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Abstract: Experimental evidence accumulated by our research group and others strongly suggests
that (–)-xanthatin, a xanthanolide sesquiterpene lactone, exhibits anti-proliferative effects on human
breast cancer cells (in vitro) as well as anti-tumor effects in experimental animals (in vivo). In
cancer biology, it is now critically important for anti-cancer agents to selectively target cancer stem
cells (CSCs) in order to overcome cancer therapeutic resistance and recurrence. However, it has
not yet been established whether (–)-xanthatin abrogates the formation of breast CSCs. In the
present study, we utilized chemically synthesized pure (–)-xanthatin and a culture system to obtain
mammospheres from human breast cancer MCF-7 cells, which are a CSC-enriched population. We
herein demonstrated for the first time that (–)-xanthatin exhibited the ability to kill mammospheres,
similar to salinomycin, an established selective killer of CSCs. A possible anti-proliferative mechanism
toward mammospheres by (–)-xanthatin is discussed.
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1. Introduction

(–)-Xanthatin (Figure 1A), isolated from Xanthium strumarium L. (cocklebur), is a nat-
urally occurring exo-methylene lactone group-containing compound. Cocklebur seeds
can be squeezed to provide dietary oil in China, which is similar to safflower oil on the
basis of its high content of linoleic acid [1,2]. In addition, X. strumarium is known to be a
traditional herbal medicine (i.e., Cang Er Zi) in oriental countries. In recent years, experi-
mental evidence has strongly suggested that (–)-xanthatin is an effective anti-proliferative
molecule for a wide variety of cancer cells (in vitro) as well as an anti-tumorigenic molecule
for in vivo cancer models [3–12]. Thus, (–)-xanthatin is attracting attention as a modality
(a possible lead compound for cancer therapy) for the treatment of cancers. However,
X. strumarium only produces trace amounts of the exo-methylene lactone compound. In or-
der to further investigate and clarify the biological effects of (–)-xanthatin in cancer biology,
it is important to obtain chemically synthesized pure (–)-xanthatin, not crude extracts. We
originally developed a method for the total synthesis of (–)-xanthatin [13,14].

Growth arrest and DNA damage-inducible 45 (GADD45) family genes are known
as critical stress sensors that mediate many cellular functions, including DNA repair, cell
cycle control, and apoptosis [15]. Among the GADD45 family members, GADD45G is
a functional tumor suppressor gene that is inactivated in different types of cancer cells,
including breast cancer [16]. We reported that (–)-xanthatin abrogated the proliferation of
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highly aggressive breast cancer MDA-MB-231 cells via mechanisms involving (i) Topoiso-
merase IIα (Topo IIα) catalytic inhibition (i.e., accumulation of DNA damage) and (ii) the
production of reactive oxygen species (ROS), which result in the re-activation of GADD45G
expression; thus, (–)-xanthatin may be a selective inducer of GADD45G [3,4].
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(–)-xanthatin (upper left panel), etoposide (upper right panel), or salinomycin (0.025, 0.1, 1, 2.5, 10, 

and 25 µM) (lower panel) for 48 h, and cell viability was assessed. Data are presented as the mean ± 

S.E. (n = 6) percentage of the vehicle-treated control. 
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Figure 1. Effects of (–)-xanthatin, etoposide, and salinomycin on the viability of MCF-7 cells. (A) The
chemical structure of (–)-xanthatin is shown. (B) MCF-7 cells (adherent) were treated with vehicle,
(–)-xanthatin (upper left panel), etoposide (upper right panel), or salinomycin (0.025, 0.1, 1, 2.5,
10, and 25 µM) (lower panel) for 48 h, and cell viability was assessed. Data are presented as the
mean ± S.E. (n = 6) percentage of the vehicle-treated control.

Cancer is a leading cause of death worldwide. Breast cancer, the most common cancer
among women, is known to be a highly heterogeneous disease classified into four molecular
subtypes (i.e., luminal A (the most common molecular subtype among patients), luminal
B, human epidermal growth factor receptor 2-positive, and basal-like), with different
prognoses and treatment responses [17]. Although significant development in cancer
treatment has been seen during the past few decades, chemotherapy is still used to treat
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many types of cancer. In clinical settings, multidrug resistance (MDR) and the resulting
ineffectiveness of chemotherapy drugs are responsible for over 90% of deaths in cancer
patients [18]. Furthermore, the existence of cancer stem cells (CSCs) is considered another
contributor to the failure of chemotherapy [19].

