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Abstract: In gilts and sows, the more severe clinical manifestation of porcine reproductive and respiratory
syndrome virus (PRRSV) occurs in late gestation and can result in up to a 40% abortion incidence.
Despite the known genetic component in resilience to PRRSV, there is scarce information regarding
the abortive outcome of this disease. We tested the relationship between eight molecular markers (six
from published studies and two identified in the present study in the HDAC6 gene) and the probability
of abortion during a PRRSV outbreak, using data from two commercial Landrace x Large White sow
farms with an incidence of abortion of 35% and 17%. From the markers tested, USP18_-1533G>A
did not segregate in these populations, and CD163_c.3534C>T and HDAC6_g.2360C>T did not affect
the abortion rate. In contrast, the minor allele of two markers in SSC4 (WUR1000125 in GBP1 and
rs340943904 in GBP5), which lower viremia in growing pigs, and the major alleles of CD163_rs1107556229
and HDAC6_rs325981825 were associated with a lower probability of abortion during PRRSV outbreaks.
The more striking result was for the MX1 gene, where the odds ratio of aborting versus not aborting
was nine times lower in the sows homozygous for a 275-bp insertion than in the other genotypes.
Interactions between markers were not relevant. All together, we bring here the first evidence that
mutations in the host genome can predispose or protect from complete reproductive failure in sows
infected with PRRSV.
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1. Introduction

Pigs of all ages are susceptible to porcine reproductive and respiratory syndrome virus (PRRSV).
The clinical presentation of PRRS varies greatly between herds and can range from asymptomatic to
devastating disease [1]. In gilts and sows, PRRSV infection can cause reproductive failure particularly in
early and late gestation, when the virus has the ability to cross the placental wall and infect the embryos.
Pregnancy in pigs lasts for 114–116 days. Embryos dead prior to implantation are generally resorbed,
and sows return to estrus. Embryos are also probably resorbed when death occurs between 14 and
35 days of gestation, causing irregular return to estrus if all embryos die or small litters if some of the
embryos survive [2]. The more severe clinical manifestation of PRRSV occurs in late gestation and is
characterized by abortions (up to a 40% abortion rate in late-pregnancy sows); early farrowings; fetal
death; and the birth of weak, congenitally infected piglets, resulting in elevated preweaning mortality [3].
The formation of mummies, which is characteristic of PRRSV late-term infection, occurs by exsiccation
of a dead fetus. Besides reproductive failure, clinical signs in pregnant sows and gilts are often mild
or absent.

The mechanisms of transplacental infection and why virus transmission is blocked midpregnancy
are still unclear. Pigs develop an incomplete diffuse epitheliochorial placenta without invasion. Neither
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the invasion of fetal tissue into the maternal endometrium nor endometrial decidualization occurs,
leaving a clear distinction between maternal and fetal tissues. In pigs, maternal and fetal blood
is separated by six layers of tissue (maternal endothelium, endometrial connective tissue, uterine
epithelium, trophoblast, fetal placental mesenchyme, and fetal endothelium), which form a firm
barrier. This barrier prevents the crossing of antibodies and many microorganisms. However, vertical
transmission for some microorganisms is feasible, and in the case of PRRSV, this transmission most likely
relies on the migration of infected macrophages though this placental barrier. Although fetuses are
susceptible to PRRSV at any stage of gestation upon direct intrafetal inoculation, transplacental PRRSV
infection mainly occurs in late gestation [3]. The exact mechanism by which PRRSV transmits from the
dam to her fetuses is not known, but it seems to reflect the varying numbers of CD169+ macrophages in
the endometrium and placenta. Although CD163+ macrophages are present in these tissues during the
whole pregnancy, CD169+ cells are rare in the placenta midgestation, which might explain the protection
at this stage [2]. Once the fetal membranes are infected, the virus spreads and infects most fetal organs.
In addition, recent studies have indicated that the virus readily infects neighbor fetuses, spreading the
infection to the litter. A “Trojan-horse” model has been proposed for maternal macrophages to migrate
from mother to fetus and then invade the full litter [2]. PRRSV-infected cells die of apoptosis, and this
causes a gradual degradation of the maternal/placental junctions, leading to separation between the
uterine epithelium and the trophoblast and eventually the loss of placental integrity. These serious
histopathological lesions are not compatible with fetal life. To cause abortion or preterm birth, PRRSV
probably induces severe lesions in the maternal–fetal interface of most, if not all, the fetuses.

