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Objective: Type 2 diabetes mellitus (T2DM) is often accompanied by cognitive decline
and depressive symptoms. Numerous diffusion tensor imaging (DTI) studies revealed
microstructural white matter (WM) abnormalities in T2DM but the findings were
inconsistent. The present study aimed to conduct a coordinate‐based meta‐analysis
(CBMA) to identify statistical consensus of DTI studies in T2DM.

Methods: We performed a systematic search on relevant studies that reported fractional
anisotropy (FA) differences between T2DM patients and healthy controls (HC). The
anisotropic effect size seed‐based d mapping (AES-SDM) approach was used to
explore WM alterations in T2DM. A meta‐regression was then used to analyze potential
influences of sample characteristics on regional FA changes.

Results: A total of eight studies that comprised 245 patients and 200 HC, along with 52
coordinates were extracted. The meta‐analysis identified FA reductions in three clusters
including the left inferior network, the corpus callosum (CC), and the left olfactory cortex.
Besides, FA in the CC was negatively correlated with body mass index (BMI) in the
patients group.

Conclusions: T2DM could lead to subtle WMmicrostructural alterations, which might be
associated with cognitive deficits or emotional distress symptoms. This provides a better
understanding of the pathophysiology of neurodegeneration and complications in T2DM.

Systematic Review Registration: Registered at PROSPERO (http://www.crd.york.ac.
uk/PROSPERO), registration number: CRD42020218737.
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INTRODUCTION

The International Diabetes Federation estimates that 415 million
people have diabetes mellitus worldwide, with 90% of these
individuals having T2DM (1). Type 2 diabetes mellitus (T2DM)
is a chronic metabolic disorder characterized by reduced insulin
sensitivity, followed by a compensatory increase in insulin
secretion (2). The disease has become a critical health concern
worldwide owing to its high prevalence and related disability and
mortality (3). T2DM usually leads to various complications in
multiple organs, including impairments in the brain (4). People
with type 2 diabetes are at an increased risk of cognitive decline
and dementia (including Alzheimer’s disease, AD) (5, 6), which is
related with worse diabetes management, more frequent
occurrence of severe hypoglycemic episodes, and an increased
risk of cardiovascular events, and death (7). Earlier meta-analyses
showed that the presence of diabetes in older adults was associated
with 47% increased risk of all dementia, 39% increased risk of AD,
and 138% increased risk of vascular dementia (8, 9). Existing
evidence indicated that microstructural brain atrophy contributed
to poor cognitive function (10–13). Several neuroimaging studies
with different modalities have demonstrated that T2DM is
accompanied with structural and functional abnormalities in
various regions of the brain (2, 14, 15). Moreover, T2DM and
mood disorders share pathophysiological commonalities in the
central nervous system (16, 17). The prevalence of depression
among T2DM is quite high (18–21), which is considered to be
related with cerebral microvascular dysfunction (22). However,
the specific neurobiological mechanisms underlying the cognitive
impairment and emotional distress of T2DM patients remain
unclear for now.

Advances in MRI techniques make it possible to investigate
subtle structural alterations of the brain. Among them, diffusion
tensor imaging (DTI) is able to detect white matter (WM)
microstructure characteristics by estimating random movement
of water molecules in the brain (23). The most widely used
parameter to study DTI is fractional anisotropy (FA), which
reflects diffusion direction and is related to fiber orientation. Any
reduction in white matter anisotropy indicates an alteration in
the degree of tissue order or integrity (24). DTI approach is
widely applied in the evaluation of WM microstructure in
various central nervous system disorders. Specially, DTI
metrics appears to be a more sensitive marker of cognitive
decline due to aging and AD, even when there is no sign of
microstructural gray matter (GM) volume alterations and
atrophy of brain structures (25, 26). The two most widely used
methods of DTI to achieve whole-brain analysis were voxel-
based analysis (VBA) and tract-based spatial statistics (TBSS)
(27). The former involves analyzing all white matter voxels and
correcting for multiple comparisons and noise by reporting only
contiguous clusters of significant voxels, while the latter isolates
the central core of white matter tracts with the highest FA and
reports significant clusters within that white matter skeleton (28,
29). Findings from numerous studies have suggested widespread
white matter abnormalities in T2DM patients. However, the
results are inconsistent and controversial. According to previous
studies, significantly decreased in FA has been observed in
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patients with T2DM in widespread WM regions such as the
frontal lobe (15, 30, 31), temporal region (15, 30–33), corpus
callosum (CC) (34–36), cingulum bundle (15, 35, 37), uncinate
fasciculus (UF) (35, 36, 38), and corticospinal tract (CST) (35,
36). The inconsistencies of different studies were probably owing
to small sample size, heterogeneous demographic characteristics
of the patients, and the diversity of methodological techniques.

