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ABSTRACT
Insulin secretion from the pancreatic b-cell (referred to as b-cell hereafter) plays a central
role in glucose homeostasis. Impaired insulin secretion is a major factor contributing to
the development of diabetes and, therefore, is an important target for treatment of the
disease. Cyclic adenosine monophosphate is a key second messenger in b-cells that
amplifies insulin secretion. Incretins released by the gut potentiate insulin secretion
through cyclic adenosine monophosphate signaling in b-cells, which is the basis for the
incretin-based diabetes therapies now being used worldwide. Despite its importance, the
interaction between glucose metabolism and incretin/cyclic adenosine monophosphate
signaling in b-cells has long been unknown. A recent study showed that cytosolic gluta-
mate produced by glucose metabolism in b-cells is a key signal in incretin-induced insulin
secretion. Here we review the physiological and pathophysiological roles of b-cell gluta-
mate signaling in incretin-induced insulin secretion.

INTRODUCTION
Insulin secretion from pancreatic b-cells is critical for the mainte-
nance of glucose homeostasis, and its impairment is associated
closely with the pathogenesis and pathophysiology of diabetes.
Mechanisms of insulin secretion have been investigated exten-
sively over several decades. In the 1980s, the major intracellular
signals in insulin secretion were identified by physiological, phar-
macological and biochemical methods. These signals include
Ca2+, adenosine triphosphate (ATP), cyclic adenosine
monophosphate (cAMP) and phospholipid-derived molecules,
such as diacylglycerol (DAG) and inositol 1,4,5-trisphosphate
(IP3)

1–3. Glucose is physiologically the most important fuel of
insulin secretion (glucose-induced insulin secretion [GIIS]).
Metabolic coupling factors (MCFs) in fuel-induced insulin

secretion (FIIS) have been reviewed elegantly by a recent
paper4. Regulatory MCFs, such as citrate, malonyl-coenzyme A
(CoA), glutamate and adenine nucleotides, modulate metabolic
networks involved in FIIS, whereas the effectory MCFs, such as
ATP, cAMP and nicotinamide adenine dinucleotide phosphate,
are directly involved in the triggering and amplification of insu-
lin secretion. There are also interactions between glucose and
free fatty acid in b-cells. GIIS is thought to be associated with
inhibition of free fatty acid oxidation and increased lipid syn-

thesis in b-cells. Malonyl-CoA is known to be a key metabolite
that lies at the crossroad of glucose metabolism and lipid meta-
bolism, and is proposed to be an MCF for GIIS.
Amplification of GIIS by neuronal and hormonal inputs is

also important for normal regulation of insulin secretion5. For
example, acetylcholine, a neurotransmitter, stimulates insulin
secretion through activation of muscarinic acetylcholine recep-
tor in b-cells6. Incretins, such as glucagon-like peptide-1 (GLP-
1) and glucose-dependent insulinotropic polypeptide (GIP),
which are secreted from the enteroendocrine cells in response
to meal ingestion, potentiate insulin secretion in a glucose-
dependent manner through cAMP signaling7. However, how
glucose metabolism and cAMP signaling interact with each
other, and why incretin-induced insulin secretion is glucose-
dependent was not known. We recently found that cytosolic
glutamate produced through the malate-aspartate (MA) shuttle
in glucose metabolism in b-cells is a key cell signal linking glu-
cose metabolism to incretin/cAMP action to amplify insulin
secretion. In the present review, we discuss the physiological
and pathophysiological roles of glutamate signaling in b-cells.

GLUCOSE-INDUCED INSULIN SECRETION AND ITS
MODULATION BY HORMONAL AND NEURONAL
INPUTS
GIIS involves two pathways, the triggering pathway and the
metabolic amplifying pathway, and is modulated by various
hormonal and neuronal inputs.
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Triggering pathway
ATP generated in glucose metabolism in pancreatic b-cells and
Ca2+ influx are the principal signals in this pathway. Glucose is
transported into the b-cells by glucose transporter (GLUT2 in
rodents and mainly GLUT1 in humans), and is metabolized in
glycolysis and the tricarboxylic acid cycle. Increased glucose
metabolism causes an increase in ATP concentration, closing
the ATP sensitive K+ (KATP) channels, depolarizing the b-cell
membrane, opening the voltage-dependent Ca2+ channels,
thereby causing Ca2+ influx into b-cells. The resultant rise in
intracellular Ca2+ concentration ([Ca2+]i) triggers exocytosis of
insulin granules8.

