
Clinical Trial/Experimental Study Medicine®

OPEN
Identification of hub gene
s, key pathways, and
therapeutic agents in Hutchinson–Gilford Progeria
syndrome using bioinformatics analysis
Dengchuan Wang, BSc, MSca,

∗
, Shengshuo Liu, BScb, Shi Xu, PhDc,∗

Abstract
Background:Hutchinson–Gilford Progeria syndrome (HGPS) is a rare lethal premature and accelerated aging disease caused by
mutations in the lamin A/C gene. Nevertheless, the mechanisms of cellular damage, senescence, and accelerated aging in HGPS are
not fully understood. Therefore, we aimed to screen potential key genes, pathways, and therapeutic agents of HGPS by using
bioinformatics methods in this study.

Methods:The gene expression profile of GSE113648 and GSE41751 were retrieved from the gene expression omnibus database
and analyzed to identify the differentially expressed genes (DEGs) between HGPS and normal controls. Then, gene ontology and the
Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out. To construct the protein-protein
interaction (PPI) network, we used STRING and Cytoscape to make module analysis of these DEGs. Besides, the connectivity map
(cMAP) tool was used as well to predict potential drugs.

Results: As a result, 180 upregulated DEGs and 345 downregulated DEGs were identified, which were significantly enriched in
pathways in cancer and PI3K-Akt signaling pathway. The top centrality hub genes fibroblast growth factor 2, decorin, matrix
metallopeptidase2, and Fos proto-oncogene, AP-1 transcription factor subunit were screened out as the critical genes among the
DEGs from the PPI network. Dexibuprofen and parthenolide were predicted to be the possible agents for the treatment of HGPS by
cMAP analysis.

Conclusion: This study identified key genes, signal pathways and therapeutic agents, which might help us improve our
understanding of the mechanisms of HGPS and identify some new therapeutic agents for HGPS.

Abbreviations: cMAP = connectivity map, DCN = decorin, dDEGs = downregulated DEGs, DEGs = differentially expressed
genes, ECM = extracellular matrix, FGF2 = fibroblast growth factor 2, FOS = Fos proto-oncogene, AP-1 transcription factor subunit,
GEO = gene expression omnibus, GO = gene ontology, HGPS = Hutchinson–Gilford Progeria syndrome, KEGG = Kyoto
encyclopedia of genes and genomes, LMNA = lamin A/C, MMP2 = matrix metallopeptidase2, PPI = protein-protein interaction,
uDEGs = upregulated DEGs.
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1. Introduction
Hutchinson–Gilford progeria syndrome (HGPS, progeria) is an
extremely rare premature and accelerated aging disease.[1] HGPS
patients generally appear physiological aging including thin skin
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with hyperpigmented lesions, loss of subcutaneous fat, alopecia,
osteoporosis and severe generalized arteriosclerosis, leading to
myocardial infarction in most cases, and the mean age of demise
was 14.6 years.[2,3] The leading cause of HGPS is the aberrant
ene Expression Omnibus database, which is a public functional genomics data
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splicing of the lamin A/C (LMNA) gene.[1] Lamin A and lamin C
encoded by LMNA, are significant components of the nuclear
lamina – a proteinaceous meshwork that underlies the inner
nuclear membrane. It is necessary for proper nuclear architec-
ture.[4] Due to the mutations in the LMNA gene, the proper
synthesis andmaturation of lamin A are impaired and a truncated
unprocessed lamin A protein called progerin is accumulated.[5]

Accumulation of progerin that disrupts the integrity of the
nuclear lamina affects a whole repertoire of nuclear functions,
causing faster cellular senescence, stem cell depletion and the
progeroid phenotype, likely being the cause of the progressive
nature of the disease.[4,6,7] The cytological hallmark of HGPS
involves nuclear morphological abnormalities, mitochondrial
dysfunction, increased reactive oxygen species (ROS) production,
and chromosomal and telomere aberrations.[4,8,9] HGPS cells
have altered cell-cycle regulation and impaired DNA repair
mechanisms, a higher apoptosis rate, and quicker cellular
senescence.[9] In HGPS, severe epigenetic alterations have been
reported, including histone-covalent modifications, histone
variants, DNA methylation, chromatin remodelers, chromatin
architecture, and miRNAs.[6,10]