The coordinate‐based meta‐analysis (CBMA) is a widely used
method to solve the discrepancies of regional alterations among
various neuroimaging studies (39). The anisotropic effect size
seed‐based d mapping (AES-SDM) is an advanced statistical
technique for CBMA on different neuroimaging techniques such
as structural MRI, functional MRI, DTI, or PET (40). Compared
with earlier methods such as activation likelihood estimation and
multilevel kernel density analysis (41, 42), the AES‐SDM has
strengths as below: (a) In the AES-SDM, both positive and
negative differences in the same map are combined to avoid a
particular voxel from appearing to be significant in opposite
directions (43); (b) The AES-SDM approach allows reported
peak coordinates to be combined with statistical parametric
maps, thus ensuring more exhaustive and accurate meta‐
analyses (44); (c) SDM enables several complementary analyses,
such as jack-knife, subgroup, and meta-regression analyses, which
can be used to evaluate the robustness and heterogeneity of the
results (40). The AES-SDM method has been fully validated in
several neuropsychiatric disorders including Parkinson’s disease
(45, 46), major depressive disorder (MDD) (29), bipolar disorder
(47), obsessive‐compulsive disorder (43, 48, 49), autism spectrum
disorder (50), type 1 diabetes mellitus (T1DM) (51), and also in
voxel-based morphometry (VBM) studies in T2DM patients
(52, 53).

A recently published systematic review of DTI studies (54)
comprehensively and systematically summarized previous DTI
findings of brain microstructural abnormalities in T2DM.
However, this review study is not able to detect the
discrepancies of regional alterations with reported coordinates
and anisotropic effect size. Thus, a CBMA using AES‐SDM is
required to identify consistent results from DTI studies in
patients with T2DM. The first objective of this present
research was to investigate the most robust FA alterations in
T2DM compared with healthy controls (HC). Secondly, we
intended to explore the potential effects of demographics and
clinical characteristics including mean age, duration of disease,
body mass index (BMI), and HbAlc% on WM changes by using
meta-regression approach. We hypothesized that patients with
T2DM would exhibit microarchitecture alterations in core WM
tracts such as the CC, as well as regions related with cognitive
functions and emotional regulations.
MATERIALS AND METHODS

Literature Search Strategy
This meta-analysis was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (55–57). The protocol of this CBMA was
May 2021 | Volume 12 | Article 658198
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registered at PROSPERO (http://www.crd.york.ac.uk/
PROSPERO) (registration number: CRD42020218737).
Systematic and comprehensive searches were used to acquire
relevant literatures from the PubMed and Web of Science
databases published (or “in press”) up to October 31, 2020.
The search keywords were (“type 2 diabetes mellitus” or “T2DM”
or “type 2 diabetes”) and (“diffusion tensor” or “DTI” or
“diffusion magnetic resonance imaging”). Additionally, the
reference lists of identified studies and relevant reviews were
manually checked to avoid omitting.

Study Selection
Studies which met the following criteria were included
(1): studies compared FA value differences between T2DM and
HC in whole-brain analyses (2); reported results in Talairach or
Montreal Neurological Institute (MNI) coordinates; (3) used a
threshold for significance; (4) articles written in the English
language and published in peer-reviewed journals. Exclusion
criteria were: (1) meta-analysis, reviews, case reports, or
tractography-based only study; (2) studies with no direct
between-group comparison; (3) studies from which peak
coordinates or parametric maps were unavailable.

Quality Assessment and Data Extraction
Two authors (ZC and LJ) independently searched the literatures,
assessed the quality of the retrieved articles, extracted and cross-
checked the data from eligible articles. The quality of the final
studies was also independently checked by both authors
following guidelines for neuroimaging meta-analyses promoted
by Müller and colleagues (58). For each study the following data
were recorded: first author, cohort size, demographics (age and
gender), illness duration, BMI, HbAlc%, imaging parameters,
data processing method and statistical threshold, as well as the
three-dimensional peak coordinates of case-control differences
in each study.

