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Cinnamomum camphora, commonly known as the camphor tree,

an economically and ecologically important aromatic tree species,

has a long history of cultivation and utilization. It is the

representative species of subtropical evergreen broadleaved

forests in eastern Asia and an important raw material for essential

oil production worldwide. The whole camphor tree is rich in

terpenoids, which are widely used in industrial and pharmaceu-

tical applications. According to the main volatile components of

leaf essential oils (LEOs), such as monoterpenes, sesquiterpenes

and diterpenes, camphor trees can be subdivided into five

chemotypes: the borneol, camphor, cineole, linalool and nerolidol

types. However, the genetic bases for the biosynthesis of these

components in camphor trees are not yet well understood. The

camphor tree is a member of the Lauraceae family of Laurales,

which comprises the magnoliids and three other related groups

(Magnoliales, Canellales and Piperales). Despite several available

magnoliid genomes (Chaw et al., 2019; Chen et al., 2019, 2020;

Lv et al., 2020), the evolutionary relationships among magnoliids,

eudicots and monocots remain controversial (Qin et al., 2021).

We herein report the assembly of a high-quality reference

genome for the camphor tree, which helps address the above-

mentioned problems.

The camphor tree is diploid (2n = 24) with an estimated

haploid genome size of approximately 785 Mb, as determined

using 17-mer analysis of 1809 Illumina reads. The genome was

initially assembled by hifiasm v0.13 with 1 267 672 PacBio high-

fidelity long reads (HiFi reads, N50 = 16.1 kb), and further

scaffolding was combined with 122.72 Gb of reads from

chromosome conformation capture. Contigs were anchored

and oriented on 12 pseudochromosomes using 3d-dna, gener-

ating chromosome-level sequences of 670.29 Mb, with a contig

N50 value of 2.41 Mb and a scaffold N50 of 60.19 Mb

(Figure 1a,b). BUSCO analysis showed that the completeness of

the camphor tree genome was 95.2%, and the LTR assembly

index (LAI) also had a high score (18.2), indicating the excellent

continuity of the assembly. The camphor tree genome harbours

361.82 Mb of repetitive sequences, of which long terminal

repeat (LTR) retrotransposons accounted for 27.66% of the

whole genome. The gypsy and copia elements were the

predominant LTRs, occupying 22.56% of the C. camphora

genome, which is between the values for Litsea cubeba

(45.31% in a 1325.69 Mb genome) and Cinnamomum kanehirae

(16.50% in a 730.7 Mb genome).

Through ab initio modelling, protein-based searches and

transcript analysis of long-read isoform sequencing and short-

read RNA sequencing data, a high-confidence set of 29 919

protein-coding gene models (concealing 37 295 protein-coding

transcripts) was predicted by Maker2 in the C. camphora genome

and was located on the 12 pseudochromosomes. Of these

protein homologs in the TrEMBL database, 92.48% and 59.71%

could be assigned Gene Ontology terms. The proteome of these

protein-coding genes was estimated to be 90.8% complete

based on BUSCO analysis, which is slightly higher than the values

for the other two related species, namely, L. cubeba (89.2%) and

C. kanehirae (89%). Six magnoliids share 8276 gene families

containing 18 044 genes, of which 127 families (174 genes) were

unique to C. camphora and were significantly enriched in

ascorbate and aldarate metabolism (9.39E-05), monoterpenoid

biosynthesis (1.40E-04), glutathione metabolism (1.48E-04) and

so on.

The C. camphora genome, with superior contiguity and

reliable annotations compared with the other published Lau-

raceae genomes, shed light on the mysteries of magnoliid

evolution. The 104 strictly single-copy ortholog sets derived from

seven magnoliids, five eudicots, six monocots and two out-group

species were used to reconstruct high-confidence phylogenetic

trees by protein and nucleotide sequence alignments. Similar

topologies strongly support Lauraceae, representing magnoliids

as the sister lineage to eudicots. Using MCMCtree with fossil

calibrations, the separation between C. camphora and C. kane-

hirae was found to have occurred approximately 4.75 Mya, and

the divergence time of magnoliids and eudicots was

~144.26 Mya (Figure 1c). During evolution, 1110 gene families

in the camphor tree underwent expansion, while 1528 gene

families underwent contraction. Intriguingly, 2169 expanded

genes belonging to 163 rapidly evolving families were signifi-

cantly enriched in monoterpenoid biosynthesis (3.90E-17),

spliceosome (4.47E-15) and ABC transporters (2.16E-12), which

suggests that chemotype diversification in the camphor trees may

be promoted by species-specific genes and tachytelic gene
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Figure 1 (a) Genome features across 12 chromosomes. The circulars map shows, from outside to inside, ideograms of the 12 chromosomes, density of