Recently, numerous potential treatment strategies for HGPS
have been developed, which mainly by interfering with the
processing of lamin A in the post-translational level; and thus
promote the clearance of progerin, or directly target the HGPS
mutation to diminish the progerin-producing alternative splicing
of the LMNA gene.[11] Farnesyltransferase inhibitors,[12] statins
or bisphosphonates,[13] mono-aminopyrimidines[14] have been
found to interfere with prelamin A processing. The autophagy
pathway is triggered by the administration of rapamycin,[15]

sulphoraphane,[16] leading to the lysosomal degradation of
progerin. Finally, mitochondrial function and biogenesis have
been targeted by drugs with antioxidant effects such as
Metformin,[17] methylene blue,[18] which resulted in improved
mitochondrial function and reduction of ROS. Hence, HGPS is
an excellent model to explore the accelerated aging with these
striking features and similar mechanisms of normal aging.
However, the mechanisms underlying cellular damage and
senescence and accelerated aging in HGPS are incompletely
understood.
Along with the development of bioinformatics, high-through-

put tools such as microarray and sequencing have been widely
used to explore the genetic variations which concerning a variety
of disorders, including cancer and aging.[19,20] Mateos et al[21]

found that ribose-phosphate pyrophosphokinase 1 was signifi-
cantly decreased in HGPS cell lines versus healthy parental
controls using Next-Generation Sequencing (RNAseq) andHigh-
Resolution Quantitative Proteomics (iTRAQ) techniques. The
bioinformatics analysis of the network of interactions of the
LMNA gene and transcripts showed that particular relevance of
epigenetic modifiers and adenosine triphosphate-dependent
chromatin remodelers.[22] Ly et al[23] used fibroblast cells from
young, middle and aged normal donors as well as from a HGPS
patient, and identified 61 differentially expressed genes among
the 6000 genes monitored, of which there are 2 major functional
groups:
(1)
 genes involved in cell cycle progression and

(2)
 genes involved in maintenance and remodeling of the

extracellular matrix (ECM).
Mining and analyzing the massive data allow us to screen key
genes or pathways associated with the diseases. Therefore, in this
2

study, we aimed to screen relevant data to identify the DEGs that
may play a role in HGPS. In addition, we assessed the functions
and roles of screened candidate genes. Besides, the agents that
maybe likely to rescue HGPS were also predicted and evaluated.
2. Materials and methods

2.1. Datasets and data preprocessing

The gene expression profiles GSE113648 and GSE41751 were
obtained from the Gene Expression Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo/) database in the National Center for
Biotechnology Information. The former dataset has 4 progenitor
lines: 2 HGPS patients and 2 control samples. And the latter one
has 2 primary fibroblasts of HGPS patients and 2 healthy age-
matched control samples.
The analysis of screening DEGs between HGPS and control

samples was analyzed by GEO2R, respectively. Moreover, the
threshold for the DEGs was set as P-value< .01 and
jlog2foldchange (FC)j ≥ 1.
2.2. Gene ontology (GO) and pathway enrichment analysis
of DEGs

To analyze the functions of DEGs, GO enrichment and Kyoto
encyclopediaof genes andgenomes (KEGG)pathwayanalysiswere
carried out by using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/)
online tool.[24]P< .05 was set as the cut-off point.
2.3. Protein-protein interaction (PPI) network construction
and module selection

To investigate the possible hub genes/proteins that might play a
significant role in the biological process, all DEGs were imported
into STRING (https://string-db.org/)[25] and Cytoscape[26] to
create network visualizations. A confidence score>.4 was defined
as significant in STRING analysis to evaluate the interactive
relationships. Then, we use Cytoscape to construct PPI networks
and the Molecular Complex Detection (MCODE, a plugin for
Cytoscape)[27] to screen the modules of the PPI network. The
default parameters were set as follows: degree cut-off = 2, node
score cut-off = 2, k-core = 2, and maximum depth = 100.
2.4. Analysis of module and hub genes in the PPI network

The function and pathway enrichment analysis were carried out
for DEGs in the modules. To explore key genes in the PPI
network, 3 centrality methods: degree, closeness, and sub-
graph[28] were calculated using a Cytoscape plugin CytoNCA.[29]
2.5. Connectivity map (cMAP) database mining

