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Abstract: Ultra-wideband radio signals are used in communication, indoor localization and radar
systems, due to the high data rates, the high resilience to fading and the fine temporal resolution
that can be achieved with a large bandwidth. This paper introduces a new method to estimate the
angle of arrival of ultra-wideband radio signals with which existing time-of-flight based localization
and radar systems can be augmented at no additional hardware cost. The method does not require
multiple transmitter or receiver antennas, or relative motion between transmitter and receiver. Instead,
it is solely based on the angle-dependent impulse response function of ultra-wideband antennas.
Datasets on which the method is evaluated are publicly available. The method is further applied to
a localization problem and it is shown how a robot can self-localize solely based on these angle of
arrival estimates, and how they can be combined with time-of-flight measurements. Even though
existing angle of arrival techniques that use multiple antennas show better accuracy, the method
presented herein looks promising enough to be developed further and could potentially lead to
electronically and mechanically simpler angle of arrival estimation technology.

Keywords: angle of arrival; direction of arrival; ultra-wideband; channel impulse response; antenna
transfer function; localization; machine learning; neural network

1. Introduction

Angle of arrival (AOA) measurement technologies for electromagnetic waves are employed in a
wide range of applications. Both biomedical and military radar technology aim to measure not only
the distance, but also the angle to objects reflecting electromagnetic waves. Wireless communication
equipment, such as Wi-Fi routers, often estimate the angle of arrival to beamform their radiation to
other network devices, and aircrafts use the AOA measurements to stationary beacons to localize
themselves by means of automatic direction finders.

Traditionally, AOA measurement techniques require either a rotating directional antenna or
multiple locations at which the signal is measured. These multiple measurement points are realized
either by moving a single antenna to different locations while collecting signal measurements, or by
multiple antennas, e.g., in the form of an antenna array. Often, these antenna arrays have a limited
field from which they can estimate the AOA of a signal and therefore need to be additionally rotated.
This leads to high performance, but also electronically and mechanically more complex and more
costly devices, which has made AOA localization approaches less suitable for low-cost ultra-wideband
(UWB) localization systems [1].

The AOA measurement technique presented in this paper proposes to make use of the
angle-dependent antenna transfer function, which manifests itself in the measured channel impulse
response (CIR). Doing so, it enables estimation of the angle of arrival using a single, static antenna,
requiring no additional hardware. Compared to our preliminary work [2] we provide more detailed
analytical and experimental results, showing
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• that the AOA estimation method is not bound to a specific environment,
• that the method also works without reflective surfaces in the receiver antenna’s vicinity if the

antenna is chosen accordingly, and
• how the proposed method can be integrated with existing time of flight (TOF)-based localization

methods, with which training data can be acquired on the go.

Furthermore, the data from the experiments presented in this paper are made available [3],
such that other estimation strategies could be tested on them.

1.1. Outline

This paper is structured as follows: In the remainder of this section, we review related work.
Section 2 discusses how the antenna transfer function and the environment influence the measured CIR
between a transmitter and a receiver. Based on these insights, a machine learning approach mapping a
measured CIR to an AOA probability distribution is presented in Section 3. The data on which the
method is tested is discussed in Section 4 and results are shown in Section 5. The method is then
applied to a localization problem in Section 6. Concluding remarks are made in Section 7. Note that
throughout the paper a two-dimensional problem setup is considered, if not stated otherwise.

1.2. Related Work

An overview of AOA estimation methods is given in [4]. Common methods measure the phase
difference of arrival of a signal with two or more antennas integrated into an antenna array (as for
example done in [5]) or employ beamforming techniques to steer the main radiation lobe(s) of the
antenna array towards the angle of arrival [6]. Algorithms fusing the outputs of such multi-port
antenna arrays are discussed in [7,8]. Aside from conventional algorithms, recently deep learning
has also been applied to process the output of antenna arrays for estimating the AOA. Its advantages
compared to traditional methods when estimating multiple signal sources and their AOA are discussed
in [9]. Beamforming control by means of deep learning is discussed in [10] where it is also shown
how neural network quantization facilitates the deployment of such deep learning techniques in
low-memory, low-overhead platforms such as mobile phones.

Modern Wi-Fi modules are often equipped with two or more antennas and provide the phase
shifts of the different sensing elements in the channel state information (CSI). Impressive localization
results based on such CSI measurements were obtained in [11], where it is shown how localization can
be achieved via multipath triangulation and time-of-flight-difference (TOFD) measurements using a
single Wi-Fi module employing three antennas.

Alternatives to multi-port antenna arrays for beam steering and AOA estimation include
single-port switched parasitic antenna arrays (as for example discussed in [12]) or rotating directional
antennas or antenna arrays, as employed by classical radars where each direction is scanned for an
incoming signal [13].

Instead of employing rotating antennas or antenna arrays, it is also possible to estimate the AOA by
collecting signals from the same source sequentially at multiple locations or during movements similar
to the synthetic aperture radar. This principle is utilized in [14] to estimate the AOA using received
signal strength measurements, and in [15] using phase measurements, collected at different locations.

