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Abstract

Subject motion has long since been known to be a major confound in functional MRI studies of the human brain. For
resting-state functional MRI in particular, data corruption due to motion artefacts has been shown to be most relevant.
However, despite 6 parameters (3 for translations and 3 for rotations) being required to fully describe the head’s motion
trajectory between timepoints, not all are routinely used to assess subject motion. Using structural (n = 964) as well as
functional MRI (n = 200) data from public repositories, a series of experiments was performed to assess the impact of using a
reduced parameter set (translationonly and rotationonly) versus using the complete parameter set. It could be shown that the
usage of 65 mm as an indicator of the average cortical distance is a valid approximation in adults, although care must be
taken when comparing children and adults using the same measure. The effect of using slightly smaller or larger values is
minimal. Further, both translationonly and rotationonly severely underestimate the full extent of subject motion;
consequently, both translationonly and rotationonly discard substantially fewer datapoints when used for quality control
purposes (‘‘motion scrubbing’’). Finally, both translationonly and rotationonly severely underperform in predicting the full
extent of the signal changes and the overall variance explained by motion in functional MRI data. These results suggest that
a comprehensive measure, taking into account all available parameters, should be used to characterize subject motion in
fMRI.
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Introduction

Subject motion has long since been known to be a major

confound in functional MRI studies of the human brain [1]. For

resting-state functional MRI (rsfMRI) and functional connectivity

analyses in particular, even minimal motion was recently found to

be highly problematic [2–5]. Both prospective [6–8] and

retrospective approaches [9,10] to motion correction have been

suggested, but the most commonly-used approach still is retro-

spective ‘‘motion correction’’ by using a rigid-body translation

[11,12]. However, even after such a procedure, motion still

explains substantial variance in the data [1,14,15]. Motion

correction (a.k.a. realignment) is usually performed using the first

(or mean) image of a dataset as the reference, providing a measure

of absolute motion over a functional run [16]. However, it was

suggested that the scan-to-scan (relative) motion may be more

relevant, as slow motion may be both easier to correct and less

detrimental to data quality [17]. As the thus-detected extent of

subject motion is commonly used to identify and remove bad

datasets (‘‘motion scrubbing’’ [4,18,19]), accurately describing

motion is most important.

During realignment, the aim is to find the combination of

parameters that minimizes the difference between consecutive

images, which may be defined using different cost functions [20].

The result of this rigid-body approach to motion correction is a set

of 6 parameters. It is important to notice that these parameters are

jointly optimized to achieve a final result; hence, only in their

combination do they fully describe the motion trajectory detected

by the realignment algorithm. However, assessing subject motion

is only straightforward in the case of translations, which is

described by 3 parameters (one for each dimension in space) and is

provided in millimeters [mm]. In contrast to this, the assessment of

subject rotation, (again described by 3 parameters but provided in

degrees or radians), requires knowledge about the distance from

the origin around which rotation was performed; only then are

degrees/radians convertible to an absolute distance. It was

suggested previously that the length of the vector resulting from

these 6 transformations in space is an appropriate representation

of subject motion ([15,21,22]; see Figure 1 for an illustration). This

requires a definition of ‘‘at what distance’’ this motion is assessed,

which may be the corner of the volume [22], set empirically (to 50

[4] or 65 mm [21]) or calculated individually [15]. This obstacle
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likely is responsible for many researchers qualifying ‘‘subject

motion’’ by only inspecting absolute/relative translation, often

applying a rule-of-thumb of ‘‘motion exceeding one voxel size’’

[12,13,23,24]. As using only a subset of the complete realignment

parameter set may systematically under- or overestimate motion

and its effects, this study was aimed at addressing the following

questions: I) what is a representative measure of cortical distance,

and what is the effect of modifying it; II) to what extent does the

isolated assessment of translationonly or rotationonly reflect true

subject motion, as defined by total displacement; III) to what

extent does the isolated assessment of translationonly or rotationonly

affect data scrubbing procedures, i.e., when setting thresholds of

acceptable subject motion; IV) to what extent does the isolated

assessment of translationonly or rotationonly predict signal changes

in the data; and V) to what extent does the isolated assessment of

translationonly or rotationonly explain variance in the data, when

compared with the complete assessment. This manuscript was not

aimed to address these issues in such a way that solutions are

presented, but rather to explore the presence, and potentially the

magnitude, of the problem.