Although many effective anti-breast-cancer agents with different action mechanisms
have been developed, breast cancer obtains phenotypes with the potential for relapse and
resistance to chemotherapy [20–22]. Many researchers have investigated this issue, and
recent studies have shown that cancer cells contain CSCs, a minor subpopulation of cells
that (maybe) mandate the unwanted events described above [21,22]. Breast cancer stem
cells (BCSCs) were initially identified in 2003 [23]. Salinomycin, traditionally used as an
anti-coccidial drug, has been identified as a highly effective and selective abrogator of
BCSCs via the high-throughput screening of ~16,000 compounds [20,21]. BCSCs have been
enriched by the culturing of cells in non-adherent and non-differentiating conditions to
form mammospheres [21]. Mammospheres from human breast cancer MCF-7 cells (luminal
A subtype) may be more easily and reproducibly obtained than MDA-MB-231 cells (basal-
like subtype) [24]. In addition, it currently remains unclear whether (–)-xanthatin activates
the expression of GADD45G in MCF-7 cells, coupled with cell death.

In the present study, we examined the effects of (–)-xanthatin and salinomycin
(a positive control) on the formation of mammospheres derived from MCF-7 cells
and found that (i) (–)-xanthatin reduced the viability of mammospheres more than
salinomycin, (ii) (–)-xanthatin up-regulated the expression of GADD45G in a similar
manner to salinomycin, and (iii) (–)-xanthatin down-regulated the expression of the stem
cell markers (self-renewal regulatory factors) Nanog, Oct4, and Sox2 [25]. We discuss the
possible involvement of GADD45G, which may be negatively engaged in the viability of
mammospheres, in strategies to abrogate these spheres.

2. Materials and Methods
2.1. Reagents

(–)-Xanthatin was completely synthesized based on a previously reported proto-
col [13,14] and was purified by HPLC; its purity (>95%) was confirmed by 1H- and
13C-NMR spectroscopy. Etoposide (purity > 98%) and salinomycin (purity > 97%) were
purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan) and Focus
Biomolecules (Plymouth Meeting, PA, USA), respectively. (–)-Xanthatin was dissolved in
ethanol, and etoposide and salinomycin were dissolved in dimethyl sulfoxide.

2.2. Cell Cultures

The human breast cancer MCF-7 cells were obtained from the American Type Cul-
ture Collection (Rockville, MD, USA). Cell culture conditions (MCF-7 cells: adherent)
and methods were based on previously described procedures [5–7,26]. In brief, MCF-
7 cells were routinely cultured in phenol red-containing minimum essential medium α

(MEMα) (FUJIFILM Wako Pure Chemical Corporation), supplemented with 10 mM 4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 5% fetal bovine serum (FBS),
100 U/mL of penicillin, and 100 µg/mL of streptomycin in a humidified incubator main-
tained at 37 ◦C and 5% CO2.

2.3. Cell Viability Analysis

To determine viability for MCF-7 cells (adherent), cell seeding and chemical treatment
were performed as previously described [5]. After chemical treatment, CellTiter-Glo®

Luminescent Cell Viability Assay (Promega, Madison, WI, USA) was used to determine
viability dependent on ATP availability, according to the manufacturer’s instructions.

2.4. Mammosphere Formation Assay and Chemical Treatment

MCF-7 cells were re-suspended in MammoCult™ Medium (+0.48 µg/mL hydrocor-
tisone and 4 µg/mL heparin) (Stem Cell Technologies, Vancouver, BC, Canada), seeded
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onto an ultralow attachment culture plate (Corning, Acton, MA, USA) at 4 × 104 cells/well,
and incubated for 96 h. Mammospheres were treated with (–)-xanthatin, etoposide, and
salinomycin for the times and at the final concentrations as indicated in each figure legend.
Cell morphology analysis of mammospheres was performed as previously described [5].
Cell viability analysis of mammospheres was performed following the above-described
method (See Section 2.3).

2.5. Preparation of Total RNA and Real-Time Reverse Transcription-Polymerase Chain Reaction
(Real-Time RT-PCR) Analysis

Total RNA preparation and real-time RT-PCR were performed as previously de-
scribed [5,26]. Primers for GADD45G, Nanog, Oct4, Sox2, and β-actin were determined in
the previous studies [5,27]. The GADD45G, Nanog, Oct4, and Sox2 mRNA expression levels
were normalized to that of β-actin.