Compared to the previously discussed approaches to estimate the AOA, the method proposed
herein only relies on CIR measurements acquired by a single static antenna at a single location using
no actively controlled parasitic elements. It is based on the angle-dependent antenna transfer function,
which leaves its mark in the measured CIR of a UWB propagation channel. UWB propagation
channels in general are discussed in [16], and in [17–19] with a focus on the antenna transfer functions.
Distortions of the measured CIR due to angle-dependent antenna transfer functions can lead to
angle-dependent errors in the timestamps provided by leading edge detection algorithms. In turn,
these angle-dependent errors in the timestamps lead to errors in the TOF or TOFD measurements. So far
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research in UWB localization has therefore focused either on tailored UWB antenna design [20,21] or
on mitigating these effects via models predicting the systematic error. A neural network predicting the
error in the TOF measurement based on CIR measurements was employed to this end in [22] while in
the authors’ previous work [23] this error is predicted based on the AOA. Instead of compensating for
effects of the angle-dependent transfer functions, this paper proposes to amplify them such that they
can be exploited to estimate a signal’s AOA.

2. Channel Impulse Response

2.1. Components of the CIR

The CIR, which fully characterizes a UWB propagation and communication channel, is subject to
many influences: the transmitting antenna’s impulse response function htx, the impulse response of
the environment henv, and the receiving antenna’s impulse response function hrx, not to mention the
influence of all the electronics involved in reading and writing to the antenna. By assuming a cascaded,
linear, time invariant model [24], and a UWB channel with NMP different multipath components [16],
the channel impulse response is given as

hCIR =
NMP

∑
n=1

htx(αtx,n) ∗ henv,n ∗ hrx(αrx,n), (1)

where the dependence of the antenna’s impulse response on the angle of departure (AOD) αtx,n and
the AOA αrx,n of the n-th multipath component are explicitly written, and where ∗ is the convolution
operator. This is illustrated in Figure 1. We divide objects into two groups, objects belonging to the
same rigid body as the transmitting or receiving antenna, and other objects, which are typically further
away from the antenna as visualized in Figure 1. In the following, we absorb the influence of the first
group of objects into the impulse response of the transmitting or receiving antenna as their influence is
also angle-dependent.

Figure 1. Composition of an example channel impulse response (CIR) for a propagation channel with
one direct and indirect path and an angle of arrival (AOA)-dependent antenna impulse response
function as given in Equation (1). By considering only a window of the CIR around the first path
location, multipath components resulting from reflections outside the ellipsoid as given in Equation (3)
are discarded.

While a UWB communication channel is difficult to model accurately due to the many
influences [16] that need to be considered, it is possible to measure its CIR quite accurately by exciting
the system with a pseudo noise sequence [25]. This principle is also employed by the DW1000 UWB
chip [26], which will be used in the following to investigate the influence of the AOA on the complex
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CIR envelope it measures. The complex CIR envelope hCIR is related to the actual real-valued CIR
hCIR by

hCIR(t) = Re
(

hCIR(t)ej2π f0t
)

, (2)

with Re(·) denoting the real part, and with f0 denoting the carrier frequency of the UWB signal as
explained in more detail in [25] (p. 281).

2.2. Measuring the CIR for Different AOA

As explicitly indicated in Equation (1), the measured CIR is generally dependent on the AOA and
AOD. In order to qualitatively assess this dependency (no anechoic chamber was used), CIR envelope
measurements were gathered in a static environment with two UWB modules. A first UWB module
had a fixed position and orientation, hereafter referred to as the anchor, whereas a second module,
hereafter referred to as the tag, was rotated around its bore while it collected CIR measurements and
range measurements to the anchor. At the same time, an overhead motion capture system recorded
the position and orientation of both antennas. The ranging protocol presented in [27] was used and
the CIR envelope obtained from the last anchor reply was recorded on the tag. This was done for
five different tag antenna configurations, namely a Broadspec Time Domain Antenna [28], a spline
antenna analyzed in detail in in [18], this spline antenna with copper arms soldered to its ground, and
a Partron Dielectric Chip Antenna [29] with and without carbon plates in its vicinity, all shown in
Figure 2. The Broadspec Time Domain antenna was used on the transmitter. All these measurements
were made using DWM1000 modules [29], which were modified to allow connection of antennas other
than the Partron dielectric chip antenna with which they are shipped. The DW1000 chip estimates the
complex CIR envelope with a resolution of Ts = 1/(2 fc) ≈ 1 ns, where fc = 499.2 MHz is the chipping
frequency [30]. Its configuration is discussed in Appendix A.

Figure 2. From left to right: A DWM1000 module equipped with a modified spline antenna, a spline
antenna, a Broadspec Time Domain antenna, a Partron dielectric chip antenna. On the extreme
right is a Partron dielectric chip antenna with carbon plates attached in its vicinity and the motion
capture markers. This setup without the carbon plates is also used to collect measurements with the
other antennas.

As the phase difference between the transmitter and receiver clock varies from one signal
transmission to another due to clock imperfections, the CIR envelope samples obtained during
each signal reception show different temporal locations and a different phase offset. To obtain a
higher resolution of the CIR envelope, these accumulated CIR envelope measurements can be aligned
by Decawave’s proprietary leading edge detection algorithm [31], as discussed in detail in [32].
This leading edge detection algorithm estimates the first path location within a CIR envelope with a
resolution of 15.6 ps. Two plots in the top row of Figure 3 show such alignments for over 100 different
CIR envelope measurements obtained with the modified spline antenna for an AOA of αrx = 110◦.
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One aligned CIR envelope measurement is highlighted with red dots and the time at the first path
location is set to t = 0. Note that in order to visualize the phase evolution, the phase offsets of the
different aligned measurements are accounted for by setting the phase of the first sample after the
estimated first path location to zero.