The severity of the reproductive failure in sows depends on the viral strain (pathogen virulence),
the pregnancy stage of the female, the presence of neutralizing antibodies due to previous infection,
and the general health status of the farm. In addition, several studies have evidenced that the final
outcome also depends on the genetics of the female (host genetics). For instance, there is interbreed
and intrabreed variation in humoral and cell-mediated immune responses, both of which are activated
following exposure to the virus (reviewed in References [4] and [5]). The heritability of most of
these responses is moderate or high [5]. All of this supports the hypothesis that animals exposed to
the same pathogen in the same environmental conditions will develop different immune responses.
Lewis et al. [6] showed that there was a genetic component to PRRSV resilience in sows, as indicated
by the greater heritability of dead and mummified piglets observed during the epidemic phase of the
disease compared to the healthy phase.

A small number of genetic markers have been studied in relation to the respiratory [7–9] and
reproductive [3,10] phases of PRRSV or the in vitro responses to PRRSV cell infection [11–14]. However,
none have been assessed to date in relation to the incidence of abortion during a PRRSV outbreak.
With this in mind, the objective of the present study was to use data from two resource populations
to analyze the association between six previously reported PRRSV immune response markers and
the likelihood of abortion in production sows (Table 1). In an effort to identify new potential markers
associated with the incidence of abortion, we also described sequence variants in the HDAC6 (histone
deacetylase 6) gene given its involvement in controlling PRRSV replication [15]. This gene has been
partially sequenced, and two polymorphisms have been studied in relation to the abortion rate.
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Table 1. Information about the candidate genes and polymorphisms examined in the present study.

Marker Gene
Acronym Gene Function Polymorphism Gene

Location
Chromosomal

Location 1 Reference

rs80800372 GBP1 Interferon-induced guanylate binding
protein with known antiviral functions A>G 3’UTR SSC4 [7]

rs340943904 GBP5 Inflammasome assembly,
innate immunity G>T Intron 5 SSC4 [9]

c.3534C>T
CD163

Macrophage-specific scavenger receptor,
mediates PRRSV entry into macrophages

C>T 3’UTR SSC5 [11]

rs1107556229 G>A Exon 10 SSC5 [11]

-547ins+275 MX1 Interferon-induced GTP metabolizing
enzyme, antiviral properties Indel 275 bp Promoter SSC13 [12]

-1533G>A USP18 Ubiquitin-specific proteases,
Downregulation of interferon responses G>A Promoter SSC5 [16]

rs325981825
HDAC6

Epigenetic labeling of histones by
acetylation/deacetylation

G>A Exon 3 SSCX This study

g.2360C>T C>T Exon 15 SSCX This study
1 SSC: Sus scrofa chromosome; PRRSV: porcine reproductive and respiratory syndrome virus.
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2. Materials and Methods

2.1. Pig Populations

Two populations of Landrace x Large White sows in commercial nursery farms in northeastern
Spain were used for this analysis. Population 1 belonged to a 1500-PRRSV-naïve sow farm naturally
infected with a field strain of the virus. The infection lasted for six weeks and resulted in an incidence
of abortion close to 35% in two consecutive batches in the last third of the gestation period. Samples of
jugular blood were collected from a subset of 180 sows (60 aborted and 120 not-aborted). No more data
were available from this population. Population 2 was from a 1000-PRRSV-positive stable sow farm
(following the classification proposed by Holtkamp in 2011 [17]) that underwent a sudden epidemic
outbreak with an incidence of abortion close to 17% in the last third of the gestation period. Twelve
sows aborted in the last third of the gestation period in this population, which were sampled along
with 59 nonaborted females of the same batch of production to get a total of 71 samples. PRRSV
genotype 1 (PRRSV-1), subtype 1, was involved in both clinical cases. The diagnosis was carried out
by a laboratory specializing in pig diseases (http://www.gsplleida.net/ca) using standard operational
procedures [18,19]. The homology between both viruses was probed to be quite low (89%), confirming
that a different PRRSV strain was involved in each population [20].

