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Abstract

In this paper we suggest a new Bayesian approach to network meta-analysis for the case of

discrete multiple outcomes. The joint distribution of the discrete outcomes is modeled

through a Gaussian copula with binomial marginals. The remaining elements of the hierar-

chial random effects model are specified in a standard way, with the logit of the success

probabilities given by the sum of a baseline log-odds and random effects comparing the log-

odds of each treatment against the reference and having a Gaussian distribution centered

at the vector of pooled effects. An adaptive Markov Chain Monte Carlo algorithm is devised

for running posterior inference. The model is applied to two datasets from Cochrane

reviews, already analysed in two papers so to assess and compare its performance. We

implemented the model in a freely available R package called netcopula.

Introduction

In the last decades, as the need of evidence based techniques in medical research and clinical

practice has been more and more recognized, the use of meta-analysis, introduced with a high

level of debate, has become widespread. Nowadays, areas of application of meta-analysis

extend beyond medicine and health, being widely used in both natural and social sciences. See

[1] for a critical review of the main methodological developments in meta-analysis. Tradition-

ally, meta-analytic techniques make it possible to summarize evidence provided by several

studies comparing the same treatments and considering in general one outcome at time. The

basic methods combine study-specific treatment effect estimates under a fixed effect or a ran-

dom effect model (see [2] and [3]). Study specific covariates and individual patients data can

be incorporated as well (see for IPD meta-analysis among others [4–6] and [7]). Bayesian

methods are widely used, making it possible to allow for all parameter uncertainty in the

model, to include all relevant information and to extend the models to accommodate more

complex scenarios. Advantages of the Bayesian approach are discussed and reviewed in several

papers and books, see among others [8] and [9].
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Meta-analytic techniques have been developed in the recent years along several directions.

In the present work, we focus on one of the most recent development, multiple outcomes net-

work meta-analysis. Network meta-analysis in the past few years has become increasingly pop-

ular and its advantages and disadvantages are discussed in several published articles, see

among others [10–14] and [15]. In particular [16] provide a complete and detailed review of

network meta-analysis techniques. Network meta-analysis makes it possible to combine both

direct and indirect evidence provided by different studies with respect to different treatments.

The main challenge is to use the totality of trial evidence to determine an internally consistent

set of estimated treatment effects between all treatments, while respecting randomization. As

long as the included trials and treatments form a connected network, network meta-analysis

allows to borrow strength across treatments in the estimation of relative effect sizes. Full-

fledged ranking of all considered treatments can be also obtained. Several methods for running

univariate network meta-analysis have been proposed and coded in statistical packages. How-

ever, there are relatively few attempts to extend these methods to the multivariate setting.

The need of multiple outcomes network meta-analytic techniques stems from the fact that

often studies report several outcomes, that in general are correlated. Such correlation arises

when several outcomes are measured on the same participants, when one event is nested in

another (as in the case of disease survival nested in total survival) or when outcomes are mea-

sured repeatedly on the same participants. The outcomes correlation entails a correlation of

the treatments effect, which is clearly neglected if separate univariate network meta-analyses

are run for each outcome. Multiple outcomes network meta-analysis makes it possible to

account for such within-study correlation of the treatment effects so to simultaneously borrow

strength across treatments and outcomes. In this way, more studies contribute towards each

outcome and treatment comparison. Indeed, summary results for each outcome depend on

correlated results from other outcomes, and summary results for each treatment comparison

incorporate indirect evidence from related treatment comparisons, in addition to any direct

evidence.

Multiple outcomes network meta-analysis faces the same issues that multiple outcomes

meta-analysis addresses, but in a more complicated setting, see [17] and [18] for an overview

of advantages and disadvantages of multiple outcomes techniques. We can identify two main

challenges. The first stems from the fact that while studies report estimates and standard errors

of the treatments relative effect for each outcome, rarely the corresponding covariance matrix

is provided. In multiple outcomes meta-analysis, a common choice is to assume that the

within-study covariance is known and to focus on the estimation of the between-study covari-

ance matrix. In a frequentist approach the entries of such matrix are estimated resorting to

maximum likelihood techniques as in [19] or restricted maximum likelihood techniques as in