Metabolic amplifying pathway
It is known that in addition to ATP, various metabolic signals
generated by glucose metabolism amplify insulin secretion. This
pathway is called the “metabolic amplifying pathway.” Although
this pathway is not fully understood, augmentation of the effect
of Ca2+ on insulin secretion is thought to be involved8. A
recent study suggested that three pyruvate cycling pathways –
the pyruvate-malate shuttle, the pyruvate-citrate shuttle and the
pyruvate-isocitrate shuttle – might be associated with the meta-
bolic amplifying pathway9.

Modulation of insulin secretion by hormones and
neurotransmitters
The actions of hormones and neurotransmitters in insulin secre-
tion are mediated by their specific receptors, most of which are
guanine-nucleotide-binding regulatory protein (G protein)-
coupled receptors (GPCRs)10. GPCRs include Gs-, Gq/11- and
Gi/o-protein-coupled receptors. They principally mediate two
signaling pathways: the cAMP signaling pathway and the phos-
phatidylinositol signaling pathway. Ligand binding to GPCR
causes its conformational change and activates G protein.
Both Gs protein signaling and Gq/11-protein signaling medi-

ate amplification of GIIS. The incretins GLP-1 and GIP are
known to potentiate insulin secretion through activation of
Gs protein signaling followed by cAMP signaling pathways,
which include the protein kinase A-dependent pathway and the
Epac2A (also called cAMP-GEFII)-dependent pathway11–13.
Acetylcholine amplifies insulin secretion through Gq/11-pro-

tein signaling by activation of phospholipase C-b, which pro-
duces IP3 and DAG. IP3 triggers Ca2+ release from the
endoplasmic reticulum, whereas DAG activates protein
kinase C14. Gi/o-protein signaling mediates an inhibitory effect
on GIIS, and is known to regulate K+ and Ca2+ channels
directly and indirectly through suppression of cAMP produc-
tion10. Somatostatin, noradrenaline and ghrelin inhibit insulin
secretion through activation of Gi-protein signaling.

INCRETIN EFFECTS ON INSULIN SECRETION
It is well known that oral glucose load produces a much greater
insulin secretion than intravenous injection of glucose, which is
now recognized as the “incretin effect.” Incretins, such as GIP

and GLP-1, are gut hormones released from the gut in response
to ingestion of glucose or nutrients7. GIP, a 42 amino acid hor-
mone, is secreted from K cells of the upper part of the intestine;
GLP-1, a 31 amino acid hormone, is secreted from L cells of the
lower part of the intestine. GLP-1 and GIP potentiate insulin
secretion through cAMP signaling in a glucose-dependent man-
ner. It was found by perfusion of mouse pancreas that when the
glucose concentration is increased in a stepwise manner from 2.8
to 12.5 mmol/L in the absence of cAMP-increasing agents (i.e.,
8-Br-cAMP or GLP-1), no insulin secretion is induced, but the
presence of the agents resulted in dramatic induction of insulin
secretion15. Similar results also were found in Kir6.2 knockout
mice, in which almost no GIIS was detected. These findings show
that incretin/cAMP signaling is critical for the induction of glu-
cose responsiveness in insulin secretion, as well as the potentia-
tion of GIIS5. We found by total internal reflection fluorescence
microscopy analysis that the cAMP analog 8-Br-cAMP enhanced
the frequency of fusion events of insulin granules to the plasma
membrane in the presence of glucose (but not by itself) in both
the first phase and the second phase of potentiation12. It is now
established that incretin/cAMP signaling potentiates GIIS by both
protein kinase A-dependent and Epac2A-dependent mecha-
nisms. Epac2A has guanine nucleotide exchange factor activity
toward Rap1, a small G protein. Binding of cAMP to Epac2A
causes its conformational change, thereby releasing the catalytic
region and enabling the binding and the activation of Rap113. A
study of Epac2A knockout mice showed that Epac2A is essential
in the potentiation of insulin granule exocytosis by cAMP, but
primarily in the first phase of potentiation12. The following sec-
ond phase potentiated by cAMP might involve protein kinase A
signaling, but the precise mechanism is still unclear. In addition,
it has recently been shown that Epac2A is a direct target of some
of the antidiabetic sulfonylureas16,17, drugs widely used for treat-
ment of diabetes. Epac2A/Rap1 signaling also is required for aug-
mentation of insulin secretion by a combination of incretin and
sulfonylureas18.