AES-SDM Meta-Analysis
Regional FA differences between T2DM patients and HC were
performed using the SDM software v5.15 (http://www.
sdmproject.com) (43, 59) in a voxel-based meta-analysis
approach. We conducted the analysis according to the SDM
tutorial and previous meta-analytic studies. The AES-SDM
technique uses effect sizes combining with reported peak
coordinates which are extracted from databases with statistical
parametric maps, and recreates maps of the original maps of the
effect size of FA between patients and controls, rather than just
assessing the probability or likelihood of a peak (40).

The AES-SDM procedures have been described in detail
elsewhere (29, 46, 60),and were briefly summarized as follows:
(1) The peak coordinates of all white-matter from each data set
were extracted at the level of t-statistics (Z- or P- values for
significant clusters which were then converted to t-statistics using
the SDM online converter); (2) The peak coordinates for each
study were recreated using a standard MNI map of the effect size
of the group differences in FA by means of an anisotropic
Gaussian kernel (44). A relatively wide full width at half
maximum (20 mm) and DTI templates were used to control
Frontiers in Endocrinology | www.frontiersin.org 3
false-positive results; (3) The standard meta-analysis was
conducted to create a mean map via voxel-wise calculation of
the random-effects mean of the study maps. According to Radua
et al. (40), an uncorrected P = 0.005 using the AES-SDM software
is approximately equivalent to a corrected P = 0.025. Here, we used
more stringent thresholds as follows: uncorrected P value < 0.001,
peak height threshold Z = 1.00, and cluster size threshold =
10 voxels.

Sensitivity Analyses
To assess the replicability of the results, we performed a
systematic whole-brain voxel-based jackknife sensitivity
analysis. This procedure involved repeating the main statistical
analysis for each result eight times, discarding a different study
each time. If a brain region remains significant after running
jackknife sensitivity in all or most of the combinations of studies,
the finding is considered highly replicable (43).

Meta-Regression Analysis
Considering the potential influences of mean age, duration of
disease, BMI, and HbAlc% on WM abnormalities, a more
conservative threshold (P < 0.0005) was adopted in consistent
with previous meta-analyses and the recommendations of the
AES-SDM authors (43), and only brain regions identified in the
main effect were considered.
RESULTS

Included Studies and Sample
Characteristics
The flow diagram of the identification and the attributes of the
studies is presented in Figure 1. The demographics of the
samples are summarized in Table 1. The search strategy
identified 90 studies, eight of which met the inclusion criteria
(15, 30, 32, 34–36, 61, 62). One study contained two different
subgroups of T2DM patients (T2DM patients with mild
cognitive impairment and T2DM patients with normal
cognition), but only the coordinates of significantly different
clusters in T2DM patients with mild cognitive impairment were
reported. We treated this study as one single dataset. Thus, our
final sample comprised 245 T2DM patients and 200 HC, along
with 52 coordinates extracted from eight datasets. The scanning
methods and FA alterations of the eight datasets are shown in
Table 2.

Regional Differences in FA
The meta-analysis revealed that patients with T2DM exhibited
significant FA reductions in three clusters relative to HC,
including the left inferior network, the CC and left olfactory
cortex (BA 25), as illustrated in Figure 2 and Table 3. No region
with higher FA was identified in the current meta‐analysis.

Jackknife Sensitivity Analysis
The whole-brain jackknife sensitivity analysis revealed that
decreased FA in T2DM patients in the left inferior network
May 2021 | Volume 12 | Article 658198
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and the CC was highly replicable, as these findings were
preserved throughout all but one combination of the datasets.
FA reduction in the left olfactory cortex remained significant in
all but two combinations (Table 3).

Meta-Regression Analysis
At a stringent threshold of P < 0.0005, meta-regression analysis
found a negative correlation between FA in the CC and BMI in
the patients group (Table 4). The mean age of patients, illness
duration, and HbAlc% were not linearly associated with
FA changes.
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DISCUSSION

To our knowledge, this study is the first coordinate‐based meta-
analysis (CBMA) of DTI studies in T2DM patients investigating
microstructural WM abnormalities and examining how clinical
features affect WM morphometry. Using the AES-SDM meta-
analytical approach, this study identified decreased FA in three
clusters, and these three regional differences remained replicable in
the Jackknife sensitivity analyses. The largest cluster exhibited a
peak coordinate in the left inferior network mainly consisted of left
inferior fronto-occipital fasciculus (IFOF), left inferior longitudinal
FIGURE 1 | Flow diagram for the identification and exclusion of studies.
May 2021 | Volume 12 | Article 658198
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fasciculus (ILF), left uncinate fasciculus (UF), and anterior
commissure. Other clusters exhibited FA reductions in the CC
and the left olfactory cortex (BA25). Besides, according to the meta-
regression, FA in the CC was negatively correlated with BMI in the
patients group. These findings enhanced our understanding of the
underlying neurodegeneration in T2DM.