[20]. Method of moments techniques are used as well, [21] and [22] suggest a multivariate gen-

eralization of the DerSimonian and Laird’s methodology. [23] suggest a structural equation

modeling approach (see [24] for a review on the use of such approach in meta-analysis). The

within-study correlation coefficients are then imputed on the basis of individual patients data,

when available for similar studies. When individual patients data are not available, plausible

values can be assumed on the basis of clinical considerations as in [25]. As well empirical cor-

relations can be used as in [20]. [26] use delta methods to approximate the within-study corre-

lation on the basis of information on the outcomes correlation. [27] suggest a Bayesian

approach to multiple outcome meta-analysis, where the within study variances are assumed to

be known and simplifying assumptions are made on the correlations so to reduce the number

of parameters. Noninformative priors are assigned to such correlations. [28] use external

sources of information to construct informative priors for both within-study correlations and

the between-study covariance matrix.
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The second issue to be addressed in a multivariate generalization of network meta-analytic

techniques comes from the fact that not all studies report results on all the considered out-

comes. In multiple outcomes meta-analysis, the missing outcomes issue is addressed relying

on traditional imputation and data augmentation techniques both in a frequentist and a Bayes-

ian approach ([29, 30]). In a Bayesian approach [26] express the likelihood as a product of

marginal distributions over reported outcomes following the approach suggested by Glester

and Olkin in [31]. Such techniques make it possible to borrow strength across outcomes and

this, as pointed out by [32], reduces the impact of a selective non reporting of the outcomes on

the pooled treatment effect estimates.

In this work we adopt a contrast-based perspective to estimate the treatment effects in a net-

work meta-analysis, see [33, 34]. Contrast-based models currently represent the most popular

methodology in the network meta-analysis literature. However, another approach, called arm-

based, has also been recently advanced (see [35–38]). In contrast-based models, a baseline

treatment is defined for each study and the focus of the analysis is on the estimation of the rela-

tive treatment effects (for example using log odds ratios, or another suitable metric). In this

context, the baseline effects are treated as nuisance parameters and they are usually modeled

with noninformative prior distributions. This implies that absolute treatment effects cannot be

directly obtained unless a reference treatment absolute effect is first estimated using informa-

tion that are external to the model see among others [39]. On the contrary, arm-based models

aim to model the absolute effect of each treatment in a study (for example using the log odds)

and the relative treatment effects are then constructed from the arm estimates. Contrast-based

models are usually advocated as more theoretically grounded compared to the arm-based

approach because the latter discards the randomization structure of the evidence. Moreover,

arm-based models are more likely to provide biased estimates of relative treatment effects with

increased posterior variances, and they often show a slower convergence especially when some

treatments are only included in few studies. On the contrary, arm-based models are more

advantageous because they can also incorporate the information provided by single-arm stud-

ies. For more details on the pros and cons of the two approaches see [40] and the discussion

rejoinder by [41], while for a more technical comparison between arm-based and contrast-

based models for network meta-analysis we suggest the recent work by [42].

In this paper we present a new approach to network meta-analysis in the case of discrete

multiple outcomes. The model we suggest is a Bayesian hierarchical random effects model that

is based on a Gaussian copula likelihood, which allows to incorporate the estimation of within-

study variances and correlations. Our approach draws on and generalizes the method sug-

gested by [43] based on a Clayton copula model. However the switch from a Clayton copula

model to a Gaussian copula model is not straightforward due to the implications in terms of

computational problems to be addressed. Indeed in the case of Clayton copula model the cor-

relation between outcomes is modeled through a single univariate parameter, while in the case

of a Gaussian copula model the association is modeled through a correlation matrix. Posterior

inferences are based on a latent variables adaptive Markov Chain Monte Carlo algorithm, that

draws on the suggestions by [44] and [45] for copula regression models and by [46] for the

simulation of correlation matrices. The uncertainty due to the missingness problem is

addressed and accounted for through a posterior based imputation of missing outcomes at

each stage of the algorithm. All codes, data and examples are available in a R package called

netcopula, that can be freely downloaded from the following public repository https://

github.com/sergioventurini/netcopula.

The set-up of the paper is as follows. Section 2 provides a description of the suggested

model and of the MCMC algorithm devised for running posterior inferences. In Section 3 two
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applications of the model are provided with a comparison with other two different approaches.

Section 4 provides a discussion with final conclusions.