genes (blue-red scale), density of LTRs, density of Copia, density of Gypsy and syntenic blocks. (b) Statistics for the assembly and annotation of the six

published magnoliid genomes. (c) Dated phylogeny for 20 plant species with ANA as an out-group, a time scale is shown at the bottom. The bootstrap

value is given in black. The gene families that expanded and contracted are given in red and blue, respectively. (d) Density distribution of Ks for paralogous

gene pairs of the six magnoliid genomes. (e) Interspecific collinearity at the chromosome level among C. camphora, C. kanehirae and C. salicifolius. The

grey line connects matched gene pairs. (f) Distribution pattern of 83 TPS genes on chromosomes. (g) Key genes involved in terpenoid backbone biosynthesis

pathways in the camphor tree genome. (h) Transcriptional heatmap of 83 CcamTPS genes.
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families related to terpenoid biosynthesis. Comparative genome

analysis revealed that there were 68 positively selected genes in

the camphor tree.

Genome collinearity and distinctions of synonymous substitu-

tions per synonymous site (Ks) revealed that the evolutionary

trajectory of the camphor tree genome has been generally shaped

by whole-genome duplication (WGD) events. Intragenomic syn-

teny examination revealed a total of 385 syntenic blocks that

contained 20 684 collinear pairs in the camphor tree genome

assembly, and the degree of interspecific collinearity between the

camphor tree and its related species was consistent with their

evolutionary topologies (Figure 1a,e). By estimating intragenomic

and interspecies Ks distributions, two signature peaks for WGD

events were observed at Ks � 0.499 and 0.641 for six species

(Figure 1d), showing that after the distant WGD event (e)
encountered by all extant angiosperms, a recent WGD

(~76 Mya) in C. camphora was shared by all the Lauraceae

species and an ancient WGD event (~124 Mya) arose before the

divergence of Magnoliales and Laurales.

Terpene synthases (TPSs) are critical rate-limiting enzymes that

produce bioactive terpenoids with multifarious backbones. Com-

pared with the 76 TPS genes in the 12 pseudochromosomes of

the stout camphor genome, a total of 83 CcamTPS genes were

predicted and annotated in the camphor tree genome, including

53 monoTPSs, 21 sesquiTPSs and nine diTPSs. These rapidly

evolving genes were distributed unevenly on seven chromosomes

and were clustered together in tandem (Figure 1f). MonoTPS

genes were concentrated in the middle region of Chr7 and

Chr10, and sesquiTPSs were mainly distributed in the middle

region of Chr2 and Chr10. Tandem rearrangement of TPS genes

may be associated with the mass production of terpenoids in the

genus Cinnamomum. The plant TPS family is divided into seven

subfamilies, of which the TPS-d subfamily is specific to gym-

nosperms. The camphor tree genome has six subfamilies,

including 20 TPS-a, 42 TPS-b, 1 TPS-c, 10 TPS-e/f and 10 TPS-g

members, and the TPS-a and TPS-b subfamilies are the most

diverse, presumably contributing to the biosynthesis of monoter-

penes and sesquiterpenes. Transcriptome sequencing showed the

tissue-specific expression profiles of 83 TPS genes (Figure 1g,h),

of which five monoTPSs were not expressed in seven tissues.

From these results, we inferred that the rapid expansion, tandem

arrangement and tissue-specific expression of terpene biosyn-

thetic genes powered the chemotypic diversification of the

camphor tree.

In summary, the reference-quality genome of C. camphora

provides new insights into terpene biosynthesis and lays the

foundation for better elucidating the evolution and diversification

of Lauraceae.
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