Methods

To address the research questions posited above, both structural

and functional MRI data was obtained from public data

repositories. Structural MRI data was obtained from children

(MRI dataset 1; The NIH study on normal brain development;

n = 401 [25]) and adults (MRI dataset 2; IXI Study; n = 563 [26]);

details of both datasets are described in Table 1 and are given in

the Supplements S1 and S2. Functional MRI data (resting-state

fMRI series) from adults was obtained by randomly picking 20

subjects each from 10 randomly selected participating sites’

datasets from the fcon_1000 project (MRI dataset 3; n = 200

[27,28]); details of this dataset are described in Table 2 and are

given in the Supplement S3. All data processing steps and analyses

were carried out in Matlab (version 8.2, The Mathworks, Natick,

MA, USA), using custom scripts and functions as well as

functionality provided within the SPM8 software package (Well-

come Trust Centre for Neuroimaging, University College London,

UK). For all calculations, a 7th order B-spline interpolation was

used whenever possible [29] in order to avoid interpolation

artefacts [30].

Figure 1. Illustration of the non-linear effects of combining translations (top row) and rotations (bottom row) into a single measure
of total displacement (resulting gray arrow in the Cartesian coordinate system, middle). The values provided are only examples. Note
that in this example, all displacements are additive, which is not always the case (see manuscript for more details). Note: davg is a measure of the
average cortical distance, required to transform rotations to absolute distances.
doi:10.1371/journal.pone.0106498.g001
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Experiment 1
The first experiment was aimed to address question I, what is a

representative measure of cortical distance, and what is the effect

of modifying it. For this experiment, MRI datasets 1 & 2 were

used. The starting point here was the previously-suggested

measure of average cortical distance [15,21]. This indicator aims

to provide a single number (distance from rotation origin) for

which rotation can be converted to an absolute distance ([15,21];

cf. Figure 1). In the motion fingerprint algorithm, it is calculated

from each dataset individually [15], whereas in a commonly-used

toolbox to assess motion effects in fMRI timeseries [31], this value

is set empirically to 65 mm. While it is unclear as to whether this

value is representative for a normal adult population, the situation

is even less clear in the setting of developing brains, where

substantial changes occur [25,32–34]. To this effect, the combined

structural MRI dataset of children and adults (total n = 964) was

segmented into tissue classes using the unified segmentation

approach implemented in SPM8 [35]. To rule out partial volume

effects of different voxel sizes, the resulting native space gray

matter tissue partitions were resliced to 16161 mm isotropic

resolution. Thereafter, all voxels on the outer cortical surface were

identified and their absolute distance (in mm) to the image

volume’s point of origin was determined using a 3D extension of

Pythagoras’s theorem, as done before [15], yielding the Euclidian

norm. These values were averaged, resulting in one value (average

cortical distance, davg) for each subject. These were then plotted

according to age (in month at the time of data acquisition), and

correlations with age were assessed as described below. Further,

the effect of a difference in davg was investigated by modifying it in

steps of.5 mm within a range of 50–80 mm as different values are

used in the literature [4,15,31]. These values were then used to

recalculate total displacement as well as scan-to-scan displacement

(absolute and relative motion, respectively; see also below), for all

subjects, using the results from davg = 65 mm as a reference.

Experiment 2
The second experiment was aimed to address question II, to

what extent does the isolated assessment of translationonly or

rotationonly reflect true subject motion, as defined by total

displacement. To this effect, MRI dataset 3 was used (resting

state fMRI series, n = 200). Initially, a rigid-body realignment

procedure was performed [11] as implemented in SPM8. Total

displacement was calculated from the realignment parameters, as

described above. Here, the spatial trajectory that minimizes the

Table 1. Core characteristics of dataset 1 and 2 (structural MRI).