2.2. DNA Isolation

Genomic DNA was isolated from blood by proteinase K/SDS lysis buffer, followed by phenol/
chloroform extraction and isopropanol precipitation using standard techniques [21]. The concentration
and purity of DNA was assessed by spectrometry using a Nanodrop-100 (Fisher Scientific, Madrid,
Spain) and was standardized at 10 ng/µL per sample.

2.3. Primer Design and Genotyping Protocol

Six markers from published studies and two additional makers identified in the present study in the
HDAC6 gene were selected to be genotyped in the resource populations. Seven of these markers were
single-nucleotide polymorphisms (SNPs). Six of them were genotyped using qPCR-HRM (high-resolution
melting) technology (Supplementary Table S1) as follows. Sequences of the corresponding genes were
exported from the latest version of the pig genome in Ensembl (Sscrofa 11.1) and were used to design
PCR primers with the Primer3plus tool (https://primer3plus.com/cgi-bin/dev/primer3plus.cgi; [22]) using
standard qPCR parameters. PCR reactions were set up in a volume of 7 µL containing 1× Luminaris
HRM Master Mix (Fisher Scientific), 0.2 µM of each primer, and 10–15 ng/DNA. Reactions were run in
a QuantStudio 3 thermocycler (Fisher Scientific) using the following program: initial denaturation at
95 ◦C for 10 min, 40 cycles of 95 ◦C for 10 s and 60 ◦C for 1 min, followed by a slow ramp from 60 ◦C to
95 ◦C at a rate of 0.015 ◦C/s. Genotypes were assigned by comparing PCR melting curves using the HRM
software (Fisher Scientific). The GBP1 SNP marker (rs80800372 or WUR1000125) was genotyped by allelic
discrimination using allele-specific TaqMan probes labeled with FAM and VIC (Supplementary Table S1).
For this, PCR reactions (7 µL) were set up with 1× TaqMan Universal PCR Master Mix (Fisher Scientific),
a 1× Primer and Probe set, and 10–15 ng/DNA. Reactions were run in a QuantStudio 3 thermocycler
using the following program: initial fluorescence detection at 60 ◦C for 1 min, denaturation at 95 ◦C for
10 min, 40 cycles of 95 ◦C for 10 s and 60 ◦C for 1 min, and final fluorescence detection at 60 ◦C for 1 min.
Genotypes were assigned by comparing the accumulation of FAM and VIC fluorescence in each channel.

The eighth marker was a 275-bp insertion in the promoter of the MX1 gene, which was genotyped
with an end-point PCR and electrophoresis in an agarose gel. A PCR reaction was set up in a volume
of 15 µL containing 1× buffer, 0.2 mM dNTPs, 2 mM MgCl2, 0.4 µM of each primer, and 0.4 U of Taq
polymerase (Bioline, London, UK). The primers are summarized in Supplementary Table S1.

2.4. HDAC6 Characterization and Genotyping

The HDAC6 gene sequence was exported from Ensembl as described above and was used for
primer design with Primer3Plus using standard PCR parameters and with the desired PCR product
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size set in the 600–1200-bp range. Primer sets were designed to amplify five fragments of the gene that
included most of the exons (Supplementary Table S2). This gene (~25 Kb) has 31 exons, most of them
of a small size, that are spliced into five transcript variants leading to the production of two proteins
differing in the last 50 amino acids. The PCR fragments were selected to include as much of the coding
region as possible.

To describe new mutations in this gene, the five fragments were amplified and sequenced in
16 sows, 8 aborting and 8 nonaborting, from Population 1. PCR reactions included 1× buffer, 160 mM
dNTPs, 1.5 mM MgCl2, 0.4 µM of each primer, 50 ng of genomic DNA, and 1 U of Taq polymerase
(Bioline) in a final volume of 25 µL. The following thermal program was run in a Veriti thermocycler
(Applied Biosystems, Foster City, CA, USA): initial denaturation at 95 ◦C for 5 min, 35 cycles of 95 × 20 s,
58 ◦C × 40 s, 72 ◦C × 1 min, and a final extension at 72 ◦C for 5 min. PCR reactions were cleaned
with NZYGelpure columns (NZYtech, Lisbon, Portugal) prior to Sanger sequencing. The software
Chromas Pro (Technelysium Pty Ltd, South Brisbane, Australia) was used to compare the sequences
and identify new mutations. SIFT and PPolyphem-2 were used to predict the functional consequences
of new mutations in protein functionality. Haplotype frequencies and linkages between markers in the
same chromosome were estimated with Haploview [23].