Our meta‐analysis only identified lower FA rather than higher FA
in T2DM patients. This is in accordance with most published DTI
studies of T2DM (54). As FA presents the anisotropic diffusion of
water molecules and can reflect the underlying characteristics of
microstructure, such as fiber density, axonal diameter, thickness of
the myelin sheaths, and directionality of the fibers (27, 63), decreased
FA in our findings represented disrupted WM microarchitecture in
Frontiers in Endocrinology | www.frontiersin.org 5
the brain. One of the core characteristics of T2DM is insulin
resistance, which interferes with glucose metabolism and even can
lead to increased plasma glucose in regional brain areas in T2DM
patients (52). From the microscopic point of view, hyperglycemia is
considered to be related with various metabolic and molecular
alterations and could result in brain cell dysfunction, degeneration,
or death ultimately (52, 64). And from the macroscopic perspective,
brain atrophy might be the neurobiological basis of cognitive decline
(5, 6, 11). This was also in agreement with previous VBM meta‐
analyses of T2DM (52, 53).

The left inferior network mainly comprised the left IFOF, left
ILF, left UF, and anterior commissure. Several studies support the
extension of WM impairments in T2DM to other association fibers,
TABLE 1 | Demographic and clinical characteristics of the participants in eight studies included in the meta-analysis.

Study Subjects, n (female, n) Age, years Diabetes duration, years HbAlc% BMIkg/m2 Comorbidity (number of patients)

T2DM HC T2DM HC

Yau et al. (30) 24 (11) 17 (9) 57.2 56.4 7.9 7.8 32.1 Hypertension (16)
Yau et al. (15) 18 (N/A) 18 (N/A) 16.5 17.2 2.6 8.3 37.7 Obesity (18)

Hypertension (5)
Kim et al. (34) 20 (11) 20 (11) 54.6 54.3 12.1 10.7 24.7 Diabetic retinopathy (9)

Diabetic nephropathy (4)
Diabetic peripheral nephropathy (7)

van Bloemendaal et al. (61) 16 (8) 15 (7) 61.4 57.3 7.0 6.9 34.0 Obesity (16)
Nouwen et al. (35) 13 (13) 20 (14) 16.0 16.1 2.6 7.8 N/A N/A
Yoon et al. (36) 100 (50) 50 (25) 49.2 49.0 1.8 7.1 25.5 Overweight/obesity (50)
Liang et al. (62) 34 (24) 32 (14) 58.3 56.3 6.9 7.9 24.4 Overweight (20)

Obesity (1)
Hypertension (9)

Xiong et al. (32) 20 (12) 28 (18) 63.6 59.7 9.1 8.2 24.4 Mild cognitive impairment (20)
May
T2DM, type 2 diabetes mellitus; HC, healthy controls; N/A, not available; BMI, body mass index.
TABLE 2 | Scanning methods and FA alterations of the eight studies included in this meta-analysis.

Study Scanner Diffusion
encoding
directions

Type of
analysis

Statistical threshold Number of
coordinates

FA alterations

Yau et al. (30) 1.5 T 6 VBA P < 0.005, uncorrected 6 Decrease observed in L temporal stem, R prefrontal region, L frontal
temporal region, R external capsule, L parietal region, and L middle
temporal region

Yau et al. (15) 1.5 T 6 VBA P < 0.005, uncorrected 3 Decrease observed in R cingulate WM, L cerebral peduncle, and L
temporal stem

Kim et al. (34) 3.0 T 30 TBSS P < 0.05, FWE corrected 10 Decrease observed in bilateral posterior thalamic radiation, R
retrolenticular part of internal capsule, R splenium of CC, R fornix
(cres)/stria terminalis, R sagittal stratum, R external capsule

van Bloemendaal
et al. (61)