With the aim of finding potential agents with molecular
signatures that might reverse the transcriptional profiles of
HGPS, we compared the observed gene expression profiles with
the cMAP reference database (http://portals.broadinstitute.org/
cmap/).[30] DEGs between HGPS and control samples were used
as query terms to submit to cMAP for analysis. The P-value< .05
was considered as the cut-off value. Small molecular compounds
with negative connectivity enrichment scores were selected as
potential therapeutic molecules for the treatment of HGPS.

http://www.ncbi.nlm.nih.gov/geo/
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Figure 1. Intersection of the uDEGs (1A) and dDEGs (1B) from GSE113648 and GSE41751 dataset respectively. The intersection included 180 upregulated and
345 downregulated genes. dDEGs = downregulated differentially expressed genes, uDEGs = upregulated differentially expressed genes.
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3. Results

3.1. Identification of DEGs

HGPS patients and control samples in GSE113648 and
GSE41751 dataset were analyzed to identify DEGs using the
P< .01 and jlog2FCj ≥ 1 criteria. Compared with control, a total
of 1126 DEGs were identified from GSE113648 dataset,
consisting of 472 upregulated DEGs (uDEGs) and 654 down-
regulated DEGs (dDEGs) in HGPS cells (Table S1, http://links.
lww.com/MD/D706). As shown in Supplemental Table 2, http://
links.lww.com/MD/D707, 1791 uDEGs and 1771 dDEGs have
been generated from GSE41751 dataset. Moreover, 180 uDEGs
and 345 dDEGs have been screened out in the intersections,
respectively (Fig. 1, Table S3, http://links.lww.com/MD/D708).

3.2. Functional analysis of DEGs

Aiming to evaluate the functions of identified DEGs, we uploaded
all DEGs to DAVID to identify significant GO categories and
KEGG pathways. GO analysis showed that the DEGs were
enriched in biological process, including positive and negative
regulation of transcription from RNA polymerase II promoter,
cell adhesion, positive regulation of GTPase activity and ECM
organization (Table 1). For cellular components, DEGs were
enriched in the plasma membrane, cytoplasm, extracellular
exosome, extracellular region, and extracellular space (Table 1).
Besides, for molecular function, the DEGs were enriched in
Table 1

Gene ontology analysis of the differentially expressed genes (DEGs)

Category Term/functions

BP Positive regulation of Transcription from RNA Polymerase II pro
Cell adhesion
Negative regulation of Transcription from RNA Polymerase II pr
Positive regulation of GTPase activity
Extracellular matrix organization

CC Plasma membrane
Cytoplasm
Extracellular exosome
Extracellular region
Extracellular space

MF Transcription factor activity, Sequence-specific DNA binding
Calcium ion binding
Protein homodimerization activity
Sequence-specific DNA binding
receptor binding

BP=biological process, CC=cellular component, MF=molecular function.
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transcription factor activity, sequence-specific DNA binding,
calcium ion binding, protein homodimerization activity, se-
quence-specific DNA binding, and receptor binding (Table 1).
KEGG pathway analysis indicated that the DEGs were

enriched in pathways in cancer, PI3K-Akt signaling pathway,
focal adhesion, ECM-receptor interaction, and Ras signaling
pathway (Table 2).

3.3. PPI network construction and modules selection

The PPI network of DEGs consisting of 206 nodes and 412 edges
was constructed in the STRING database (version 11.0). Then it
was visualized through Cytoscape (Fig. 2A). Furthermore, degree
≥10 was set as the cut-off criterion. Based on the STRING
database, the DEGs with the highest PPI scores identified by the 3
centrality methods are shown in Table 3. After repeated genes
removing, the hub genes (shown in Fig. 2A, highlighted in yellow
and shaped in diamond) were obtained using the 3 centrality
methods, including fibroblast growth factor 2 (FGF2), decorin
(DCN), matrix metallopeptidase2 (MMP2), Fos proto-oncogene,
AP-1 transcription factor subunit (FOS), syndecan 4, early
growth response 1, glial cell-derived neurotrophic factor,
fibroblast growth factor receptor 2, syndecan 3, and ADAM
metallopeptidase with thrombospondin type 1 motif 5. Among
these genes, FGF2 revealed the highest node degree, which was
28. A significant module was constructed from the PPI network of
the DEGs using MCODE, including 11 nodes and 30 edges
associated with Hutchinson–Gilford Progeria syndrome.