Dataset Center Subjects [n] Voxel size [mm3] Sex [M/F] Ages [min-max]

Dataset 1 (NIH) East 126 1.326.61 61/65 4–17

West 126 1.606.48 62/64 4–18

Midwest 149 1.436.62 69/80 4–18

Total Sample: 401 1.456.59 192/209 10.663.48

Dataset 2 (IXI) Guy’s 313 1.0256.002 137/176 20–88

IOP 70 1.02560 24/46 20–81

Hammersmith 180 1.02560 87/93 20–86

Total Sample: 563 1.0256.002 248/315 48.6616.46

All data was acquired on scanners with a field strength of 1.5 Tesla, except for the Hammersmith Hospital data. Note that age is provided in years here, but was
converted to ‘‘months at date of scan’’ for all calculations. Guy’s, Guy’s Hospital, London; IOP, Institute of Psychiatry, London; Hammersmith, Hammersmith Hospital,
London. For more information on these datasets, see also Supplements S1 and S2.
doi:10.1371/journal.pone.0106498.t001

Table 2. Core characteristics of dataset 3 (resting state functional MRI).

Dataset Center TR [msec] Slices [n] Volumes [n] Sex [M/F/U] Ages [min-max]

Dataset 3 (fcon_1000) Atlanta, GA, USA 2000 20 205 6/14/1 22–54

Baltimore, MD, USA 2500 47 123 7/13/0 20–40

Bangor, UK 2000 34 265 20/0/0 19–38

Beijing, China 2000 33 225 11/9/0 18–25

Berlin, Germany 2300 34 195 12/8/0 23–44

Cambridge, MA, USA 3000 47 119 3/17/0 18–24

Cleveland, OH, USA 2800 31 127 8/12/0 24–57

Dallas, TX, USA 2000 36 115 11/9/0 20–71

ICBM, Montreal, Canada 2000 23 128 10/10/0 19–85

Leiden, Netherlands 2180 38 215 16/4/0 20–27

104/95/1 30.67613.43

From each center, 20 subjects were selected at random (total n = 200); all data was acquired on scanners with a field strength of 3 Tesla. Note that age is provided in
years here, but was converted to months at date of scan for all calculations. M, male; F, female; U, unknown. For more information on this dataset, see also Supplement
S3.
doi:10.1371/journal.pone.0106498.t002
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difference between the images and thus ‘‘corrects for’’ the

individual subject’s head motion is effectively recreated from the

parameter set. From these 6 values, a vector in space is

determined, the length of which (a.k.a. the Euclidian norm of

the resulting 3-dimensional vector [22]) describes total displace-

ment ([15,21]; cf. Figure 1). The motion fingerprint algorithm [15]

was used to assess absolute motion (total displacement, relative to

the first volume) as well as relative motion (scan-to-scan

displacement, relative to the previous volume) at the average

cortical distance (davg), here derived from the functional images.

First, the original realignment parameters (6 parameters) were

used; thereafter, values for either translation or rotation were set to

0, and calculations were repeated. This results in three displace-

ment datasets (complete assessment [used as reference], transla-

tiononly, and rotationonly) and two resulting indicators (absolute

and relative motion).

Experiment 3
The third experiment was aimed to address question III, to

what extent does the isolated assessment of translationonly or

rotationonly affect data scrubbing procedures, when compared with

the complete assessment dataset. This was explored by setting

thresholds of acceptable subject motion, as done routinely in fMRI

studies [4,12,13,19,24]. To this effect, cutoff values of.5/1/1.5/2/

2.5/3 mm admissible motion were applied, again for both

absolute and relative motion. Absolute and relative total displace-

ment was calculated from the complete (used as reference) as well

as the reduced (translationonly, and rotationonly) parameter sets.

The number of datapoints exceeding these cutoff values was

recorded and, for the reduced assessments, was related to the

results from the complete assessment.

Experiment 4
The fourth experiment was aimed to address question IV, to

what extent does the isolated assessment of translationonly or

rotationonly induce signal changes in the data. This was explored

by again using the complete set of realignment parameters as well

as the two reduced parameter sets (translationonly or rotationonly) to

recreate the subject’s motion in a phantom timeseries. This

timeseries is created by copying the first image in the timeseries n
times and by then applying the inverted motion parameters from

the n images to them (while simultaneously accounting for motion

* B0 effects; [36]); this allows to assess the signal changes occurring

as a function of motion. These signal changes are derived from 9

Figure 2. Illustration of the average cortical distance of all subjects in datasets 1 & 2 (structural MRI, n = 964). Note steep increase in
childhood and adolescence (dataset 1, solid trendline in upper panel) and much more shallow increase in adulthood (dataset 2, dashed trendline in
upper panel). Lower panel: illustration of the same results per decade of life. The difference between datasets 1 & 2 and of the first two decades with
all other decades is significant (see manuscript for more details).
doi:10.1371/journal.pone.0106498.g002
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automatically-derived regions of interest in the brain [15,37];

briefly, these are individually determined to be at the interface of

brain and non-brain near the 8 corners of the image volume, as

well as in the center of the brain. For this analysis, an average of

the (absolute) timecourses from all 9 regions was used. The signal

changes observable as a result of applying the reduced parameter

sets were then again related to the changes resulting from applying

the complete parameter set.