3.0 T 30 TBSS P < 0.05, FWE corrected 0 –

Nouwen et al. (35) 3.0 T 61 TBSS P < 0.05, TFCE corrected 9 Decrease observed in L CST, medial corpus callosum, L fornix, L
thalamic radiation, L retrolenticular internal capsule, L IFOF, R anterior
corona radiata, the genu of CC, L uncinate, L callosal body and
cingulum, L anterior external capsule, and uncinate fasciculus

Yoon et al. (36) 1.5 T N/A VBA P < 0.05, corrected 22 Decrease observed in L fornix sagittal stratum, L IFOF, L uncinate
fasciculus, bilateral CST, CC, bilateral anterior thalamic radiation
fornix, R superior corona radiata, bilateral cerebellar WM, bilateral
forceps minor, bilateral optic radiation, bilateral anterior corona
radiata, L external capsule, R parietal WM, and R temporal WM

Liang et al. (62) 3.0 T 25 VBA P < 0.05, AlphaSim
corrected

1 L corona

Xiong et al. (32) 3.0 T 25 TBSS P < 0.05, FWE corrected 1 R temporal lobe
CC, corpus callosum; CST, corticospinal tract; FA, fractional anisotropy; FWE, family-wise error; IFOF, inferior fronto-occipital fasciculus; N/A, not available; L, left; R, right; T, Tesla; TBSS,
tract-based spatial statistics; TFCE, threshold-free cluster enhancement; VBA, voxel-based analysis; WM, white matter.
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which pass through the temporal lobe, such as IFOF and ILF (33, 36,
54). Besides, some fibers of IFOF and UF are located in the external
capsule, which associates the hippocampus and amygdala with
prefrontal and orbitofrontal cortices (54, 65). Previous studies
Frontiers in Endocrinology | www.frontiersin.org 6
already indicated that atrophy in temporal lobe, hippocampus,
and orbitofrontal regions occurred in T2DM (2, 13, 54), and also
evidence has shown that atrophy in these areas is one of the earliest
neuroanatomical changes in Alzheimer’s dementia (2, 36, 53).
FIGURE 2 | Regions showing FA reductions in (A) the left inferior network; (B) the corpus callosum; and (C) the left olfactory cortex. Significant clusters are overlaid
on MRIcron template for Windows for display purposes only.
TABLE 3 | White Matter Regions of FA reductions in T2DM Patients compared to healthy controls in the coordinate-based meta-analysis.

Regions Maximum Cluster Jackknife sensitivity
analysis

MNI
coordinates

SDM
Value

P Number
of

voxels*

Breakdown (number of voxels)

X Y Z

Left inferior network, inferior
fronto-occipital fasciculus

−38 −16 −10 −2.279 0.000032604 97 Left inferior network, inferior fronto-occipital fasciculus (28)
Left inferior network, inferior longitudinal fasciculus (20)
Anterior commissure (8)
Left inferior network, uncinate fasciculus (7)
Left insula, BA 48 (2)
Left amygdala, BA 34 (1)
Left superior temporal gyrus, BA 48 (1)
BA 48 (20)
BA 34 (3)
BA 36 (3)
BA 20 (3)
BA 21 (1)

7/8

Corpus callosum 14 −34 32 −2.107 0.000091314 55 Corpus callosum (46)
Right median network, cingulum (9)

7/8

Left olfactory cortex, BA 25 -4 20 4 −1.999 0.000228226 28 Corpus callosum (12)
Left striatum (9)
Left caudate nucleus, BA 25 (3)
Left olfactory cortex, BA 25 (3)
BA 25 (1)

6/8
May 2021 | Volum
*All voxels with P < 0.001 uncorrected.
BA, Brodmann area; FA, fractional anisotropy; MNI, Montreal Neurological Institute; SDM, seed‐based d mapping; T2DM, type 2 diabetes.
TABLE 4 | Correlation between FA alterations and BMI in T2DM revealed by Meta‐regression analyses.