2.5. Statistical Analysis

The “abortion during PRRSV outbreak” outcome (aborted vs not-aborted) was analyzed using a
binary logistic regression model on each genotype and population. The probability of aborting during
a PRRSV outbreak was calculated as follows:

P(y = j) =
eα+b′xi

1 + eα+b′xi
(1)

where P(y = j) is the probability of occurrence of the abortion condition j in a specified situation i; α is
a constant; and b’ and xi are, respectively, the vector of coefficients in the logistic equation and the
vector of independent variables in situation i. The genotypes for each individual investigated gene and
the farm were included as independent variables. To test for potential associations and interactions
between genotypes, the same model considering two genotypes at a time (all pairs of genotypes were
tested) and their interactions was also used. The effects of each genotype and the corresponding odds
ratios were tested using a χ2 approximation to the asymptotic distribution of the likelihood ratio test.
Analyses were performed with JMP Pro14 (SAS Institute Inc., Cary, NC, USA) software.

3. Results

3.1. Characterization of Sequence Variants in Pig HDAC6

The five fragments of the HDAC6 gene were successfully sequenced in two groups of sows, which
either aborted or not during a PRRSV outbreak. A sequence comparison identified 10 SNPs, 6 of
them in the coding sequence (Table 2). Three of these polymorphisms changed the sequence of the
encoded protein at the amino acid positions 12, 360, and 503. Two protein intolerance prediction
tools catalogued these mutations as potentially damaging for the functionality of the protein (Table 3),
particularly the last two, as they were in the catalytic domain of the protein and in very conserved
residues when compared to other species. Genotyping protocols were set up for the three mutations
using an HRM-qPCR approximation. However, the Pro503His could not be genotyped with enough
quality and was discarded from future analysis.
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Table 2. Polymorphisms found in the sequenced fragments of the HDAC6 gene.

HDAC6 Fragment Polymorphism Position from ATG * Location Change Type

Fragment 1 C/T −1538 Exon 1 5′UTR

Fragment 2 G/A +35 Exon 3 Missense (Arg12Lys)
C/G +63 Exon 3 Synonym (His21)

Fragment 3

G/A +2180 Intron 13 -
G/A +2222 Exon 14 Synonym (Gln337)
G/A +2340 Intron 14 -
C/T +2360 Exon 15 Missense (Pro360Leu)

Fragment 4 C/A +3785 Exon 19 Missense (Pro503His)

Fragment 5 G/T +9813 Exon 25 Synonym (Gln799)
C/A +10450 Intron 26 -

* The position of the polymorphisms was calculated over the genomic DNA sequence taking the position of the start
codon as a reference.

Table 3. Functional predictions in the missense mutations of the HDAC6 gene.

Polymorphism Protein Domain
(EMBL-EBI)

SIFT Prediction
(Score)

Polyphen-2 Prediction
(Score)

Arg12Lys Not tolerant (0.00) * Unknown, not enough reference sequences
Pro360Leu Hist_deacetyl (PF00850) Not tolerant (0.02) Probably damaging (1.000)
Pro503His Hist_deacetyl (PF00850) Not tolerant (0.00) Probably damaging (1.000)

* Detected with low confidence, as there were few proteins in the database that included this residue.

3.2. Allelic and Genotypic Frequencies of the Markers

The eight polymorphisms tested (Table 1) segregated in the two populations used for this study
except for the USP18 -1533G>A marker, which was fixed at the G allele. This mutation, located in
the promoter of the USP18 gene (ubiquitin specific protease 18), enhances the expression of this
gene, probably by altering a binding site of the FOX transcription factor family [16]. In vitro USP18
overexpression can stop PRRSV infection in MARC-145 cells [14]. The fixed G allele agreed with data
from Li et al. [23], who observed segregation of the A allele in three Asian pig breeds but not in
Landrace, Duroc, or Yorkshire breeds.