Gene count % P-value

moter 52 10.0 8.0E-6
50 9.6 3.3E-16

omoter 40 7.7 4.1E-5
37 7.1 2.5E-6
32 6.1 2.4E-15
160 30.7 3.5E-7
160 30.7 3.9E-2
108 20.7 1.0E-4
86 16.5 1.2E-9
73 14.0 1.7E-8
45 8.6 2.7E-4
36 6.9 3.7E-4
30 5.7 1.9E-2
29 5.6 2.9E-4
23 4.4 1.9E-4

http://links.lww.com/MD/D706
http://links.lww.com/MD/D706
http://links.lww.com/MD/D707
http://links.lww.com/MD/D707
http://links.lww.com/MD/D708
http://www.md-journal.com


Table 2

Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis of the differentially expressed genes (DEGs) associated with
Hutchinson–Gilford Progeria Syndrome.

Pathway ID Name Gene count % P-value

hsa05200 Pathways in cancer 26 5.0 1.9E-4
hsa04151 PI3K-Akt signaling pathway 25 4.8 6.6E-5
hsa04510 Focal adhesion 16 3.1 1.0E-3
hsa04512 ECM-receptor interaction 14 2.7 1.2E-6
hsa04014 Ras signaling pathway 13 2.5 3.4E-2
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(Fig. 2B). Biological functional enrichment analysis showed that
genes in this module were markedly enriched in glycosaminogly-
can (GAG) biosynthetic process, GAG metabolic process, and
GAG catabolic process (Table 4). Proteoglycans in cancer and
GAG biosynthesis-heparansulfate/heparin were enriched in the
KEGG pathway analysis.

3.4. cAMP analysis

The identified DEGs were selected and entered as a query
signature in the cMAP database. It shows the top 5 hits with low
connectivity scores (�0.863 to �0.738), indicating a high
negative correlation with the HGPS signature (Table 5). These
compounds may be capable of reversing or counteracting the
gene expression pattern observed inHGPS and are thus candidate
novel therapies. They were dexibuprofen, parthenolide, lomus-
tine, PNU-0293363, and lincomycin.
4. Discussion

Despite advances in the present study and therapeutics, the
molecular mechanisms underlying cellular damage and senes-
cence and accelerated aging in HGPS have not been fully
understood. In this study, DEGs in HGPS compared with normal
controls were analyzed. The KEGG pathway analysis revealed
that the DEGs were obviously enriched in pathways in cancer,
PI3K-Akt signaling pathway, focal adhesion, and ECM-receptor
interaction. As is known to us, cancer and progeria shared many
molecular and cellular mechanisms, particularly in DNA
damage. DNA damage has emerged as a significant cause in
cancer and many diseases related to aging.[31] HGPS and other
premature aging disorders caused by mutations in DNA repair
proteins are often characterized by cancer susceptibility.[32,33]

PI3K/Akt pathway is a regulator of endothelial senescence.[34,35]

Yentrapalli et al[36] reported that inactivation of the PI3K/Akt
pathway accompanying premature senescence. The focal adhe-
sion structure is mildly affected in HGPS mouse model and
Emery–Dreifuss muscular dystrophy mouse model.[37] Csoka
et al[38] compared the gene expression patterns of HGPS
fibroblast cells with normal control and found that the most
prominent significant differentially genes encode transcription
factors and ECM proteins, many of which are known to function
in the tissues severely affected in HGPS. HGPS fibroblasts exhibit
high expression of ECM proteins and low expression of ECM
remodeling enzymes, which can result in aberrant ECM
deposition.[4] In addition, changes in ECM composition are
caused by inhibition of the Wnt signaling pathway in
HGPS.[39,40]

The GO analysis results indicated that the DEGs were enriched
in biological process, including positive and negative regulation
4

of transcription from RNA polymerase II promoter, cell
adhesion, and positive regulation of GTPase activity. RNA
polymerase II Transcription is active in the lamin B deficient
nuclear blebs of atypical progeria cells.[41] In Werner syndrome,
Werner syndrome protein is possibly a transcriptional activator
in RNA polII transcription.[42] In the meantime, Spann et al[43]

deemed that disruption of normal lamin organization inhibits
RNA polymerase II-dependent transcription. These may indicate
that the screened DEGs may act on positive and negative
regulation of transcription from RNA polymerase II. Hale
et al[37] reported that cell adhesion defects in LmnaL530P/L530P

mouse (HGPS mouse model) adult fibroblasts and Lmna�/�

mouse (Emery–Dreifuss muscular dystrophy mouse model)
embryonic fibroblasts. Ran is a small ras-related GTPase that
controls the nucleocytoplasmic exchange of macromolecules
across the nuclear envelope.[44] The nuclear levels of Ran GTPase
are reduced. And the Ran protein gradient is disrupted in
fibroblasts from HGPS patients, which causes a defect in
generating nuclear g-H2AX and DNA damage and ROS.[45,46]