Factor Anatomic label MNI coordinates SDM Value P Number of voxels

X Y Z

BMI Corpus callosum 14 −32 30 −2.390 0.000045657 58
e

BMI, body mass index; FA, fractional anisotropy; MNI, Montreal Neurological Institute; SDM, seed‐based d mapping; T2DM, type 2 diabetes.
12 | Article 658198
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Among the eight studies included in ourmeta-analysis, four of them
reported microstructural abnormalities in temporal regions. Given
that the vital role that the temporal lobe, the hippocampus, and the
orbitofrontal cortex play in cognitive processes such as learning,
memory, and decision making (66, 67), we conjectured that
disruptions of WM in IFOF, ILF, and UF might be related with
cognitive function deficits in T2DM patients. Besides,
the comorbidity of depression and T2DM is quite common (18–
21), and disrupted WM connectivity in inferior network has also
been constantly found in MDD patients (29, 68, 69). Thus,
microarchitecture alterations in the inferior network might also
underlie potential affective changes in T2DM.

The CC is the largest interhemispheric WM commissure
connecting the cerebral hemispheres, and plays crucial role in
interhemispheric communication and cognitive processes (70).
Microstructural changes in this core WM tract were found not
only in T2DM patients in numerous research (34–36, 38, 54), but
also in patients with cognitive impairment (38, 71, 72) and patients
with MDD (29, 68, 73, 74). Therefore, decreased FA in the CC
observed in our meta-analysis may underlie the deficits in cognitive
processing and emotional modulation in patients with T2DM.
Besides, there was a negative correlation between FA in the CC
and BMI in T2DM patients revealed by meta-regression analysis.
This was consistent with previous findings that higher BMI was
associated with FA reductions in the CC in healthy cohorts (75, 76).
There were DTI studies on BMI-related WM abnormalities
suggesting a primordial effect of BMI on brain circuits involved in
reward processing and emotion regulation (77), or even on the entire
brain (75). Furthermore, there was evidence that alterations in white
matter were associated with several obesity-related conditions such as
cardiovascular risk factors including metabolic syndrome (78).
Therefore, our finding might suggest disrupted CC microstructures
as an BMI-related neurobiological marker of T2DM. The other WM
tracts showed non-significant regression results, probably due to a
relatively strict P-value in the process of statistics. Neurologic changes
in the left inferior network and the left olfactory cortex might also be
associated with metabolic syndrome related symptoms and these
regions should receive full considerations.

It is particularly noteworthy that the left olfactory cortex
exhibited decreased FA in T2DM patients. Current evidence
implied that olfactory function is associated with the emergence of
prodromal AD (79, 80). Scholars assumed that olfactory
impairments might reflect the onset of AD, amnestic mild
cognitive impairment (MCI), and the presence of amyloid-b (Ab)
and tau pathology (79, 81–86). Thus, FA reductions in the left
olfactory cortex might be served as an early prediction of cognitive
impairment in T2DM patients. This was of great significance for
early detection of potential cognitive decline and dementia in T2DM
patients.Moreover, olfactory functionwas also found to be related to
the pathogenesis of MDD (87). Olfactory sulcus structural
abnormality might be a trait-related marker of vulnerability to
MDD (88). In consideration of the high prevalence of
comorbidity of depression and T2DM, olfactory cortex alterations
might be involved in the pathophysiology of the co-morbidity.

Several limitations of this study should be noted. Firstly, as
the number of studies included in our meta-analysis was small,
Frontiers in Endocrinology | www.frontiersin.org 7
we were not able to perform separate subgroup meta-analyses for
clinical variables such as cognition status, depression severity,
and BMI, or methodological differences such as VBA and TBSS,
which would likely diversify the results. Secondly, the data
acquisition parameters, participants characteristics and clinical
variables in the included studies were heterogeneous. It is not
possible to eliminate these differences by statistical means.
Thirdly, our analysis was limited to WM diffusion changes
thereby not including the large amount of research on GM
volume or WM volume. Future meta-analysis could include
VBM studies for a more comprehensive perspective of the
brain microarchitecture. Last but not least, it is meaningful to
work on the reversibility of nerve damage, but the present meta-
analysis and the literatures included in our research are all cross-
sectional design. Longitudinal studies with respect to reversibility
of the neurodegeneration of T2DM is of great importance and
should be addressed in the future.
CONCLUSION

The present meta-analysis indicated that T2DM patients
demonstrated significant FA reductions in the left inferior
network, the CC and the left olfactory cortex. Among them,
FA of the CC had a negative correlation with BMI in the patients
group. These findings supported the opinion that T2DM could
lead to subtle WM structural alterations, which might be
associated with cognitive deficits or emotional distress in
T2DM patients. This helps us better understand the neural
mechanism underlying neurodegeneration in T2DM.
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