Method

Introduction

Copula models have become widely used in all applied fields since they make it possible to

split the specification of a multivariate model into two parts: the marginal distributions on one

side and the dependence structure on the other side. In this way, any univariate distribution

can be used for modelling the marginal behavior of the considered variables, which can be dis-

crete and continuous. Moreover, marginal distributions belonging to different families can be

selected, ensuring a higher flexibility with respect to a traditional modeling with multivariate

distributions. The dependency across the variables is then modelled through a copula function

that “glues together” the marginal distributions.

In the following, we briefly review the copula based approach for the case of two variables,

Y1 and Y2, with marginal cumulative distributions F1 and F2 respectively. We want to obtain a

bivariate distribution for the vector (Y1, Y2) having these two margins. Sklar ([47]) proved that

we can always find a function C such that

FðY1 ¼ y1;Y2 ¼ y2Þ ¼ CðF1ðy1Þ; F2ðy2ÞÞ ð1Þ

where C(y1, y2) is the joint distribution function for a pair of bivariate uniform random vari-

ables. Sklar called C copula function and showed three relevant properties (see [48] for a

detailed introduction to copula models). The distribution in Eq (1) is constructed from the

marginal distributions F1 and F2, while the role of the copula function is to determine the

dependence between Y1 and Y2. If the marginal distributions are continuous, differentiating

Eq (1) gives the joint density

f ðy1; y2Þ ¼ cðF1ðy1Þ; F2ðy2ÞÞf1ðyÞf2ðyÞ ð2Þ

where c(F1(y1), F2(y2)) is the copula density. Eq (2) shows that the copula density controls the

level of dependence between Y1 and Y2. The copula function does not determine the distribu-

tion of the margins. It merely determines the dependence between the two random variables.

There are many copula functions, one of the most popular is the Gaussian copula. In the con-

tinuous case a useful way to think at the copula method is that, based on the probability inte-

gral transformation on each margin, the original variables are each transformed into uniform

random variables Uj = Fj(Yj). Indeed no matter is the marginal distribution Fj, Uj has a uni-

form distribution and the dependency between the original variables carries through to the

transformed uniform distributions. In this way, assuming a copula model as in Eq (1) for the

pair (Y1, Y2) reduces to considering the following model

Yj ¼ F� 1
j ðUjÞ j ¼ 1; 2

ðU1;U2Þ � Cðu1; u2Þ

In the case of discrete marginal distributions, the marginal are steps function, we define Uj

as associated with the variable Yj through the following inequality

FjðYj � 1Þ < Uj < FjðYjÞ

Nevertheless this still ensures Yj is uniformly distributed in the interval (0, 1). The method

can be easily generalized to the case of more than two variables.
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Model specification

We consider a sample of n multi-arm randomized trials and let yik denote the vector of the

number of times each of M outcomes is observed in study i for treatment k, that is yik = (yik1,

. . ., yikM)>, k 2 T i ¼ f1; . . . ; aig, where k 2 T i is the set of treatments compared in study i,
with the treatment labelled as 1 representing the control (i.e. the baseline) treatment in study i
whose efficacy is compared with that of the remaining (ai − 1) treatments. Note that the term

“treatment 1” may refer to distinct treatments in the different studies. We suggest to model yik
as the realization of a multivariate discrete random variable Yik, i = 1, . . ., n and k 2 T i, with

distribution built from a Gaussian copula with binomial margins. We assume that for each

study i, each arm k and each outcome m

yikm ¼ F� 1
ikmðΦðxikmÞ j nik; pikmÞ

where F� 1
ikmð� j nik; pikmÞ is the inverse cumulative distribution function of a binomial random

variable with parameters nik and pikm, nik is the number of patients randomized to arm k in

study i, pikm the treatment-specific probability of an outcome of type m in study i and xikm is

the m-th component of vector xik, that is the realization of a random vector having a multivari-

ate Gaussian distribution with a arm-specific correlation matrix, Γk. As previously empha-

sized, Fikm as the cumulative distribution function of a discrete random variable is a step

function, therefore its inverse is a many-to-one function. This indeed complicates the calcula-

tions as compared to the continuous case (see [49]). The variables xikm are latent, not observed

variables to be associated with each yikm. The logistic transformations of the treatment-specific

probabilities logit ðpikmÞ ¼ yikm are modelled for k 2 T i ¼ f1; . . . ; aig, as follows
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where, μi = (μi1, . . ., μiM)> denotes the vector of study-specific baseline effects and δik = (δik1,