Figure 3. On the left, the experimental setup is shown with a modified spline antenna taking range
and CIR envelope measurements for different AOAs to a Time Domain Broadspec antenna (pictures
of both antennas are shown in Figure 2). The top plots show the magnitude and phase of over 100
accumulated and aligned CIR envelope measurements, and a histogram of the corresponding range
error for an AOA of αrx = 110◦. A single CIR envelope measurement is highlighted with red dots. The
bottom plots show these metrics for all different AOA using the same color scheme as in the top plots
whose AOA is marked with a red line.

Figure 3 further shows how the phase and magnitude of the CIR envelope change for different
AOA when employing the modified spline antenna. There are AOA ranges for which the magnitude
and phase look completely different, but there are also AOA ranges for which they look similar, e.g.,
for CIR measurements obtained with AOAs at around −80◦ or at around −145◦. Measurements for
all the different tag antenna configurations can be found in Appendix B. As the timestamps used for
the range measurement on the anchor and the tag are based on these CIR envelope measurements,
changes in the CIR envelope can lead to errors in the timestamps, which in turn lead to errors in the
measured TOF or range rmeas. This is visible in the rightmost plot of Figure 3, where the differences
of the measured range rmeas and the ground truth range r, provided by the motion capture system,
for different AOAs and AODs are plotted (note that we use a two-way ranging protocol). Research
to date has attempted to minimize these angle-dependent effects either by tailored antenna designs,
evolved leading edge detection algorithms, or by calibration, as was discussed in Section 1.2. Instead
of minimizing these effects, this paper suggests amplifying them such that useful information on the
AOA can be retrieved.

Note that for notational simplicity, in the following we refer to the complex CIR response envelope
simply as CIR.
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3. Learning the CIR to AOA Mapping

3.1. Windowing

Looking at Equation (1), it is clear that in general the measured CIR is a result of different,
multipath-dependent AOAs. Samples in the CIR far away from the estimated first path location
are more likely to be the the result of a convolution with an antenna impulse response function
corresponding to a multipath AOA. Therefore we only consider the CIR samples obtained within
τ ns after the estimated first path sample. This τ is a tuning variable and defines an ellipsoid,
with the transmitter and the receiver positions as foci points, denoted with ptx and prx, respectively.
This ellipsoid is visualized in Figure 1 and is given by∥∥∥∥∥∥∥ptx −

x
y
z


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥prx −

x
y
z


∥∥∥∥∥∥∥ = ‖prx − ptx‖+ cτ, (3)

with (x, y, z) the coordinates of the points lying on the surface of this ellipsoid, and with c the
speed of light. Reflections occurring outside this ellipsoid only impact the measured CIR samples
which are more than τ ns after the estimated first path sample. Ideally, free space can be assumed
within the ellipsoid. However, apart from aerospace applications this is seldom the case as
often the ground intersects with such an ellipsoid when operating close to ground. Nevertheless,
multipath transmissions within the ellipsoid are likely to have a similar AOA as the direct path
and ideally a model mapping the measured CIR to an AOA, as presented next, is robust to such
multipath components.

3.2. CIR to AOA Mapping

The mapping of measured CIR to AOA is not one-to-one for general environments and antennas.
On the one hand, different AOAs can result in a very similar antenna impulse response function as
can be seen in Figure 3. This problem might be circumvented by an optimized antenna design or
by optimally placing reflective surfaces around it. On the other hand, even if the antenna impulse
response function was different for all AOA, differences in the environmental and transmitting antenna
impulse response functions can again lead to the same measured CIR for different AOA. Hence, instead
of learning a one-to one mapping of the measured CIR to the AOA, we propose to learn the probability
that the measured CIR is the result of convolving htx ∗ henv with hrx(αrx) to cope with this problem.
This modeling is approached using a neural network trained on a large dataset of CIR measurements
paired with the corresponding AOAs. Considering the environment’s influence on the measured
CIR (henv,n in Equation (1)), this dataset ideally includes CIR measurements obtained in a similar
environment as the application environment. Furthermore, training on multiple datasets obtained in
different environments enables the neural network to better generalize to a new environment.

3.3. Network Structure

The conditional probability p(αrx|hCIR(t)) is learned in a supervised learning framework in
which a neural network is trained to minimize the cross-entropy between training data and the
model distribution [33] (p. 173). The training data consists of of CIR and AOA pairs and is further
described in Section 4. As previously discussed, the distribution p(αrx|hCIR(t)) is expected to be
multi-modal. Common approaches to learn such distributions using neural networks are mixture
density networks [34] and histogram density estimations [35] (p. 120) in which the probability
distribution is discretized. The latter was chosen due to ease of implementation and good stability
during training. To this end, the AOA was discretized into Nbin = 256 bins and the neural network
was trained to predict the unnormalized log probabilities that a signal is received with an AOA
corresponding to a certain bin. This is visualized in Figure 4. The network consists of three
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fully connected layers of size 800, 400, 400 with rectified linear unit activation function ReLU [36].
The network’s input is a eleven sample window of the measured complex impulse response, starting
two samples before and ending eight samples after the first path sample, and is denoted simply by hCIR

in the following to keep the notation concise. This corresponds to a τ = 8 ns as given in Equation (3).
The phase difference between consecutive samples in hCIR is calculated and fed together with the
magnitude of the first ten samples in hCIR as a concatenated vector of 20 elements to the neural network.
Feeding the phase differences instead of the measured phase sped up training as the neural network
otherwise would have to implement a similar operation itself due to the previously discussed varying
phase offset of the different CIR measurements.