Genotypic information from the two farms was pooled to calculate allelic frequencies. Overall,
the minor allele frequencies were low or moderate, ranging from 0.19 for the GBP1 mutation to 0.38
for the g.2360C>T SNP in HDAC6. The distribution of genotypes is indicated in Table 4. The linkage
disequilibrium between markers in the same chromosome was high for GBP1–GBP5 (D’ = 0.89) and
moderate and low for the two polymorphisms at HDAC6 (D’ = 0.62) and CD163 (D’ = 0.32).

Table 4. Allelic and genotypic frequencies of the eight markers studied in the sows used in this study.

Marker Gene MAF (Allele) AA AB BB *

rs80800372 GBP1 0.19 (G) 15 64 171
rs340943904 GBP5 0.25 (T) 22 82 144
c.3534C>T CD163 0.33 (C) 41 70 119

rs1107556229 CD163 0.29 (A) 32 70 127
−547ins+275 MX1 0.25 (insertion) 18 50 170
rs325981825 HDAC6 0.37 (A) 35 103 90
g.2360C>T HDAC6 0.38 (T) 32 104 32

* A and B refer to minor and alternative alleles, respectively.

3.3. Association Study between Markers and Abortion Rate

During the PRRSV outbreak, the probability of abortion was significantly different in homozygous
sows for the minor alleles of GBP1, GBP5, CD163 (rs1107556229), MX1, and HDAC6 (rs325981825)
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(Figure 1 and Supplementary Table S3; p < 0.05). For the GBP1 marker, the odds ratio for abortion
versus not was 2.69 times higher in AA sows than in AG sows (Table 5). In the GBP5 marker, this
odds ratio was 2.76 to 4.49 times higher in the GG genotype than in the TT and TG genotypes (Table 5;
p < 0.05). Similarly, for the HDAC6_rs325981825 genotype, the GG sows had an odds ratio 2–2.5 times
lower than in AA and AG sows (p < 0.05). A more extreme situation happened in the MX1 markers,
where the homozygous animals with the minor allele showed an odds ratio for abortion versus not of
9 times less than the other two genotypes (p < 0.05). For the CD163_rs1107556229 marker, the minor
allele (GG genotype) was associated with an odds ratio 1.96 to 3.6 times higher than in the AG and
AA genotypes. Abortion rates did not differ between the CD163_c.3534C>T and HDAC6_g.2360C>T
genotypes. On the whole, minor alleles for GBP1, GBP5, and MX1 markers and major alleles for
CD163_rs1107556229 and HDAC6_rs325981825 had a protective role against total reproductive failure
in sows exposed to a sudden outbreak of this disease. Interestingly, the effect of each genotype did not
substantially change when they were analyzed in groups of two, with the exception of GBP1, whose
impact on the abortion rate vanished when GBP5 was also included in the model. This reinforces
the role of GBP5 in resilience to PRRSV compared to GBP1, whose effect should be explained by the
strength of its linkage disequilibrium with GBP5. No significant interactions were observed besides
that between GBP1_WUR10000125 and HDAC6_rs325981825 (p < 0.03), which, however, was not
detected when GBP1 was replaced with GBP5. Therefore, interactions between markers did not play a
relevant role in predicting the likelihood of abortion during a PRRSV outbreak.

Figure 1. Abortion probability during a PRRSV outbreak by marker genotype (data pooled from the
two studied populations). Within each marker, the genotypes with different superscripts indicate
differences in the abortion ratio (p < 0.05).

Table 5. Odds ratios of abortion versus no abortion probabilities during a PRRSV outbreak by marker
genotype. Only markers showing different abortion rates by genotype are shown.