. . ., δikM)> indicates the trial-specific log-odds ratios of treatment k 2 T �i relative to the base-

line treatment (i.e. treatment 1) in study i.
Finally, we assume that the random effects have a multivariate normal distribution
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where ti1 denotes the baseline treatment in study i, tij is the j-th treatment compared in study i
and dj,k = (dj,k,1, . . ., dj,k,M)> represents the vector of pooled effects (across trials) of treatment

k relative to treatment j. The dj,k are usually the main quantities of interest in a meta-analysis.
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The consistency equations

dti1 ;tij;m
¼ dr;tij;m

� dr;ti1 ;m ð4Þ

where r identifies a treatment chosen as reference, ensure that the correct treatment compari-

son is used in the network meta-analysis (see [33] and [50]). Note that to guarantee consis-

tency, it is also required that dr,r,1 = � � � = dr,r, M = 0.

The matrix S in Eq (3) contains the variances of the random effect δi,k, j for each treatment

k 2 2, . . ., ai and each outcome m = 1. . ., M, and all possible covariances between any two ran-

dom effects. As the pooled treatment effects, it is common to all studies and for this reason

commonly referred to as a matrix that defines the between-study covariance structure, in

opposition to the Γi that models the within-study correlation structure across outcomes. To

keep the number of parameters manageable and to allow identifiability of S, we follow [51]and

make the following simplifying assumption

Σ ¼

ΣM
1

2
ΣM � � �

1

2
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1
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ΣM ¼
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1
� � � r1Ms1sM

. .
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.
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M

0

B
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@

1

C
C
C
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describes the common between-study covariance structure. In this way, we assume that the

variances and covariances of the random effects for each treatment comparison are the same

and differ only with respect to the considered outcome. Moreover, such homogeneity assump-

tion along with the structural relationships between the dj,k within trial i imply that the

between-arm correlations are assumed to be all equal to 0.5 (see [52]). These correlations

between the treatment differences come from the fact that all differences are taken relative to

the same control arm, that is, they depend on the same trial baseline effect μi.

Priors choice

As for the prior assignment, proper priors are selected and we specify them in the application

so to be vague. The study-specific baseline effects μi = (μi1, . . ., μiM) are assumed to be indepen-

dent and distributed according to a normal distribution with mean zero and variance s2
m
. As

well the pooled (across trial effects) dr,q = (dr,q,1, . . ., dr,q, M) are assumed to be independent

and identically distributed according to a normal distribution with mean zero and variance s2
d.

As for the matrix SM, it has been shown in the literature that a standard conjugate Wishart

prior is overly influential on the corresponding posterior distribution (see among others [26,

53] and [54]). Moreover, explicitly representing an informative prior distribution for a covari-

ance matrix is difficult. We therefore follow an alternative strategy by adopting a log-Cholesky

parameterization (see [55]) for the precision matrix Σ� 1

M . More specifically, we define
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Σ� 1

M ¼ R>R, with R = {rm,p} being an upper triangular Cholesky factor, with p = 1, . . ., M, m�
p. To guarantee that the Cholesky factorization is unique, one has to require the diagonal ele-

ments of R to be positive. To avoid constrained estimation, we use the logarithms of the diago-

nal elements of R. Hence, the covariance matrix is parameterized in terms of the parameter

vector

β ¼ ð log r1;1; r1;2; log r2;2; r1;3; r2;3; log r3;3; . . . ; log rM;MÞ ð5Þ

Finally, we assume that the components of β, β ℓ with ℓ = 1, . . ., M(M+ 1)/2, are a priori

independent and all distributed according to a normal distribution with zero mean and vari-

ance s2
‘
.

The correlation matrices Γq, with q 2 T are assumed to be independent and uniformly dis-

tributed on the space of all correlation matrices.

Posterior computations

Fig 1 summarizes the formulation of our hierarchical model. Since the joint posterior of the

model parameters cannot be obtained in closed form, we devise a latent variables and adaptive

Markov Chain Monte Carlo (MCMC) algorithm for the posterior inference. At each iteration,

for each unit i (i.e. each study), two sets of latent variables are introduced: the random effects

ðδi2; δi3; . . . ; δiai
Þ and the latent vectors related to the specification of the copula model, xik,

i = 1, . . ., N. Drawing on [45] and [44], we suggest to jointly update all latent variables and the

baseline vectors μi. This is the most delicate step of the algorithm. An adaptive metropolis step

is as well foreseen for the updates of the random effects and the baseline log-odds.