...

............

.........
...

......

...

...

Figure 4. A standard neural network with three hidden layers is used to predict the AOA based on a
window of the complex CIR envelope, starting two samples before the first path sample and ending
eight samples after the first path sample. The magnitude and the phase differences of these eleven
samples are fed to the input layer of the neural network. The outputs of the neural network are the
unnormalized log probabilities of an AOA corresponding to a certain bin.

Denoting with z ∈ RNbin the output of the neural network, i.e., the unnormalized log probabilities,
the probability that the AOA of a signal falls into bin i ∈ {1, . . . , Nbin} is

p(bin = i|hCIR) =
exp(z[i])

∑Nbin
j=1 exp(z[j])

. (4)

3.4. Network Training

The network is implemented in Tensorflow [37] and trained using the ADAM optimizer [38].
We train the network to minimize the cross-entropy loss for all training data points (αrx, hCIR), i.e.,

J(αrx, hCIR) = − log p(bin = bin(αrx)|hCIR), (5)

where bin(αrx) denotes the ground-truth bin of the training sample. Twenty percent of the training
data is randomly chosen and retained as validation data. Dropout regularization (at a 10% rate) is
employed after each hidden layer during training, which terminates when the loss on the validation
data stops decreasing. The training batch size is 2000 and the training data is normalized to speed
up training.

4. Acquiring the Datasets

In addition to the datasets used to qualitatively assess the AOA dependency of the measured
CIR as discussed in Section 2, datasets using multiple anchors and changing environments were
also collected. To this end, a Roomba robot equipped with a UWB tag drove around in a random
fashion in an area of 4.2 m× 4.3 m while recording the output of its wheel encoders with a frequency
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of 66 Hz and sequentially collecting CIR and range measurements to five anchor modules with a
frequency of 200 Hz. Again the ranging protocol presented in [27] was employed and the CIR of the
last anchor reply was recorded. The anchor modules were equipped with Broadspec Time Domain
antennas because of their constant antenna impulse response function over different angles as visible in
Figure A1. This limits the influence of the AOD on the measured CIR, which facilitates the CIR to AOA
mapping problem. The antennas were placed 0.9 m above ground around the area the Roomba robot
was driving in, such that range measurements ranging from 0.5 m to 9 m were obtained. Different
obstacles, i.e., a chair, a table, a wooden wall, a ladder and a tripod, were placed in the area. For each
collected dataset containing roughly 200’000 CIR and range measurements, the Roomba robot was
traveling a different, random trajectory and either the locations of the anchor modules, or the locations
of obstacles within the area were changed as shown in Figure 5. This figure also shows a picture of
the floor, made of ceramic tiles and heavy metal plates, partially reflecting the UWB signals. Sport
mattresses were placed on the floor to facilitate the Roomba robot’s locomotion. During the experiment,
an overhead motion capture system recorded the ground truth position and orientation of the tag
and anchor antennas with sub-centimeter and sub-degree accuracy. Synchronizing and processing all
this data allows pairing of CIR measurements with the corresponding AOA to generate training and
evaluation datapoints (αrx, hCIR) for the previously presented neural network.

For ten such datasets, the UWB tag on the Roomba robot was equipped with the modified spline
antenna; and for a further ten such datasets, the Partron dielectric chip antenna with mounted carbon
plates in its vicinity was used, as shown in Figure 2. These datasets are made publicly available here [3].

Figure 5. Three out of ten setups for data collection using the modified spline antenna are shown. In
each setup the Roomba robot drove a different trajectory and the obstacles’ or the transmitters’ location
was changed. The picture in the bottom right shows the floor made of ceramic tiles and metal plates.

5. Results

The neural network described in Section 3 was trained and evaluated with the previously
described datasets, separately for the modified spline antenna and for the Partron dielectric chip
antenna with carbon plates in its vicinity. From the ten datasets originating from different setups, nine
datasets were used for training and the evaluation was made on the remaining dataset. This was done
ten times each time leaving out a different dataset in training for the following evaluation. The results
of this leave-one-out cross-validation are presented by means of the error in the maximum a-posteriori
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AOA estimate α̂rx. It is given as the bin center of the bin with the highest probability as predicted by
the neural network, i.e.,

b̂in := arg max
i∈1,...,Nbin

p(bin = i|hCIR) (6)

α̂rx := 2π
b̂in− 1

Nbin
. (7)

As discussed in Section 2, the resolution of the measured CIR is relatively coarse at approximately
1 ns. However, as it sampled at slightly different locations is each time, a more accurate
maximum a-posteriori estimate can be found by collecting 10 consecutive CIR measurements
hCIR(1), . . . , hCIR(10) from the same transmitter, and choosing the estimated AOA bin as

b̂in := arg max
i∈1,...,Nbin

10

∑
j=1

p (bin = i|hCIR (j)) . (8)

Figure 6 shows the error distribution for the modified spline antenna. Averaged over the datasets,
58% of the maximum a-posteriori estimates have an error of less than 15◦ when using only one CIR
measurement. When using 10 consecutive CIR measurements, this ratio is increased to about 64.5%,
which is still significantly lower than the ratio for the AOA estimation modules based on multiple
antennas created by Ubisense [39] and Decawave [5]. Almost 100% of their AOA measurements are
reported to be within a 15◦ error bound.