2.6. Statistical Analysis

Differences were considered significant when p values were less than 0.05. The statisti-
cal significance of differences between the two groups was calculated using Student’s t test.
Statistical significance for comparing more than two groups was determined using ANOVA
with Dunnett’s post-hoc test. These calculations were performed using the StatView 5.0J
software (SAS Institute Inc., Cary, NC, USA).

3. Results

We compared the anti-proliferative effects exerted by (–)-xanthatin and salinomycin
together with etoposide, an established anti-cancer agent that is a Topo IIα poison-type
inhibitor as well as an ROS producer [6,7,28]. As shown in Figure 1B, (–)-xanthatin and
salinomycin induced similar reductions in the viability of MCF-7 cells under adherent
culture conditions (IC50 values: 16.1 and 18.4 µM, respectively) (upper left panel and lower
panel). However, etoposide was shown to be entirely negative, even in the presence of
25 µM, the maximum concentration used (upper right panel). We then investigated the
effects of (–)-xanthatin along with salinomycin and etoposide on the formation of MCF-7
mammospheres. The appearance of mammospheres was inhibited by (–)-xanthatin at
25 µM (Figure 2A). Quantification results indicated that (–)-xanthatin and salinomycin (10
and 25 µM) abolished the viability of MCF-7 mammospheres in a similar manner when
the control incubation was set at 100% (Figure 2B, left panel). Furthermore, similar to
the results shown in Figure 1C, etoposide was a less potent inhibitor for mammospheres
than (–)-xanthatin and salinomycin, even though significant differences were observed
(Figure 2B, right panel). In accordance with the results described above, the inhibition
index, a ratio of cell viability (%), at the indicated concentrations of compounds between
normal MCF-7 cells and mammospheres suggested that (–)-xanthatin and salinomycin,
unlike etoposide, exhibited similar inhibition selectivity for mammospheres; however, the
positive compound salinomycin was slightly more potent (Figure 2C).

Since salinomycin satisfies the conditions of (i) DNA damage induction and (ii) ROS
production, similar to (–)-xanthatin, a GADD45G inducer [5–7,9,15,29,30] (Figure 3A), we
examined GADD45G gene expression in mammospheres treated with (–)-xanthatin and
salinomycin. As expected, (–)-xanthatin and salinomycin significantly up-regulated the
expression of GADD45G to the same extent (~3.5-fold) (Figure 3B), indicating that they
share common pathway(s) to suppress the viability of mammospheres. An inverse rela-
tionship was observed between GADD45G and NF-κB for the control of cancer cell death;
when GADD45G was activated, the other NF-κB-mediated signal was suppressed [31]
(Figure 3A). Previous studies demonstrated that treatment with (–)-xanthatin inhibited
the activity of NF-kB in human gastric carcinoma MKN45 cells [32]. NF-κB-mediated
signaling is known to positively regulate the progression of breast cancer by suppressing
death signals [31,33]; however, Karin’s research group also reported that NF-κB functions
as a critical factor for the self-renewal of mammary tumor-initiating cells [34]. NF-κB has
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been shown to positively regulate three representative transcription factors aggressively in-
volved in the self-renewal of BCSCs (mammospheres) (i.e., Nanog, Oct4, and Sox2) [25,35].
Since salinomycin down-regulates the expression of these three transcription factors in
many lines of cancer stem cells, and based on the findings described above, (–)-xanthatin
may reduce the viability of mammospheres via the GADD45G-mediated abrogation of
NF-κB signaling, resulting in the down-regulation of Nanog, Oct4, and Sox2 in the spheres
(Figure 3A). Thus, we analyzed the expression status of Nanog/Oct4/Sox2 and found that
all were maintained at very low levels following the exposure to (–)-xanthatin (<0.3-fold)
(Figure 4).
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Figure 2. (–)-Xanthatin- and salinomycin-mediated suppression of the viability of mammospheres
derived from MCF-7 cells. (A) Morphology of mammospheres treated with vehicle, 25 µM (–)-
xanthatin, or 25 µM salinomycin for 72 h is shown (representative image). The images were taken
at ×40 magnification. (B) Mammospheres were treated with vehicle, (–)-xanthatin (10 and 25 µM),
salinomycin (10 and 25 µM) (left panels), or etoposide (25 µM) (right panel) for 72 h, and cell viability
was assessed. Data are presented as the mean ± S.E. (n = 3) percentage of the vehicle-treated control.
(C) The inhibition index, which is a ratio (%) of the viability between MCF-7 cells and mammospheres
at the indicated concentrations of chemicals, is shown. When the inhibition index is greater than
1.0, the chemical exhibits the targeted abrogation of the viability of mammospheres. * Significant
differences (p < 0.05) from the vehicle-treated control. N.D., not determined.
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Figure 3. (–)-Xanthatin- and salinomycin-mediated up-regulation of the expression of growth arrest
and DNA damage-inducible 45 gamma (GADD45G) in mammospheres derived from MCF-7 cells.
(A) We reported that (–)-xanthatin has the ability to inhibit Topo IIα as a catalytic inhibitor as well
as produce reactive oxygen species (ROS) associated with the induction of GADD45G in breast
cancer cells [5–7,9,11]. (B) Real-time RT-PCR analysis of GADD45G in mammospheres after 72 h
of the treatment with vehicle, 25 µM (–)-xanthatin, or 25 µM salinomycin. Data are presented as
the mean ± S.E. (n = 3) of the fold induction compared to the vehicle-treated control. * Significant
differences (p < 0.05) from the vehicle-treated control.
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Figure 4. (–)-Xanthatin-mediated down-regulation of the expression of Nanog, Oct4, and Sox2 in
mammospheres derived from MCF-7 cells. Real-time RT-PCR analysis of Nanog (A), Oct4 (B), and
Sox2 (C) in mammospheres after 72 h of the treatment with vehicle or 25 µM (–)-xanthatin. Data are
presented as the mean ± S.E. (n = 3) of the fold induction compared to the vehicle-treated control.
* Significant differences (p < 0.05) from the vehicle-treated control.