Experiment 5
The fifth experiment was aimed to address question V, to what

extent does the isolated assessment of translationonly or rotationonly

explain variance in the data, when compared with the complete

assessment parameter set. To this effect, different combinations of

the reduced and complete assessment parameter sets were used as

explanatory variables in a series of general linear model analyses

(GLM [38]). The following parameter combinations were assessed:

all realignment parameters from the complete assessment

(rpscomplete), all realignment parameters from the translationonly

assessment (rpsto), and all realignment parameters from the

rotationonly assessment (rpsro). For comparison purposes and

following up on the results from experiment 4 (see below), the

motion fingerprint (3 original and 3 traces, shifted back in time by

one timepoint) from the complete assessment (mfpcomplete) as well

as from both reduced assessments (mfpto and mfpro) was also

included. These GLM-analyses were performed for every func-

tional series in dataset 3. Thereafter, an omnibus F-test was used to

assess the amount of variance explained by a given set of

parameters [1,15,34]. It should be noted that this experiment is

aimed to explore the relation of the variance explained by the

complete and the reduced parameter sets; it is not aimed to

exhaustively of formally compare the explanatory power of either

approach. As a reference, the complete assessment set including

two modifications (known as ‘‘Volterra expansions’’) was used; to

this effect, the original 6 realignment parameters were shifted back

in time, and squared versions of each parameter were included,

resulting in 24 parameters [1,17]. This modified set was recently

shown to explain the largest amount of variance in the data [15]

and is therefore used as a reference (i.e., is set to 100%). Possible

effects of loss of detection power [39,40] and the fact that more

parameters will by default explain more variance were not

considered here.

Statistics
Owing to considerations regarding non-linear interactions

between parameters and non-normally distributed data, statistical

comparisons were done using the non-parametrical Mann-

Whitney-U-Test. Correlations were likewise assessed using Spear-

Figure 3. Illustration of the effect of varying average cortical distance on the resulting measure of absolute (total displacement,
upper panel) and relative motion (scan-to-scan displacement, lower panel) in dataset 3 (n = 200), using 65 mm as a reference. Note
systematic, but overall small effect, and substantial variability between subjects, underlining the inter-individual variation in ultimate motion
trajectory composition.
doi:10.1371/journal.pone.0106498.g003
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man’s rank correlation. In order to avoid being vulnerable to the

impact of unequal variances, heteroscedasticity was assessed using

Henze-Zirkler’s multivariate normality test, as implemented in the

robust correlation toolbox [41]. In the presence of inhomogeneous

variances, a skipped Spearman’s correlation was calculated

instead. Bootstrapped confidence intervals (CI) are given, provid-

ing further evidence that the correlation is not due to outliers

alone. Significance was assumed at p#.05, Bonferroni-corrected

for multiple comparisons where appropriate.

Results

Experiment 1
When assessing the average cortical distance davg in the

structural MR images in dataset 1 and 2, it is apparent that there

is a clear developmental trend in childhood & adolescence

(Figure 2), with davg increasing significantly with age (increase

of.18 mm/year of age; skipped Spearman’s r = .367 with

CI = [.285–.452], p#.001). Interestingly, there is a further increase

in adulthood across the age range studied, but the slope is much

less steep (increase of.015 mm/year of age; skipped Spearman’s

r = .1508 with CI = [.075–.232], p#.001; Figure 2). When com-

paring the two datasets, there is a significant difference in davg in

dataset 1 (children & adolescents, median = 61.58 mm) vs. dataset

2 (adults; median 64.95 mm; corrected p#.001, Mann-Whitney-

U-Test), as well as between the datasets from the first and second

vs. all other decades (corrected p#.05, Mann-Whitney-U-Test).

The impact of systematically varying davg on both absolute and

relative motion is illustrated in Figure 3.