Figure 6. The error distribution of the maximum a-posteriori AOA estimate is shown for the ten
different datasets using the modified spline antenna. On the left, the distribution is shown for when
the maximum a-posteriori estimate is calculated using a single CIR. On average 58% of these estimates
have an error of less than 15◦. This value is increased to 64.5% when the maximum a-posteriori estimate
is calculated using ten consecutive CIR measurements, which is shown on the right.

However, the distribution predicted by the neural network is in general multimodal. Therefore,
even if the maximum a-posteriori estimate might deviate by a large value, the probability of the bin
corresponding to the ground-truth AOA bin(αrx) might still be high. This is visible in Figure 7 where
the average predicted a-posteriori AOA probability distribution for CIR measurements belonging to
the datapoints Z obtained with a ground truth AOA between −135◦ and −155◦ is shown, i.e.,

Z = {(αrx, hCIR) : −155◦ < αrx < −135◦} (9)

p̄(αrx|hCIR ∈ Z) =
1
|Z| ∑

hCIR∈Z
p(αrx|hCIR), (10)
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where |Z| is used to denote the number of datapoints contained in set Z . On the right, the average
predicted a-posteriori AOA probability distribution is shown for the subset of these datapoints
Zoff ⊂ Z , whose maximum a-posteriori AOA estimate deviates by more than 30◦, i.e.,

Zoff = {(αrx, hCIR) : −155◦ < αrx < −135◦ and |α̂rx − αrx| > 30◦} (11)

p̄(αrx|hCIR ∈ Zoff) =
1
|Zoff| ∑

hCIR∈Zoff

p(αrx|hCIR). (12)

It is evident that most maximum a-posteriori AOA assigned to these CIR measurements are at
around −80◦, even though the probability of the AOA corresponding to the actual AOA is still high.
This can also explain the bump at around −65◦ in maximum a-posteriori error distribution, as seen
in Figure 6. Looking at Figure 3, it is evident that the antenna impulse response function for the
AOAs from−135◦ to −155◦ seems to be similar to the one for the AOAs from −70◦ to −90◦. Therefore,
the neural network has difficulty in mapping the measured CIR to the correct AOA. However, this
uncertainty is also mirrored in the probability distribution given by the neural network.

Figure 7. On the left, the averaged, multimodal probability distribution predicted by the neural
network is shown in blue for CIR measurements obtained with AOA in the range of −135◦ to −155◦

(see Equations (9) and (10)). Also the histogram of the corresponding maximum a-posteriori AOA
estimates is shown in orange. On the right, the averaged probability distribution is shown for CIR
measurements obtained in the same range, but whose corresponding maximum a-posteriori AOA
estimate also deviates by more than 30◦(see Equations (11) and (12)).

Similar results were achieved with the Partron dielectric chip antenna with mounted carbon plates
in its vicinity, as further discussed in Appendix C, which shows that material in the antenna’s vicinity
influencing its radiation pattern also helps to estimate the AOA with the proposed method.

Although it may at first appear contrived, in the majority of applications the antenna’s radiation
pattern is distorted, either because the antenna is integrated into the device case, or because the
device case and the device electronics reflect and dampen electromagnetic waves in different manners
depending on the device orientation. However, these unintentional angle-dependent radiation patterns
lead in general to multimodal probability distributions, as is also the case for the tested modified spline
antenna and the Partron dielectric chip antenna with carbon plates. In order to improve accuracy
of the maximum a-posteriori AOA estimate, the antenna design or the placement of the reflective
surfaces should be optimized, which was not done in this work. Nevertheless, there are applications
where multimodal distributions pose less of a problem, e.g., when it is possible to fuse multiple AOA
distributions from different transmitters or receivers, as is the case for UWB localization problems,
which is discussed in the next section.
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6. Application to a Self-Localization Problem

In this section, the previously described method to estimate the AOA based on CIR measurements
is used to localize a robot.

6.1. Self-Localization Problem

The datasets described in Section 4 were collected with the help of a mobile robot (Roomba)
and consist of CIR, range and odometry measurements along with the ground truth measurements
provided by a motion capture system. Given the trained neural network as outlined in Section 3,
the CIR measurements with anchors at known locations provide sufficient information for the robot
to estimate its state x = (xR, yR, θR) in the inertial reference frame, where xR and yR are the robot’s
Cartesian coordinates and θR is the angle describing its orientation (see Figure 8). The state estimate can
be obtained via triangulation as visualized in Figure 8, e.g., by maximizing the measurement likelihood

x = arg max ∏
hCIR∈Z

p(αrx(x)|hCIR). (13)

Figure 8. A robot can localize itself with respect to anchors having known locations by maximizing
the AOA likelihood as given by the neural network. The predicted AOA a-posteriori probability
distributions for each anchor are shown in different colors.

In order to self-localize, the robot does not need to move as long as its position and the position
of the anchors cannot be circumscribed with a circle [40]. This enables the robot to self-localize
by only receiving the UWB signals from transmitters with a known location, which do not even
need to be synchronized. It is clear that if time-of-flight measurements or time-of-flight-difference
measurements with respect to the anchors are available, they significantly improve the performance of
such a localization system and should therefore be fused with AOA measurements. The same applies
to motion or process models, which should be used as well if available.