4. Discussion

In the present study, etoposide was shown to be inactive as a killer of mammospheres
(Figure 2B,C). Since etoposide inhibits Topo IIα or induces ROS production in cancer
cells [6,7,28], a paradox exists for why the compound was not a killer of the spheres. When
(–)-xanthatin and etoposide were compared from the standpoint of the Topo IIα inhibitory
mode, the former was shown to be a catalytic inhibitor of Topo IIα, while the latter is a
Topo IIα-poison type inhibitor [6,36]. Since the mechanisms used (i.e., Topo IIα catalytic
inhibition vs. Topo IIα poison) to induce DNA damage by Topo IIα inhibition are a key
factor evoking DNA damage responses coupled with GADD45G induction (Figure 3A),
chemicals may need to exhibit the potential for Topo IIα catalytic inhibition, and thus,
salinomycin may be categorized as a potential catalytic inhibitor of Topo IIα.

To date, (–)-parthenolide, which also has the moiety of active exo-methylene lactone
(Figure 1A, (–)-xanthatin), is one of the molecules that has been established to selectively
target human acute myelogenous leukemia stem cells; mechanistically, (–)-parthenolide is
known to utilize NF-κB inhibition and ROS production [37]. If (–)-parthenolide induces
GADD45G, this gene will be a candidate target for the selective abrogation of BCSCs.
Although we did not obtain direct/rational evidence for the participation of GADD45G
induced by (–)-xanthatin and salinomycin in the present study, this is the first study to
demonstrate that (–)-xanthatin exhibits a similar BCSC (mammosphere)-targeting ability
to salinomycin. Clearly, further studies are needed to establish that (–)-xanthatin in the
X. strumarium is a killer of breast cancer.
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5. Conclusions

Although it has been reported that (–)-xanthatin can exert anti-proliferative effects
on breast cancer cells with unknown mechanisms, the findings of this study show that
(–)-xanthatin targets mammospheres, which are enriched in breast cancer stem cells (BCSCs)
derived from the luminal A type MCF-7 cell line (positive for estrogen and progesterone
receptors). Importantly, (–)-xanthatin displayed the killing potential for mammospheres,
comparable to salinomycin, an established killer of BCSCs in experimental settings. It
has been reported by the American Cancer Society that among patients with estrogen
receptor α-positive breast tumors, approximately 50% of recurrences occurred 5 years after
initial diagnosis. In addition to 17β-estradiol-lowering agents, it is necessary to develop
agents targeting BCSCs in clinical situations. These taken together, (–)-xanthatin might be
a candidate molecule for suppression of breast cancer. Further research is warranted on
(–)-xanthatin’s anti-proliferation effects in detail.
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