaller subset common to all LOOCV experiments.

Algorithm Colon Breast SRBCT

% Acc # Genes % Acc # Genes % Acc # Genes

Greedy 90.3/91.9 29/9 89.8/89.8 31/12 100/100 58/14
SA 87.1/- 26/- 89.8/- 44/- 100/- 58/-

c

gi




c

H X P x P xi i
i

( ) ( )log ( ) ( )= −∑ 1
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In order to ensure that different values are comparable
and have similar effects, normalized mutual information is
used as a measure and is defined as:

U(X, Y) is symmetrical and ranges from 0 to 1, with the
value 1 indicating that the knowledge of one variable
completely predicts the other (high mutual relevance)
while the value 0 indicates that X and Y are independent
(low mutual relevance).

Clustering dendrogram of colon cancer data – Reduced Feature SetFigure 6
Clustering dendrogram of colon cancer data – Reduced Feature Set.
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The mutual relevance between  and  can then be

modeled by U ( ) while the dependency between two

genes is U ( ).

The total relevance of all selected genes is given by

The total redundancy among the selected genes is given by

Therefore, the problem of selecting genes can be reformu-
lated as follows:

Problem 2

Select a set S of genes, S ⊂  such that ∀  gi ∈  S, the total rel-

evance of all the selected genes with , J1, is maximized while
the total relevance among all the selected genes gi ∈  S, J2, is
minimized.

This is a two-objective optimization problem. To solve it,
a simple way is to combine these two objectives into one:

where β is a weight parameter.

subsection* Algorithm

To solve the above problem, Battiti [21] proposed a
greedy algorithm. The procedure can be described as fol-
lows (see Figure 7):

1. Initialization: F ← allgenes, S ← ∅ .

2. First gene: select gene i that has highest relevance U

( ). gi ∈  S, F \ i.

3. Remaining genes: From F, select gene j that maximizes

.

Greedy AlgorithmFigure 7
Greedy Algorithm.

gi c

g ci ,

g gi j,

J U g ci
i S

1 4=
∈
∑ ( , ) ( )

J U g gi j
i j S

2 5=
∈

∑ ( , ) ( )
,


c

max ( , ) ( , ) ( )
,

J J J U g c U g gi i j
i j Si S

= − = −
∈∈

∑∑1 2 6β β

g ci ,

U g c
S

U g g j S F jj i ji S
( , ) ( , ) , \− ⋅ ∈∈∑β 1
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Optimal Feature Set Selection AlgorithmFigure 8
Optimal Feature Set Selection Algorithm. The function CLUSTER uses the k-means clustering approach to partition the 
initial gene set into the desired number of partitions K, with G genes in each partition. K and G are user-specified. The function 
SELECT_GENES uses either the greedy approach (Figure 7) or the heuristic simulated annealing approach to solve Problem 2. 
The function CLASSIFICATION_ERROR uses kNN classification method to assess the discriminant power of the selected 
genes and returns the classification error.

Table 2: Effect of varying β on classification accuracy. The effect of varying β was studied for the colon cancer data set. A value of 
between 0.5 – 1 as suggested by Battiti [21] seems appropriate.

β 0.0 0.2 0.4 0.6 0.8 1.0

accurate 87.1% 88.7% 90.3% 90.3% 90.3% 90.3%

Table 3: Effect of varying β on the selection order of genes. The first ten genes selected for each value of β are shown here. The 
numbers correspond to the gene numbers for the colon cancer data set. Varying β does seem to affect the order in which the genes 
are selected. However, selection order is not indicative of the relative importance of genes since a greedy-selection method is being 
used.

β g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

0.0 377 267 765 493 1582 513 1635 1671 245 780
0.2 377 267 1582 513 765 493 1635 1671 780 1423
0.4 377 1582 267 513 493 765 1635 1671 780 1491
0.6 377 1582 267 513 1491 493 1635 765 1671 1256
0.8 377 1582 513 267 1491 1727 493 1635 1671 765
1.0 377 1582 1491 513 267 1727 1244 1256 1671 1873
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4. Repeat the above step until the desired number of genes
are obtained.

The maximization problem (6) can also be re-formulated
into a binary optimization problem. Let xi be a binary var-
iable with value 1 for selecting gene i while value 0 for not.
Thus, Equation (6) can be rewritten into:

It can be further rewritten into matrix form:

max Uc
Tx - βxTUpx (8)

where Uc is the relevance vector, Up is matrix of pairwise
redundancy.

Beasley et al. [32] discussed several heuristic algorithms to
solve such binary quadratic programming problems. A
heuristic simulated annealing method was employed to
solve the problem. The pseudo codes of simulated anneal-
ing can be obtained from [32].

There are however limitations to both approaches. There
is a possibility that the solution obtained for Problem 2
can lead to a local optimum. This could result in a sub-
optimal feature set thereby affecting the prediction accu-
racy. In order to expand the search space, an iterative pro-
cedure was adopted. The data was initially clustered and
partitioned into K groups, C1, C2,..., CK by using k-means
clustering. The idea was to group genes with similar
expression patterns together. The greedy or heuristic sim-

ulated annealing procedure was then applied to select a
subset of genes, Sk, from each partition, k, such that the
selected genes had low mutual relevance with respect to
each other while at the same having maximal relevance
with the different classes. The genes selected from each
subset are then combined to obtain a single gene set, that
is, S = S1 � S2 � S3,..., �SK.

The final set of genes is selected by carrying out a leave-
one-out cross validation (LOOCV). For each run, one
sample is held out for testing whilei the remaining N - 1
samples are used to train the classifier. The genes are
selected by the algorithm using the training samples and
then are used to classify the testing sample. The overall
accuracy rate is calculated based on the correctness of the
classifications of each testing sample. In order to get a
deeper understanding of the selected genes, those genes
found in common for all the N different runs of the
LOOCV experiment are finally listed out for further inves-
tigation. The process of gene selection is repeated by
selecting a subset of genes from this feature set, that gives
a classification error that is below a user defined threshold
ε. Nearest neighborhood (k-NN) classification method is
used to assess the discriminant power of the selected
genes by the method. The process is stopped when the
error becomes greater than ε. The full algorithm is pre-
sented in Figure 8.
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Table 4: Classification accuracies and the number of selected genes for the two different mutual information based methodologies 
(Uncertainity based (UB) and Ding and Peng's (DP)). The accuracies as well as the number of genes selected in iterations 1 and 2 
respectively are shown for the UB method while the accuracies and genes selected for two different runs are shown for the DP case. 
For both methodologies, the accuracies reported are LOOCV accuracies.

Algorithm Colon Leukemia NCI

% Acc # Genes % Acc # Genes % Acc # Genes

UB (ours) 90.3/91.9 29/9 80.6/76.4 21/5 57.6/52.5 59/15
DP 75.8/91.9 50/20 98.6/100 50/10 73.3/61.7 50/20

Table 5: Classification Results of Original Papers

Dataset Colon Breast SRBCT

Accuracy (original) only clustering 89.47 100
Accuracy (UB) 91.9 89.8 100

max ( , ) ( , ) ( )
,

x U g c x x U g gi i
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