In the following, we will investigate the fusion of this information by means of a particle filter
in order to assess the benefit of estimating the AOA with the proposed method in self-localization
applications. Furthermore, such fusion approaches also allow the neural network to be trained without
a motion capture system, as demonstrated in the following. A general comparison of time-of-flight,
AOA, and received signal strength localization approaches is given in [1].
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6.2. Particle Filter

Two discrete-time process models x(k + 1) = q(x(k), u(k), η(k)) for the mobile robot are
considered, where u(k) is the system’s input and η(k) = (ηx(k), ηy(k), ηθ(k)) is the process noise
at discrete time k = 1, 2, . . . for a sampling period of 15 ms, which is equal to the period with which the
Roomba robot’s wheel encoders can be recorded.

6.2.1. Random Walk Process Model

In the random walk process model, the system input u is assumed to be zero and the state is
assumed to evolve solely based on the process noise, i.e.,

xR(k + 1) = xR(k) + ηx(k) (14)

yR(k + 1) = yR(k) + ηy(k) (15)

θR(k + 1) = θR(k) + ηθ(k). (16)

The process noise is assumed to have a zero mean normal distribution, i.

η(k) ∼ N (η(k)|0, Σ) with Σ =

(12 mm)2 0 0
0 (12 mm)2 0
0 0 (5.4◦)2

 . (17)

6.2.2. Roomba Process Model

In the more accurate Roomba process model, the robots state x is pushed forward by the robot’s
odometry recordings u = (∆p, ∆θ), where ∆p and ∆θ are the measured distance travelled and the
measured change in heading, respectively, during the sampling period. This process model is given as

xR(k + 1) = xR(k) + cos(θR(k))∆p(k) + ηx(k) (18)

yR(k + 1) = yR(k) + sin(θR(k))∆p(k) + ηy(k) (19)

θR(k + 1) = θR(k) + ∆θ(k) + ηθ(k). (20)

For this process model, the process noise covariance is lowered to

Σ =

(2 mm)2 0 0
0 (2 mm)2 0
0 0 (1.5◦)2

 . (21)

6.2.3. Measurement Model

Measurement updates can be performed either with a-posteriori AOA probability distributions
provided by the neural network, or with time-of-flight and the corresponding range measurements.
These updates are further described in the following algorithm.

6.2.4. Particle Filter Algorithm

How these process and measurement models can be integrated in a particle filter is briefly outlined
in the following summary, and the reader is referred to [41] for a more in-depth introduction.

1. Initialization: The particle filter is initialized with NPF = 1000 particles xp, p ∈ {1, 2, . . . , NPF}
whose initial x, y coordinates and headings are drawn from the uniform distributions
UxR(0 m, 4.7 m), UyR(0 m, 4.8 m) and UθR(−π, π).
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2. Prediction step: At each iteration, the random walk (15) and (16) or the Roomba (19) and (20)
process model is used to update each particle xp as

xp(k + 1) = q(xp(k), u(k), ηp(k)). (22)

3. Measurement update: When a UWB signal is received, the particle weights can be updated
according to their likelihood given the current AOA a-posteriori probability distribution or the
current range measurement. Using the AOA a-posteriori probability distribution, the particles
weights are calculated as

wp(k) = p(αp
rx(k)|hCIR(k)), (23)

where the expected AOA α
p
rx of each particle p is

α
p
rx(k) = atan2

(
yA − yp

R(k), xA − xp
R(k)

)
− θ

p
R(k), (24)

wherein xA and yA are the x and y coordinates of the anchor modules from which a signal is
received. If the range measurement is used, the particle weights are calculated as

wp(k) = p(rp(k)|rmeas(k)) ∼ N (rp(k)|rmeas(k), σ2
r,meas), (25)

with rmeas the measured range with a variance of σ2
r,meas, and where the expected range rp of each

particle p is calculated as

rp(k) =

∥∥∥∥∥
(

xR(k)
yR(k)

)
−
(

xA
yA

)∥∥∥∥∥ . (26)

After the particle weights have been calculated, the particles are resampled to get NPF posterior
particles, all with equal weights.

6.3. Training with Particle Filter AOA Data

So far, the training data for the neural network was obtained by means of a motion capture
system, i.e., the AOA corresponding to a measured CIR was calculated based on motion capture data.
With these training data, the neural network described in Section 3 was trained. However, the AOA
corresponding to a measured CIR can also be obtained by other means; namely, based on the estimated
state by the particle filter fusing odometry and range measurements as outlined above. The data
obtained might be of lower quality, i.e., the AOA assigned to a measured CIR might deviate if the
estimated state also deviates. Nevertheless, as long as the data is unbiased, the neural network can be
successfully trained with it.

To investigate this, ten new training datasets were generated for the modified spline antenna where
the AOA was not provided by the motion capture system, but by the state estimate of the particle filter
employing the Roomba process model to fuse odometry and range measurements. The particle filter’s
position, p̂R = (x̂R, ŷR), and orientation , θ̂R, estimates are defined to be the particles’ average position
and orientation, respectively. Using these estimates, the AOA corresponding to a CIR measurement
obtained at time k was calculated as

αrx = atan2 (yA − ŷR(k), xA − x̂R(k))− θ̂R(k). (27)

These ten new datasets were again used to train the neural network in a leave-one-out cross
validation fashion. The error distribution of the maximum a-posteriori AOA estimate does not differ
significantly from the distribution obtained with neural networks trained on motion capture training
data, but the value of the maximum probability density is generally smaller. This can be explained
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by the additional noise now included in the training data, which acts as a regularizer and leads to
more conservative, i.e., more uniform, a-posteriori AOA probability distributions predicted by the
neural network.