DISTINCTION BETWEEN METABOLOMIC PROFILES OF
MIN6-K8 AND -K20 b-CELLS
Various b-cell lines for studies of b-cell biology have been
established, including hamster pancreatic b-cell line19, rat insuli-
noma cell lines (RINm5F and INS-1)20–22, mouse insulinoma
cell lines (beta TC and MIN6)23,24 and human pancreatic b-cell
lines (betalox5, EndoC-bH1 and EndoC-bH2)25–27. These cell
lines often show different insulin secretory profiles from those
of native pancreatic b-cells or islets28. In fact, many of these cell
lines lack incretin responsiveness, and so are unsuitable for
investigation of the mechanism of incretin/cAMP signaling.
Incretin-responsive and -unresponsive pancreatic b-cell lines
(designated MIN6-K8 and MIN6-K20 b-cells, respectively) have
recently been established by cloning of b-cells from the insuli-
noma-bearing IT6 mice29. MIN6-K8 b-cells secrete insulin in
response to both glucose and incretin stimulations, whereas
MIN6-K20 b-cells respond only to glucose, but not to incretin
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stimulation. These cell lines are useful tools to clarify the mech-
anism of incretin responsiveness in insulin secretion.
As incretin-induced insulin secretion occurs in a glucose-

dependent manner, the difference in incretin responsiveness
between MIN6-K8 and -K20 b-cells might well be due to
differences in glucose metabolism of the two cell lines. In fact,
metabolome analysis of MIN6-K8 and -K20 b-cells under
glucose-stimulated condition showed distinct metabolomic
profiles of the two cell lines. In addition, contents of glucose
6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate,
nicotinamide adenine dinucleotide, glutamate and aspartate are
higher in MIN6-K8 b-cells than those in MIN6-K20 b-cells,
indicating that both glycolysis and the MA shuttle are enhanced
in incretin-responsive MIN6-K8 b-cells in comparison with
those in incretin-unresponsive MIN6-K20 b-cells (Figure 1)30.

GLUTAMATE PRODUCED THROUGH THE MALATE-
ASPARTATE SHUTTLE IS A CRITICAL SIGNAL IN
INCRETIN-INDUCED INSULIN SECRETION
Glutamate in b-cells is produced through three metabolic path-
ways: (i) conversion from a-ketoglutarate by glutamate dehydro-
genase 1 in the mitochondria; (ii) conversion from glutamine by
glutaminase in the mitochondria; and (iii) transamination of

a-ketoglutarate by aspartate aminotransferase 1 associated with
the MA shuttle in cytosol. Mitochondrial glutamate was previ-
ously proposed as a signal in GIIS31–33, but the notion has been
controversial34,35. Metabolic flux analysis is a useful technique to
determine isotopomers, as well as altered metabolic rate in the
cells. Using stable isotope-labeled [U-¹³C]-glucose, glutamate iso-
topomers can be measured to learn whether or not the glutamate
is produced from glucose. There are six glutamate isotopomers
(M [no substitution with ¹³C] and M + 1 to M + 5 [one to five
substitutions with ¹³C, respectively]). M and M + 1 isotopomers
are the naturally occurring glutamate in cells; M + 2 to M + 5
isotopomers represent glutamate derived from [U-¹³C]-glucose
(Figure 2). M + 2 to M + 5 glutamate isotopomers were
increased in cytosol, as assessed by metabolic flux analysis, indi-
cating that glutamate is produced from glucose. Inhibition of the
MA shuttle by aminooxyacetate, an inhibitor of the MA shut-
tle36,37, decreased production of M + 2 to M + 5 glutamate iso-
topomers in cytosol, indicating that cytosolic glutamate is
produced through the MA shuttle. In addition, application of
glutamate in the presence of cAMP into primary mouse b-cells
dose-dependently stimulated exocytosis, as assessed by capaci-
tance measurement. Total internal reflection fluorescence micro-
scopy analysis showed that dimethyl-glutamate, a membrane-
permeable glutamate precursor that is converted to glutamate by
esterase within the cells, amplifies both the first and second
phases of glucose-induced insulin granule exocytosis30. Together,
these findings strongly suggest that cellular glutamate acts as a
critical amplifying signal in incretin-induced insulin secretion.