The PPI network was constructed with DEGs, and the top
centrality hub genes were obtained: FGF2, DCN, MMP2, and
FOS. FGF2was identified as one of the hub genes with the highest
degree of connectivity, the protein encoded by which is a member
of the fibroblast growth factor (FGF) family. However, the
relation between FGF2 and progeria has not been reported at
present. The biosynthesis of the small proteoglycan decorin
decreased in progeroid syndromes.[47] MMP-2 messenger RNA
showed a donor age-dependent decrease in HGPS fibroblasts, but
levels of secreted protein were unchanged.[48] The levels of proto-
oncogene c-fos mRNA expression decreased in HGPS fibro-
blasts.[49]

Module analysis of the PPI network showed that HGPS was
associated with proteoglycans in cancer andGAG processes, such
as biosynthesis, metabolic, and catabolic. Several patients with
progeroid-like symptoms have been shown to have abnormalities
in the biosynthesis of proteoglycans.[50] O-glycosylation, the
main type of protein glycosylation, is related to progeria.[51]

GAGs are an abundant structural component of the ECM.[52]

GAG hyaluronic acid (HA) was found excreted with an excessive
amount in progeria patients.[53,54] However, no conclusive
evidence of HA being a primary effect in progeria has been
found.[55]

To predict the drugs that have the potential to rescue the HGPS
biological process, DEGs were submitted to cMAP for analysis.
Using this tool, a list of compounds that might reverse the DEGs
profiles was screened out, of which 2 compounds (dexibuprofen
and parthenolide) are particularly interested in our study. Mouse
models that phenotypically recapitulate HGPS show increased
activation of Nuclear Factor-kappa B (NF-kB) with a concomi-
tant increase in interleukin-6 at the transcriptional and protein



Figure 2. Protein-protein interaction network of DEGs. (A) A total of 203 nodes and 346 interaction associations were identified. The nodes with the highest PPI
scores were shaped as the diamond in yellow. (B) The most significant module from the PPI network. DEGs = differentially expressed genes, PPI = protein-protein
interaction.
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Table 3

The top 10 differentially expressed genes (DEGs) with higher scores, respectively, identified by the 3 centrality methods.

Subgraph Degree Closeness

FGF2 2093.965 FGF2 28 FGF2 0.06858
DCN 1203.585 DCN 22 MMP2 0.06759
MMP2 1137.531 MMP2 21 DCN 0.06741
FOS 776.427 FOS 19 FOS 0.06719
SDC3 492.079 SDC4 13 EGR1 0.06688
SDC4 482.186 EGR1 13 FGFR2 0.06667
ADAMTS5 467.320 GDNF 13 GDNF 0.06667
FGFR2 392.824 FGFR2 12 SDC3 0.06651
EGR1 373.374 SDC3 11 ADAMTS5 0.06641
GDNF 369.072 ADAMTS5 11 SDC4 0.06630

ADAMTS5 = ADAM metallopeptidase with thrombospondin type 1 motif 5, DCN = decorin, EGR1 = early growth response 1, FGF2= fibroblast growth factor 2, FGFR2 = fibroblast growth factor receptor 2, FOS
= Fos proto-oncogene, AP-1 transcription factor subunit, GDNF = glial cell-derived neurotrophic factor, MMP2 = matrix metallopeptidase 2, SDC3 = syndecan 3, SDC4 = syndecan 4.

Table 4

Gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis of genes in the selected module.