6.4. Results

These newly trained neural networks were employed by the particle filter whose performance
was evaluated for the two different process models, and the different measurement updates.
A leave-one-out cross validation is again applied for the evaluation, in which the dataset not used
for the neural network training was used for the evaluation. Figure 9 shows the root mean square
error (RMSE) in the heading, RMSE(θ̂R), and position, RMSE(p̂R), estimates of the particle filter for
the different configurations. The RMSE for each dataset is shown in a different color.

In case of the random walk process model, it is apparent that the orientation and position of
the Roomba robot can be estimated solely based on AOA measurements in all ten datasets. When
employing range measurement updates instead of AOA measurements, the error in the position
estimate is significantly smaller. However, it is no longer possible to observe the orientation of the
robot. The best performance is achieved when range and AOA measurements are combined. Note
that two-way communication between the mobile robot and the anchors or clock synchronization is
necessary in order to obtain range measurements, whereas the AOA estimation method presented
only needs one-way communication and no clock synchronization.

RoombaRandom walk

AOA range AOA+range AOA range* AOA+range

Process model

Measurement

updates

Orientation

unobservable

Figure 9. This figure compares the performance of particle filters having different process models and
different measurement updates. The root mean square error (RMSE) obtained for the ten different
leave-one-out cross-validation evaluations are shown in different colors. The neural networks employed
by the particle filters using AOA measurement updates were trained with datasets in which the AOA
corresponding to a CIR measurement was provided by a particle filter employing the Roomba process
model and range measurement updates (see the column marked with * for its performance).

In the case of the particle filters employing the Roomba process model, the orientation of the
Roomba robot is also observable without AOA measurements. This allowed the neural network to
be trained without motion capture data as described in Section 6.3. Note that even though the RMSE
in the heading of this particle filter employing the Roomba process model and range measurement



Sensors 2019, 19, 4466 15 of 21

updates was between 4◦ and 13◦ depending on the dataset (see column marked with * in Figure 9),
neural networks trained with these data and integrated in a particle filters lead to RMSE in the heading
of below 4◦ as also visible in Figure 9. Also for the Roomba process model, the best performance is
achieved when range and AOA measurement updates are used.

The results of particle filters employing neural networks trained with motion capture data are
included for completeness in Appendix D.

7. Conclusions

This paper discusses a technique to estimate the AOA of a UWB signal based on CIR
measurements. We identify that the antenna’s impulse response function is AOA dependent, and that
objects in the antenna’s local environment create angle-dependent reflections that further affect the
measured CIR. We use a neural network to learn the mapping between the CIR measurement and the
AOA, and show that the UWB signal’s AOA can be estimated at no additional hardware cost, using
just a single antenna, unlike conventional AOA estimation techniques. By combining AOA estimates
to multiple fixed-location UWB anchors, we experimentally demonstrate the localization of a mobile
robot, based only on AOA estimates obtained from CIR measurements (see Supplementary Video),
and in combination with range measurements. Given that in most real-world UWB applications
the antennas’ impulse response functions are AOA dependent due to their integration into a device,
we regard the AOA estimation method presented in this paper as a low-cost and software-only
augmentation for any existing UWB TOF-based localization system, with which AOA-CIR training
data can be collected on the go by data fusion approaches.

Outlook

The new AOA estimation principle presented in this paper should be investigated further to
assess its full potential and its limitations. We regard the following topics as interesting to investigate
in the future:

Hardware optimizations: In this paper, we changed the antenna’s impulse response function in
a straightforward manner by modifying the antenna, or by placing carbon plates in its vicinity. Instead,
better performance could be achieved if the antenna design or the placement of the reflective surfaces
were optimized for the application at hand considering the selected carrier frequency and power
settings. Such optimizations, performed via electromagnetic simulation software, could be aimed at
rendering the a-posteriori AOA probability distribution unimodal, and at making the method more
robust to non-line-of-sight conditions. Furthermore, as the CIR estimates provided by the DW1000
chips is also dependent on the clock speed of the receiver and transmitter, more stable clocks and
shorter sampling periods could further help to improve the accuracy of the AOA estimation method,
although this would again lead to increased hardware costs.

AOA of multi-path components: As shown in [42,43], if the locations of reflective surfaces in
the environment are known, the timing of multi-path components can be used to localize a receiver.
In this paper we trim multi-path components, and focus only on the first peak. However, these
multi-path components are also affected by the receiving antenna’s AOA-dependent transfer function
as shown in [44], and it should be possible to also compute their AOAs using the techniques discussed
in this paper.