Experiment 2
When comparing total displacement resulting from the com-

plete assessment parameter set with the isolated assessment of

translationonly, it is apparent that the whole extent of subject

motion is severely underestimated, for absolute (median = 72.3%,

range 31.5–275.9) as well as for relative motion (median = 81.9%,

range, 54.1–102.9; Figure 4). For both cases, this is significantly

different from the complete parameter set (set to 100%; corrected

p#.001, Mann-Whitney-U-Test). A similar picture emerges when

assessing total displacement resulting from rotationonly (absolute

motion, median = 68.5%, range, 13.8–279.4; relative motion,

median = 68.4%, range, 20.2–108.4). Again and for both cases,

this is significantly different from the complete parameter set (set to

100%; corrected p#.001, Mann-Whitney-U-Test).

Figure 4. Illustration of estimated subject motion in dataset 3 (n = 200) for the two reduced parameter sets (translationonly, top
panels, and rotationonly, bottom panels), for both indicators (total displacement, left panels, and scan-to-scan displacement, right
panels). Note severe underestimation of total subject motion when compared with the full parameter set ( = 100%).
doi:10.1371/journal.pone.0106498.g004
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Experiment 3
When introducing a cutoff value to remove datapoints with

unacceptable motion, both isolated assessments discard substan-

tially less datapoints when compared with the results using the

complete parameter set (Table 3). The effect initially becomes

more pronounced at higher thresholds such that, on average,

,31% (absolute motion) and ,52% (relative motion) less voxels

are discarded at a lower threshold (.5 mm), but ,72% (absolute

motion) and ,77% (relative motion) less at a higher threshold

(2 mm). Interestingly, the pattern reverses at the highest threshold

(absolute motion, cutoff of 3 mm), such that the isolated

assessment of both translationonly and rotationonly discard more

datapoints then when using the complete parameter set.

Experiment 4
When assessing the signal changes induced in the functional

series in dataset 3 by re-applying the complete as well as the

reduced parameter sets to a phantom timeseries, it is again

apparent that there is no linear cause-effect relation (Figure 5).

When assessing the signal changes induced by translationonly, there

is a notable increase in the observable signal changes over all

subjects (median = 124.17%, range, 49.18–664.92). In contrast to

this, the single changes induced by the rotationonly approach are

substantially lower, albeit again with a wide spread (medi-

an = 71.98%, range, 4.68–627.86). For both cases, the difference

is significant, as is the difference between the results from the two

reduced parameter sets (all corrected p#.001, Mann-Whitney-U-

Test).

Experiment 5
When assessing the variance explained in the functional series

by the complete as well as the reduced parameter sets, it is

apparent that all complete and reduced parameter sets explain

substantially and significantly less variance than the reference,

Volterra-expanded complete parameter set (set to 100%; all

corrected p#.001, Mann-Whitney-U-Test; Figure 6). Further, the

differences between the complete and the reduced realignment

parameters sets also reach significance (corrected p#.001, Mann-

Whitney-U-Test). Interestingly, the difference between the com-

plete and the reduced motion fingerprint parameter sets is much

lower and does not reach significance.

Discussion

This technical note was aimed at addressing the question of how

well the effects of subject motion can be predicted when using a

reduced parameter set (such as translationonly).

The first experiment was aimed at assessing whether a

representative value of the average cortical distance (davg) could

be derived from MRI data of both children and adults, to allow for

the conversion of rotations into an absolute distance. As could be

expected [25,33], there is a clear developmental trend in children

and adolescents, with a significant increase in davg (Figure 2).

However, this finding is not as trivial as it may sound as brain size

does not change substantially anymore [42] and linear scaling

during spatial normalization does not correlate with age, in the age

range studied [43]. Hence, global and local changes in tissue

volume and shape as well as in gyrification could be to blame, with

evidence for simultaneous progressive and regressive trends in

either [32,33,44,45]. The correlation of this distance parameter

with age is actually also significant over the whole cohort in adults,

but with a rather shallow slope and a low amount of explained

variance. However, it is interesting to note that this correlation is

likely brought about by an increase at the older end of the age
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spectrum, most prominently when comparing the 8th and the 9th

decade (Figure 2), although it must be admitted that the individual

numbers are small here. It is well known that local and global

atrophy as well as changes in gyrification are also hallmarks or

normal ageing [46–48]. One explanation for these two, seemingly

contradictory observations could be that the predominating,

opposing processes (increases in complexity in youth and cortical

atrophy in ageing) lead to the same observable phenomena due to

their impact on cortical morphology. However, it was felt that a

further exploration of the underlying mechanisms was beyond the

scope of this manuscript; hence, no further analyses were carried

out.