The updates of the copula parameters Γq are obtained by applying the two-stage parameter

expanded reparameterization and Metropolis-Hastings (PX-RPMH) algorithm for simulating

a correlation matrix proposed by [46]. Finally, the full conditionals for d and SM are obtained

from standard results for Bayesian analysis of multiple regression models, an adaptive metrop-

olis step is used for their simulation.

It is worth emphasizing here that the algorithm also allows for the possibility that the out-

comes are reported differently in the studies. In this situation, a simple strategy one can imple-

ment consists in analyzing only the subset of events reported by all studies. Even if this

suggestion allows to bypass the problem, the risk is that a considerable amount of data may be

discarded. In our approach missing data are imputed at each iteration of the algorithm.

A detailed description of devised MCMC algorithm is provided in the Appendix.

Results and discussion

We apply the suggested model to two datasets from two Cochrane reviews. The two datasets

have been analysed based on two different models, so that the performance of our model can

be assessed and compared against two different approaches. In both cases we assume that the

studies share the same Gaussian copula correlation matrix Γ and diffuse priors are chosen for

all parameters by setting in particular s2
m

and s2
d equal to 103 and s2

‘
equal to 101/8. In both

cases not all outcomes are investigated in all studies. Missing outcomes value yikm are imputed

at each iteration of the algorithm, by imputing the corresponding latent variable value xikm,

from the model predictive distribution. The results come from a long run of the devised algo-

rithm with 350000 iterations of which 300000 are discarded as burn-in. In both cases the con-

vergence of the algorithm is assessed through the R coda package. Both examples can be

reproduced since the corresponding scripts are provided as demos.
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Home safety

In the first example we consider the data from a subset of a Cochrane review of safety educa-

tion and provision of safety equipment for injury prevention, see [56] for a description of the

methods. The focus is on the evidence relating to the prevention of poisoning injuries. Data

come from twenty-two studies on three outcomes are recorded: Medicines Safe storage,

Household Products Safe Storage and Poison Center Number Possession. Nine treatments are

Fig 1. The multiple outcomes network meta-analysis model. The Figure depicts the elements of the suggested

hierachical model.

https://doi.org/10.1371/journal.pone.0231876.g001
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considered: Usual Care (UC), Education (EDU), Education + Provision of free/low cost equip-

ment (EDU+FE), Education + Provision of free/low cost equipment + Fitting of Equipment

(EDU+FE+F), Education + Home Safety Inspection (EDU+HSI), Education + Provision of

free/low cost equipment + Home Safety Inspection Fitting of Equipment (EDU+FE+HSI+F),

Education + Home Visit (EDU + HV), Provision of Free/Low Cost Equipment (FE). Overall

there are three studies considering all three outcomes, nineteen studies considering two out-

comes. All studies but one are two arms. Fig 2 depicts the network graph for the three outcomes.

[51] analyse the same dataset, based on a different approach. Indeed, [51] model the out-

comes log odds ratio so that a continuous, Gaussian, multivariate distribution can be used as

likelihood. Moreover, in [51] the within-study covariances are taken as known, as they are esti-

mated from the data. In our approach, such matrices are assumed to be unknown so that the

model provides as well an estimate of them. The analysis can be replicated by running the

script example_homesafety.R to be found in the folder demo of the netcopula package. Fig 3

displays the trace plots of the pooled treatment effects against the baseline Usual Care.

Fig 2. Home safety: The network structure. The figure shows the network structure: A: Medicines Safe storage, B: Household Products Safe Storage

and C: Poison Center Number Possession. The thicker the lines the higher the number of studies reporting results on the considered outcome.

https://doi.org/10.1371/journal.pone.0231876.g002
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Fig 3. Home safety: Trace plots. The figure shows the trace plots of the pooled treatments effect against the baseline treatment Usual

Care, after discarding the burnin.

https://doi.org/10.1371/journal.pone.0231876.g003
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Tables 1 to 3 display median estimates along with the highest posterior density (HPD) cred-

ibility intervals for the pooled effects estimated according to our model and according to [51],

referred to as Model 3 in the original paper. Usual care is taken as baseline effect. In all cases

our estimates show a smaller variability, in particular in the estimation of the pooled effect of