Marker Gene Contrast Odds Ratio p

rs80800372 GBP1 AA/AG 2.69 0.008
rs340943904 GBP5 GG/TG 2.76 0.003

GG/TT 4.49 0.02
rs1107556229 CD163 AA/AG 2.58 <0.0001

AA/GG 1.96 0.0004
−547ins+275 MX1 DD/II 9.35 0.03

ID/II 8.63 0.04
rs325981825 HDAC6 AA/GG 4.08 0.002

AG/GG 2.34 0.02

4. Discussion

In previous studies led by the PRRS Host Genomic Consortium (PHGC), large sample sizes
of the pregnant gilt model enabled an exceptional opportunity to identify new genomic regions
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associated with reproductive PRRS outcomes [3,8,24–26]. Twenty-one candidate genomic regions across
10 chromosomes were found to be significantly associated with fetal viability, fetal death, and viral load
in the fetal thymus. Together, these regions accounted for a biologically relevant portion of the overall
genetic variation. Seven of these overlapped with previously reported quantitative trait loci (QTLs) for
pig health and reproduction [27]. However, it was not feasible to describe any marker associated with
abortion because the abortion rate in this experimental model was unexpectedly low. Recently, Scanlan
and coworkers [28] estimated the heritability of abortion rates, which was low (0.07) in healthy farms
but rose to 0.17 during PRRSV outbreaks. In this context, our research work provides the first scientific
evidence that the genetic background of the sow could be linked with the probability of abortion after a
PRRSV infection.

The first two molecular markers tested were rs80800372 (i.e., WUR10000125) in GBP1 and
rs340943904 in GBP5 (Table 1). WUR10000125 was the first molecular marker associated with PRRSV
resistance and productivity. A genome-wide association study identified a genomic region in SSC4,
represented by WUR10000125, which explained 15.7% of the genetic variance in viral load and 11.2% of
weight gain in weaned piglets directly challenged with a very pathogenic American (PRRSV-2) strain [7].
The estimated effects for this region were favorably and nearly perfectly correlated: That is, pigs with
a low virus load exhibited greater weight gain. The WUR10000125 mutation is a single-nucleotide
polymorphism (SNP) located in the 3’UTR region of the GBP1 gene, a response gene to type II interferons.
The G allele modifies a close polyadenylation signal in the GBP1 gene, reversing the proportion of two
alternative transcripts [29]. The clinical and productive outcomes of this marker have been validated in
experimental [7,30] or natural challenges [8,18] with PRRSV-1 [18] and -2 in growing animals [7,10,30,31].
However, the causality of this region of chromosome 4 is currently attributed to a nearby gene, GBP5,
where an intronic SNP (rs340943904) (also included in our study) generates a new splicing acceptor site,
changing the proportion of two alternative transcripts [9]. This gene encodes for a protein involved in
the inflammasome assembly during innate immune responses [7,9].

The effect of the WUR10000125 genotype on reproductive traits is controversial. An initial
study found that sows carrying the favorable G allele had more piglets born alive and weaned than
homozygous AA sows in uninfected farms [12]. However, this result was not replicated in a subsequent
experimental infection using a PRRSV-2 strain. The WUR10000125 genotype in both gilts and fetuses
was associated neither with fetal death/viral load [32] nor with reproductive performance during a
PRRSV outbreak in a commercial multiplier sow herd [11]. However, we describe here that, as for the
respiratory form of the disease, the G allele was outstanding as a protective factor against abortion
(Figure 1). The difference in abortion rate probability was more evident in the closely linked GBP5
marker. In this case, the G allele showed an additive pattern, as described previously for WUR10000125
in the respiratory form of the disease [7,18]. Thus, the genotype GG was more susceptible to abortion
(probability of abortion 30%) than GT and TT sows (the less represented genotype), where the probability
of abortion was 13% and 3%, respectively. Our results complement previous studies on the effect of the
SSC4 region on reproductive traits, where abortion rates were not included. It must be highlighted that,
by studying the abortion rate and not the reproductive performance of nonaborted sows, we probably
discriminated the sow population most susceptible to the virus.

Our study also included two markers in the CD163 gene (Table 1), which encodes the membrane
receptor used by the virus to enter macrophages and initiate infection [1]. Several natural mutations
have been described in this gene, some of which have been related to a better response capacity of
pigs to the virus. For example, the CC genotype of the CD163_c.3534C>T polymorphism has been
associated with lower levels of IgG [33] and viremia and enhanced weight gain [11] after a PRRSV
challenge. The second polymorphism selected in this gene, c.2494G>A (rs1107556229), is located at the
end of exon 10 and is a synonymous variant catalogued as a splice region variant by the variant effect
predictor (VEP) tool. Our results clearly show that the different variants of CD163_rs1107556229 were
linked with the probability of abortion in infected sows (Table 5). Scavenger receptor CD163 is a key
entry mediator for PRRSV, and complete [34] or extracellular domain [35] deletion by genetic editing
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of this receptor makes pigs fully resistant to PRRSV infection. Thus, mutations in CD163 could imply a
significant change in the susceptibility of the pigs to PRRSV infection. Our results totally agree with
this information in the sense that sows with the rs1107556229 variant, naturally present in nature, had
a different clinical outcome when abortion was the end-point measure (Table 5 and Figure 1).