Learning: The neural network applied to learn the mapping between the measured CIR and
the AOA worked without significant tuning, however resulted in a binned probability distribution.
It would be interesting to investigate whether accuracy could be improved using mixture-density
networks, resulting in a continuous probability distribution, or using neural networks with complex
weights. In the latter case, the complex envelope of the CIR could be fed directly to the neural network
instead of feeding it via its magnitude and phase. This, together with a tailored network architecture
could further improve the performance of this method.
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AOD and AOA estimation: The CIR is affected by both the receiver’s and transmitter’s antenna,
and by obstacles in their local environments. In order to minimize the influence of the transmitting
antenna on the measured CIR and thus simplify measurement of the AOA, we outfitted transmitters
with antennas having a very uniform transfer function (Time Domain Broadspec antenna). However,
if both receiver and transmitter were equipped with antennas having strongly angle dependent
impulse response functions, it should be possible to estimate both AOA and AOD from a single CIR
measurement. In combination with a TOF method to estimate range, this would enable estimation of
the full relative pose of the receiver with respect to the transmitter and thus localization of the receiver
using just a single anchor.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/20/4466/
s1, Video S1: Ultra-wideband angle of arrival estimation based on angle-dependent antenna transfer function.
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Abbreviations

The following abbreviations are used in this manuscript:

AOA Angle of Arrival
AOD Angle of Departure
CIR Channel Impulse Response
RMSE Root-Mean-Square Error
TOF Time of Flight
TOFD Time of Flight Differences
UWB Ultra-wide Band

Appendix A. DW1000 Configuration

The configuration of the DW1000 chips is given in Table A1 and is used for all experiments. Note
that mainly the center frequency and the output power were found to have a large impact on the
measured CIR, even though no thorough experiments were conducted with different settings.

Table A1. The settings of the DWM1000 modules used to acquire the CIRs and range measurements.

Channel Number 4 (Carrier Frequency 3993.6 MHz, Bandwith 900 MHz)
Pulse Repetition Frequency 16 MHz
Data Rate 6.8 Mbps
Preamble Length 128 Symbols
Preamble Accumulation Size 8
Preamble Code 7
Transmit Power Control 19 dB Gain

Appendix B. CIR Measurements for Different Antenna Configurations

Figure A1 compares the CIR measurements obtained with different receiver antenna
configurations. Even though these measurements were not made in an anechoic chamber, it is
qualitatively visible how the antenna impulse response functions of the different receiver antenna
configurations impact the measured CIR, as the environment and the transmitter antenna were left

http://www.mdpi.com/1424-8220/19/20/4466/s1
http://www.mdpi.com/1424-8220/19/20/4466/s1
http://flyingmachinearena.org/people
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unchanged for all collected measurements. Apart from antenna impulse response functions of the
Broadspec Time Domain and the spline antennas, all other antenna impulse response functions seem
to be clearly AOA-dependent.

Figure A1. The complex CIR envelope for different receiver antenna configurations is shown for
different AOA with the estimated first path location at t = 0 ns. The transmission antenna is always a
Broadspec Time Domain antenna.

Appendix C. Results Obtained with Partron Dielectric Chip Antenna with Carbon Plates

The ten datasets recorded with the Partron dielectric chip antenna with mounted carbon plates
are similar, but not identical to the ten datasets recorded with the modified spline antenna, as the
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anchor and obstacles locations were changed and as the Roomba robot for each experiment traveled a
different path. Nevertheless, assuming that these differences are leveled out, the receiver configuration
with the Partron dielectric chip antenna and the carbon plates seems to slightly decrease the error in
the maximum a-posteriori AOA estimate as shown in Figure A2. Compared to the 58% and 64.5%,
now 60.3% and 66.8% of the estimates have an error of less than 15◦, when using a single CIR or
when using ten consecutive CIR measurements, respectively. As neither the placement of the carbon
plates, nor the antenna design were optimized, no concluding statement can be made on which of
two antenna radiation pattern influences can be better exploited by the AOA estimation method.
However, carbon plates in the antenna’s vicinity seem to have a large impact on the error in the
obtained range measurements, as visible in Figure A1, which should be compensated for when using
range measurements.

Figure A2. The error distribution of the maximum a-posteriori AOA estimate is shown for the ten
different datasets using the Partron dielectric chip antenna with mounted carbon plates. On the left,
the distribution is shown when the maximum a-posteriori estimate is calculated using a single CIR. On
average 60.3% of the estimates have an error of less than 15◦. This value is increased to 66.8% when the
maximum a-posteriori estimate is calculated using ten consecutive CIR measurements as shown on
the right.

Appendix D. Results Obtained with Particle Filter Employing Neural Networks Trained with
Motion Capture Data

The particle filters employing neural networks trained with motion capture data generally
performed worse than the particle filters employing neural networks trained with fused data as
outlined in Section 6.3. This is visible when comparing the RMSE in the heading and position
estimates of these particle filters shown in Figure A3 with the ones shown in Figure 9 (note the
different scales of the RMSE-axis when comparing the figures). When employing the Roomba
process model and only AOA measurement updates, the particle filter even diverged for one dataset.
As mentioned in Section 6.3, the neural network trained with fused data had a similar error distribution
of their maximum a-posteriori AOA estimates, but generally predicted more conservative a-posteriori
AOA-probability distributions. This could explain why the particle filters employing these models
were less likely to diverge due to a erroneous maximum a-posteriori AOA estimate. Potentially, particle
roughening, a higher process noise covariance or adding noise to the neural network training data
could help to prevent the particle filter from diverging when employing the neural network trained
with motion capture data.
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RoombaRandom walk

AOA range AOA+range AOA range AOA+range

Process model

Measurement

updates

PF

diverged

PF

diverged

Orientation

unobservable

Figure A3. This figure compares the performance of particle filters having different process models and
different measurement updates. The RMSE obtained for the ten different leave-one-out cross-validation
evaluations are shown in different colors. The neural networks employed by the particle filters using
AOA measurement updates were trained with datasets in which the AOA corresponding to a CIR
measurement was provided by a motion capture system.
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