Category Term/functions Gene count % P-value

BP Glycosaminoglycan Biosynthetic process 6 0.4 1.9E-11
Glycosaminoglycan Metabolic process 5 0.3 1.5E-9
Glycosaminoglycan catabolic process 4 0.2 3.9E-7
Retinoid metabolic process 4 0.2 5.4E-6
Extracellular matrix organization 4 0.2 1.8E-4

CC Lysosomal lumen 5 0.3 9.1E-8
Golgi lumen 5 0.3 1.5E-7
Extracellular space 5 0.3 4.3E-3
Extracellular region 5 0.3 8.3E-3
Proteinaceous extracellular matrix 3 0.2 9.0E-3

MF Coreceptor activity involved in the Wnt signaling pathway, planar cell polarity pathway 2 0.1 3.2E-3
heparan sulfate proteoglycan binding 2 0.1 9.6E-3

PATHWAY Proteoglycans in cancer 3 0.2 1.2E-2
Glycosaminoglycan biosynthesis – heparan sulfate/heparin 2 0.1 2.1E-2

BP=biological process, CC= cellular component, MF=molecular function.
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levels.[56] JoãoRibas et al[57] reported that HGPS smooth muscle
cells showed an exacerbated inflammatory response and an
increase of inflammation markers levels. Lovastatin and
lonafarnib were able to ameliorate the exacerbated inflammatory
response to strain in HGPS smooth muscle cells derived from
human induced pluripotent stem cells (iPS-SMCs). Methionine
restriction could prolong health span and longevity of 2 short-
lived strains of HGPS mice by reducing inflammation and
improving the DNA stability of HGPS.[58] Dexibuprofenis a
nonsteroidal anti-inflammatory drug, which works by preventing
the oxidation of arachidonic acid by inhibiting the enzyme
cyclooxygenase.[59] Dexibuprofen may be a potential drug of
Table 5

The top 5 compounds with high negative correlations with Hutchinso

Rank CMAP name Mean N

1 Dexibuprofen -0.432 4
2 Parthenolide -0.225 4
3 Lomustine -0.311 4
4 PNU-0293363 -0.259 3
5 Lincomycin -0.479 3

6

age-related Alzheimer disease through reducing neuroinflamma-
tion.[60] Further studies are required for the validation of
Dexibuprofen as a potential compound of treatment of HGPS by
anti-inflammatory effects.
Parthenolide is a sesquiterpene lactone found in the medicinal

herb Feverfew. Parthenolide exhibits anti-inflammatory activity
by inhibiting NF-kB activation. NF-kB altered signaling, which
inhibition is an aging intervention strategy, has been causally
linked to aging.[61] Parthenolide could effectively inhibit the gene
expression mediated by NF-kB and may be useful in preventing
the skin photoaging.[62] Parthenolide also inhibits HDAC1
protein without affecting other class I/II HDACs. HDAC
n–Gilford Progeria syndrome.

Enrichment P Percent non-null

�0.863 .00064 75
�0.797 .00338 50
�0.794 .00366 50
�0.741 .03561 66
�0.738 .03702 66
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inhibitors are new promising drugs in anti-aging research,[63]

which can recoverage-associated functional declines, primarily
the transcriptional levels of the biosynthetic and metabolic genes
decreased.[64] Krishnan et al[65] found that histoneH4 acetylation
impaired in the Zmpste24-deficient (HGPS mouse model) cells,
using sodium butyrate (HDAC inhibitor) improved DNA repair
and extend the life span of Zmpste24�/�mouse. Some of HDAC
inhibitors have been recently examined in human clinical
trials and recommended for the treatment of age-associated
diseases.[66]

Overall, dexibuprofen and parthenolide may be the promising
drugs for the treatment of HGPS. Nevertheless, little evidence has
shown the effect of HGPS or other premature aging disorders.
Future validation investigations are needed to test their biological
functions.
5. Conclusion

In conclusion, this study provides a preliminary study of the
mechanisms underlying HGPS. DEGs were screened out and
selected the intersection. Their possible functions were annotated
by GO analysis and pathway analysis. The DEGs were mostly
enriched in pathways in cancer and PI3K-Akt signaling pathway.
Afterward, several key hub genes that may play key roles in
HGPS have been screened out by PPI analysis. Using the cMAP
tool, dexibuprofen, and parthenolide that might have the
potential to reverse the progerin-induced biological process has
been predicted. This study may provide a valuable clue for both
prevention and treatment research of HGPS. Since HGPS is a rare
disease and its incidence is very low, the data obtained is
relatively limited in GEO database. Thus, it is necessary to have
further studies with larger sample sizes. Our conclusions are
based solely on the results of analysis of the gene expression
profiles. Therefore, future validation experiments are warranted
to examine the results.
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