The next gene marker tested was a 275-bp insertion in the proximal promoter of the MX1 gene
(MX Dynamin Like GTPase 1), which enhances the transcriptional activity of this gene, mediating the
humoral response to infection with PRRSV [13]. As with GBP1 and GBP5, MX1 encodes a guanosine
triphosphate (GTP)-metabolizing protein, whose expression is induced by interferons. MX1 has strong
antiviral activity against a wide range of RNA viruses and some DNA viruses through binding and
inactivation of their ribonucleocapsid. The antiviral effect of MX1 against the influenza virus has been
well documented. Mice carrying the defective MX1 gene show greater susceptibility to influenza A
infection compared to mice carrying the functional protein [36]. MX1 also conferred protection against
the influenza A virus, classical swine fever virus, and vesicular stomatitis virus in studies performed
in vitro [37]. The mutation studied here was associated with higher MX1 expression in vitro [13].
In our data, this mutation showed the strongest association with a low abortion rate (Table 5). The effect
was completely recessive, where sows with two copies of the insertion had an abortion probability of
3% during the outbreak, while in the other sows the probability was ~25% (Figure 1). As with the
favorable alleles of GBP1 and GBP5, the MAF of this allele was low (<0.20, Table 4), which raises the
question of whether there was an indirect selection of these alleles representing three genes with very
similar functionalities. Selection in nucleus farms is performed in clean environments with a lower
pathogen load than in standard field conditions. This finding supports also studying the possible effect
of these markers in healthy production farms and in other production traits.

The last gene studied was HDAC6. This histone deacetylase gene was selected for its role in
macrophage differentiation. Initially, histone deacetylases were characterized as enzymes that removed
acetyl groups from histones, establishing a silent chromatin structure. However, HDACs have recently
been shown to act over a wider spectrum of substrate proteins, involved in a range of cellular processes
that extend beyond epigenetic labels. Histone deacetylases are critical regulators in macrophage
differentiation and in maintaining M1 or M2 macrophage functions in Th1 and Th2 T-cell responses,
respectively. The balance between the contrasting cytokine profiles of M1 and M2 macrophages regulates
many immune checkpoint modulators [38,39]. HDAC6 overexpression in cells and in transgenic mice
enhances resistance to viral infection with the human acquired immunodeficiency virus (HIV-1),
influenza A virus, and vesicular stomatitis virus [40]. Recently, HDAC6 overexpression in transgenic
pigs reduced the viral load of PRRSV-challenged animals and had extended survival time and fewer
clinical signs than wild-type controls [15]. We identified three missense mutations in the coding region
of this gene (Table 2) with potential damaging effects on the function of the protein, two of them
directly affecting the deacetylase domain of the protein (Table 3). The two markers analyzed had
intermediate allelic frequencies, with MAF close to 0.40 (Table 4). The odds ratios of aborting versus
not aborting during an outbreak were 2.3 to 4 times greater in sows of the rs325981825 GG genotype
than in the other genotypes (Table 5). The probability of abortion followed an additive pattern, similar
to GBP5_rs340943904, where the presence of the A allele raised the probability of abortion from 16%
in GG sows to 27% and 40% in AG and AA animals, respectively (Figure 1). Given the intermediate
frequencies, this marker responded better to selection than the other three favorable alleles did, which
were present at a much lower frequency.

5. Conclusions

In conclusion, we bring here the first evidence that mutations in the host genome can predispose
or protect from complete reproductive failure in sows infected with a field strain of PRRSV. Although
transcriptomic and genomic scans have studied the genetic component of spontaneous abortions in
pigs [41] and cattle [42], abortion as an outcome of an infectious disease has not been explored from a
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genetic point of view in pigs. The low or intermediate allelic frequency of some protective alleles and
potential interactions between some of them will need to be tackled in future studies.
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