Education + Home Visit versus Usual Care, of Education + Home Safety Inspection versus

Usual Care and of Provision of Free/Low Cost Equipment versus Usual Care. The EDU+HV

and EDU+HSI are indeed considered only for one outcome and the effect directly compared

against Usual Care. The FE treatment is considered for two outcomes and only indirectly com-

pared against Usual Care. The smaller uncertainty of the median estimates for such treatments

Table 1. Safe storage of medicines: Pooled effects posterior median and HPD 95% credibility intervals.

treatments Copula MONMA Achana et al. MONMA (model 3)

median 2.50% 97.50% median 2.50% 97.50%

EDU-UC 1.81 1.16 3.04 1.32 0.71 2.16

EDU+FE-UC 1.24 0.76 2.14 2.11 1.08 3.94

EDU+FE+HS-UC 1.16 0.82 1.39 1.93 1.06 3.94

EDU+FE+F-UC 1.94 1.02 2.99 1.27 0.68 2.43

EDU+HIS-UC 0.97 0.64 1.60 0.66 0.06 7.09

EDU+FE+HIS+F-UC 0.96 0.51 1.91 2.09 1.13 4.27

EDU+HV-UC 1.47 1.05 2.16 1.42 0.09 14.49

FE+UC 0.64 0.37 1.02 1.75 0.47 5.67

https://doi.org/10.1371/journal.pone.0231876.t001

Table 3. Poison control center telephone number possession: Pooled effects median and HPD 95% credibility intervals.

treatments Copula MONMA Achana et al. MONMA (model 3)

median 2.50% 97.50% median 2.50% 97.50%

EDU-UC 0.94 0.74 1.6 1.32 0.78 2.15

EDU+FE-UC 1.84 1.2 2.7 2.13 1.15 3.91

EDU+FE+HS-UC 1.36 0.82 2.33 1.95 1.12 3.93

EDU+FE+F-UC 0.66 0.37 1.67 1.26 0.67 2.59

EDU+HIS-UC 3.52 2.47 5.32 0.64 0.05 7.97

EDU+FE+HIS+F-UC 3.9 1.36 7.76 2.1 1.14 4.34

EDU+HV-UC 1.97 1.08 3 1.45 0.08 15.13

FE+UC 1.46 0.92 2.14 1.81 0.44 5.52

https://doi.org/10.1371/journal.pone.0231876.t003

Table 2. Safe storage of other household products: Pooled effects median and HPD 95% credibility intervals.

treatments Copula MONMA Achana et al. MONMA (model 3)

median 2.50% 97.50% median 2.50% 97.50%

EDU-UC 1.2 1.00 1.66 1.32 0.78 2.15

EDU+FE-UC 0.97 0.7 1.24 2.13 1.15 3.91

EDU+FE+HS-UC 1.45 0.94 2.32 1.95 1.12 3.93

EDU+FE+F-UC 1.3 0.98 1.67 1.26 0.67 2.59

EDU+HIS-UC 1.23 0.79 1.81 0.64 0.05 7.97

EDU+FE+HIS+F-UC 0.55 0.40 0.81 2.1 1.14 4.34

EDU+HV-UC 0.34 0.20 0.47 1.45 0.08 15.13

FE+UC 0.60 0.38 0.81 1.81 0.44 5.52

https://doi.org/10.1371/journal.pone.0231876.t002
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shows that our model succeeds in borrowing strength across treatments and outcomes as fore-

seen. There are differences in the estimates of the pooled-effects for some treatment compari-

sons. In almost all cases our estimates belong to the corresponding credibility intervals in [51].

A simulation study (not reported here but available as a further demo in the netcopula R pack-

age) shows that, for different settings of the true parameters value, our model is able to recover

the true values of the pooled effects.

Table 4 reports median estimates and highest posterior density (HPD) credibility intervals

for the between-study standard deviations and correlations. Again, the estimates produced by

the fit of our model show a smaller variability especially in the estimation of the within-study

correlations.

Alcohol dependence

In the second example, the data come from a Cochrane systematic review of pharmacology

treatments for alcohol dependency. See [57, 58] for a detailed description of the methods and

[59] for an update. The same data are also analysed in [43]. In particular, the authors model

the outcome correlations resorting to a Clayton copula model, with one single parameter then

fine-tuning such correlations. Moreover they allow for heterogeneity of the random effects.