When assessing the influence of modifying davg, Figure 3

illustrates that the effect is, as expected, systematic, but surprisingly

small. For example, when using davg = 60 mm instead of 65 mm,

median absolute motion is 97.07% of the original, over all subjects;

similarly, when using davg = 70 mm, it is 103.15%. These

differences are slightly lower (97.69% and 102.50%, respectively),

and less variable, for relative motion. Among the adults included

here, 98.8% were within the range of 60–70 mm, and still 73% of

the children and adolescents. While these median differences are

small, there is a certain variability, which becomes wider when

moving further away from the suggested value of 65 mm. This

increase in variability can only be due to rotations and underlines

that the relation between translations and rotations is highly

individual to each subject, as seen before [23]. Hence, a systematic

bias may indeed result when comparing subjects with a

systematically differing davg, such as children vs. adults, as motion

will either be slightly underestimated in children or slightly

overestimated in adults. On the other hand, these results also

suggest that the magnitude of the imprecision induced by using a

single, empirically derived value of 65 mm [21] will be rather

small, even when assessing a wide range of normal (adult or

pediatric) subjects (cf. Figure 2). Using a single indicator has the

advantage of making results more comparable between subjects

and populations, and it precludes being vulnerable to miscalcu-

lations from the actual data [15], for example when the available

fMRI data only covers part of the brain, as in high-resolution

studies [49,50]. Consequently, this value can be considered to be

both useful and representative.

The second experiment was aimed to address the relation of

subject motion when using the complete parameter set versus

when assessing translation or rotation in isolation. The results

demonstrate that the true extent of subject motion is underesti-

mated by a median of ,20–30% when looking at translationonly or

rotationonly (Figure 4). This effect can be observed for both

absolute and relative motion. Interestingly, motion is not

exclusively underestimated in both reduced parameter sets: while

Figure 5. Illustration of the induced signal changes in dataset 3 (n = 200) for the two reduced parameter sets (translationonly, left
panel, and rotationonly, right panel). Note severe deviation from expected observable signal changes when compared with the signal changes
induced by the full parameter set ( = 100%).
doi:10.1371/journal.pone.0106498.g005
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the median is substantially lower, there are also several datapoints

exceeding 100% in both analyses. This underlines that the relation

of both sets of parameters is not simply additive: accounting for

rotation may mean that the motion estimated from translationonly

is actually reduced, and vice versa. In fact, when assessing the

corresponding dimensions (shifts & rotations in x, y, and z) in the

whole functional MRI dataset, every single subject shows a

substantial number of datapoints with opposite signs between these

two parameters. Specifically, in 16.044 [x], 15.641 [y], and 15.385

[z], respectively, of the 34.340 datapoints [per dimension], a shift

with a positive sign was accompanied by a rotation with a negative

sign, or vice versa. It is therefore important to notice that this

complex interrelation precludes an extrapolation of total motion

from either factor (as in ‘‘total motion<translation * x’’, with x

representing a fixed factor). This further argues for a combined

assessment.

The effect of using a reduced parameter set for quality control

purposes was addressed in experiment 3. As can be seen from

Table 3, substantially fewer datapoints are discarded when

applying a cutoff value in the isolated analyses of translationonly

or rotationonly in almost all scenarios, when compared with using

the full parameter set. However, the effect may actually reverse, as

can be seen at higher thresholds (Table 3, right-most column).

This further underlines the non-linear nature of the interaction of

the two reduced parameter sets and again suggests that using

translationonly or rotationonly to assess data quality in functional

MRI studies is of only limited applicability, and may be

misleading.

In order to assess the effects of motion on the actual fMRI data,

the signal change induced by motion can be estimated by

reproducing motion in phantom timeseries [15]. This was

investigated here in experiment 4, again using the complete

parameter set as the reference for the two reduced sets. It is

interesting to notice that translationonly actually leads to stronger

signal changes in the data, while rotationonly induces significantly

weaker signal changes, when compared with signal changes

induced by the complete parameter set (Figure 5). This again

points toward the non-linear interrelation of both reduced

parameter sets: while they may in some cases be additive, they

may also be subtractive (which, as laid out above, is the case in

,45% of datapoints). It should be noted that the signal changes

resulting from the interaction of the head with the static magnetic

field (motion * B0 interaction [36,51]) are automatically computed

in our motion fingerprint approach. The impact of using a

reduced parameter set on this procedure has not been evaluated

here. Irrespective of the exact contribution of the different sources,

though, these results suggest that the extent of either parameter in

isolation is not reliably predictive of the to-be-expected signal

change in functional MRI data.