TRANSPORT OF GLUTAMATE INTO INSULIN
GRANULES
Glutamate in the cytosol is known to be transported into secre-
tory vesicles through vesicular glutamate transporters
(VGLUTs)38. VGLUT1 is expressed in mouse pancreatic
b-cells, and various mouse and rat b-cell lines; for example,
MIN6-K8, bTC6, RIN-m and INS-1E cells30,39,40. VGLUT2 is
expressed in both pancreatic a-cell lines (aTC1-9 cells) and
b-cell lines (MIN6-K8, bTC6 and RIN-m cells)30,39,40. VGLUT3
is also expressed in mouse pancreatic a- and b-cells40. Inhibi-
tion of glutamate transport into insulin granules by Evans Blue,
an inhibitor of glutamate transporters, or knockdown of
VGLUT1 did not affect GIIS, but reduced incretin-induced
insulin secretion in MIN6-K8 b-cells, suggesting that glutamate
transport into insulin granules through VGLUT1 is required
for incretin-induced insulin secretion30. Glutamate transport
through VGLUTs is regulated by electrical potential (D/) and
pH gradient (DpΗ) across the vesicular membrane38. Glutamate
flux into insulin granules is involved in the generation of D/
and DpΗ across the insulin granule membrane40. A proton
pump, V-ATPase, in insulin granules also contributes to gener-
ation of D/ and DpΗ across the insulin granule membrane41, a
process in which Cl- flux is required42,43. In addition, it was
reported that glutamate efflux through excitatory amino acid
transporters was involved in the regulation of D/ and DpΗ in
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Figure 1 | Nicotinamide adenine dinucleotide (NADH) shuttles. Two
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contents in MIN6-K8 cells than those in MIN6-K20 cells are shown in
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insulin granules40. Thus, glutamate flux through insulin gran-
ules is regulated by a complex mechanism. Interestingly,
impaired glutamate efflux was found to decrease insulin granule
exocytosis40, further suggesting a critical role of glutamate in
insulin secretion. Although the precise mechanism by which
glutamate in insulin granules stimulates insulin granule exocy-
tosis remains to be elucidated, total internal reflection fluores-
cence microscopy analysis showed that dimethyl-glutamate
induces exocytosis of insulin granules, suggesting that glutamate
in insulin granules might promote recruitment towards and/or
fusion of the insulin granules with the plasma membrane (Fig-
ure 3)30.

GLUTAMATE PRODUCTION IN PANCREATIC ISLETS OF
DIABETIC AND OBESE RAT MODELS
Impaired potentiation of insulin secretion by incretins is found
in diabetes in clinical settings44. Animal models are useful for
studying the pathogenesis and pathophysiology of diabetes. The
Goto–Kakizaki rat is a non-obese type 2 diabetes model with
defective insulin secretion associated with impaired glucose
metabolism in pancreatic b-cells45. GIIS is markedly decreased
in these rats compared with normal control Wistar rats, but
the amplification effect by GLP-1 is somewhat retained. Glu-
cose-stimulated glutamate production was increased slightly,
but significantly, in the islets of Goto–Kakizaki rats. In contrast,
the Zucker fatty rat, an obesity model as a result of mutation
in the leptin receptor gene, shows a higher level of basal insulin
secretion and insulin response to glucose. However, these rats
showed no potentiation of insulin secretion in response to
incretin stimulation. Glucose did not increase glutamate pro-

duction in the islets of Zucker fatty rats. Dimethyl-glutamate
was able to amplify insulin secretion in Zucker fatty rats, mim-
icking the effect of incretins. Thus, impaired production of
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Figure 2 | Determination of glucose-derived glutamate isotopomers by mass spectrometry. [U-13C]-glucose: stable isotope labeled glucose. M and
M + 1: naturally-existing glutamate isotopomers in the cell (no or one substitution with13C). M + 2 to M + 5: glutamate isotopomers derived from
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Figure 3 | Model of cellular mechanism of incretin-induced insulin
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amplify insulin secretion. GLP-1, glucagon-like peptide-1; GIP, glucose-
dependent insulinotropic polypeptide; KATP channel, adenosine
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glutamate in the pancreatic b-cells is closely associated with
impaired incretin-induced insulin secretion30.

CONCLUSIONS
A metabolomics-based approach showed that glutamate acts as
a key cell signal linking glucose metabolism to incretin/cAMP
action to amplify insulin secretion. Unresponsiveness to
endogenous incretins and unresponsiveness to exogenously
administered incretin-related drugs (incretin non-responders)
are found among patients with type 2 diabetes; abnormalities
in b-cell glutamate signaling might therefore underlie the unre-
sponsiveness to incretins. Clarification of glutamate signaling
could contribute to the development of novel therapies, as well
as our understanding of the pathophysiology of diabetes and
diabetic b-cells. Metabolomics is a powerful approach to unveil
metabolic signaling pathways.
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