When assessing the amount of variance explained by the different

parameter sets in experiment 5, the lower variance explained by the

6 realignment parameters when compared with the Volterra-

expanded version confirms previous results [1,15,17]. However, the

reduced parameter sets (translationonly and rotationonly) explain

significantly less variance again (Figure 6). The difference between

the original motion fingerprint approach and the complete

realignment parameter set is not significant, again in line with

previous results [15]. It is interesting to note, though, that the

variance explained by the motion fingerprint does not change as

much when using the reduced parameter sets. This is likely due to

the fact that, although the reduced parameter sets underestimate

subject motion per se (cf. Figure 4), they may both over- and

underestimate the resulting signal changes (cf. Figure 5). These

discrepancies seem to cancel out to the effect that, overall, the

variance explained in the reduced analyses does not differ

significantly from the original analysis. On a side note and again

Figure 6. Illustration of the variance explained in dataset 3 (n = 200) by different parameter combinations: complete set of
realignment parameters [rps (complete)], realignment parameters from translationonly [rps (to)] and rotationonly [rps (ro)]. Note
increasingly severe underestimation of total motion-induced variance when compared with the full parameter set including Volterra expansion
( = 100%); see text for details.
doi:10.1371/journal.pone.0106498.g006
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confirming previous results [15], the variance explained by a

complete motion fingerprint (9 traces) including shifted versions was

not significantly lower (median = 93.93%, data not shown) than the

variance explained by the reference dataset (Volterra-expanded

motion parameters; [1,17]). Taken together, these results suggest

that either reduced parameter set in isolation does not reliably

predict the variance explained by subject motion in functional MRI

data.

Limitations

For this study, several large datasets were used, providing a

robust assessment of the resulting metrics, but as always, there are

limitations. For one, segmentation of pediatric imaging data

should ideally not be performed using adult reference data [34,52];

in order to allow comparability of results over both (adult &

pediatric) datasets in experiment 1, the potentially resulting

inaccuracies were considered to be secondary. Further, the

isolation of the realignment parameters for translationonly and

rotationonly was done post-hoc, and it could be argued that the

realignment algorithm should be constrained a priori to only

perform motion correction using either in isolation. Alternatively,

a completely synthetic motion effects simulator approach could be

used [51]. On the other hand, the current manuscript investigates

a realistic scenario, and being closer to a real-life setting was

ultimately judged to be more important. It should also be noted

that only one approach to motion correction (the one implement-

ed in SPM8) was used here, while several other implementations

are available, e.g. [20,53–55]; however, this manuscript was aimed

at highlighting the different shortcomings of using a reduced

parameter set to assess subject motion, and the main results are

likely independent of the technical implementation of the

algorithm, and thus generalizable. Also, no fMRI data acquired

in special settings (such as high-motion datasets from patients [17],

tasks involving overt speech [56], or data from children [15]) was

investigated here. In fact, no dataset using task-based functional

MRI was investigated here, which disallows assessing the impact of

using different strategies on the resulting statistical maps; however,

this was done before [1,15,17,19,54]; besides, using resting-state

fMRI data has the added benefit of avoiding the potential

interaction of task-induced activation with motion correction [23].

Conclusions

Subject motion is ‘‘corrected for’’ by using a rigid body

procedure, which is described in full only by all 6 translation and
rotation parameters. The results presented here suggest that these

two reduced parameter sets (translationonly and rotationonly) can be

combined in a meaningful way, using 65 mm as a representative

and useful approximation of the average cortical distance. The

thus-resulting total displacement cannot be reliably approximated

using either reduced parameter set. Therefore, motion censoring

procedures relying on a reduced parameter set do not seem

appropriate, and both signal changes induced and variance

explained by subject motion are severely underestimated. Conse-

quently, a comprehensive measure, taking into account all

parameters, should be used to characterize subject motion in

fMRI.
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