Again, our analysis can be replicated by running the script example_alcoholdependence.R to

be found in the folder demo of the netcopula package.

The data come from forty-one studies and three outcomes are considered: Return to Heavy

Drinking, Return to Drinking and Discontinuation. Eleven studies consider all three out-

comes, twenty-two studies consider two outcomes and height report results only on one out-

come. Three treatments are considered: naltrexone (NAL), acamprosate (ACA) and

naltrexone + acamprosate (NAL+ACA). Fig 4 depicts the network graph for the three

outcomes.

Tables 5 to 7 reports median estimates along HPD credibility intervals of the treatments

pool effects obtained according to our model and [43] model. We can see that in all cases, our

estimates show a smaller variability. Table 8 reports median estimates and credibility intervals

for the within outcome correlations. Our model estimates a positive weak association between

Return to Drinking and Discontinuation, even if there is high uncertainty on the estimation of

the correlation between Return to Heavy Drinking and Return to Drinking and Return to

Heavy Drinking and Discontinuation.

Conclusion

In this paper we suggest a new model for a multiple outcomes network meta-analysis in the

case of discrete outcomes. Our model accounts for both correlation between outcomes and

Table 4. Between-study standard deviations and correlations.

treatments Copula MONMA Achana et al. MONMA (model 3)

median 2.50% 97.50% median 2.50% 97.50%

σ1 0.58 0.23 1.32 0.23 0.010 1.080

σ2 0.72 0.35 1.42 0.31 0.04 1.18

σ3 1.07 0.57 1.91 1.08 0.57 1.93

ρ12 0.02 -0.7 0.72 0.45 -0.99 1.00

ρ13 0.12 -0.75 0.83 0.5 -0.98 1.00

ρ23 0.40 -0.44 0.86 0.6 -0.87 0.99

https://doi.org/10.1371/journal.pone.0231876.t004
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between treatments. Moreover, we deal with the case of missing at random outcomes. In a

comparison with two approaches previously proposed in the literature our results show a

lower uncertainty. The model we suggest can be extended to the case of outcomes of different

kinds, both discrete and continuous. We use here the Gaussian copula, but the model can be

easily modified to include a different kind of copula.

Fig 4. Alcohol dependence: The network structure. The figure shows the network structure: A: Return to Heavy Drinking, B:

Return to Drinking and C: Discontinuation. The thicker the lines the higher the number of studies reporting results on the

considered outcome.

https://doi.org/10.1371/journal.pone.0231876.g004

Table 5. Return to heavy drinking: Pooled effects posterior median and HPD 95% credibility intervals.

treatments Copula MONMA Liu et al. MONMA

median 2.50% 97.50% median 2.50% 97.50%

NAL-PLB 0.51 0.35 0.69 0.47 0.33 0.62

ACA-PLB 0.73 0.44 1.01 0.68 0.47 0.97

NAL+ACA-PLB 0.5 0.26 0.86 0.5 0.31 0.74

ACA-NAL 1.4 0.89 2.08 1.47 0.99 2.25

NAL+ACA-NAL 0.99 0.53 1.7 1.08 0.64 1.65

NAL+ACA-ACA 0.71 0.39 1.25 0.75 0.43 1.11

https://doi.org/10.1371/journal.pone.0231876.t005
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However, there are some limitations in the suggested approach. The first problem arises in

the estimation of the copula correlation matrix. The algorithm should be improved in order to

reduce the running time and the uncertainty of the derived estimates. In the proposed

approach the correlation matrix is assumed to be unstructured. This in the case of high-dimen-

sional outcome might slow down the convergence of the algorithm. In this case a parametriza-

tion of the correlation matrix might be a reasonable choice as investigated in [60] and [61].

Moreover the performance of the model is particularly affected by the number of studies that

in general is not high. More specifically, our model includes three orders of latent variables,

the variables for the copula, the random effects and the latent variables to be introduced in the

imputation step. The smaller number of studies considered in the first example (22) compared

those in the second example (41) is in our opinions at the basis of the higher uncertainty in the

estimation of the correlation parameters.

Supporting information

S1 Appendix. In the following we provide a description of the algorithm used for fitting

the multiple outcome network meta-analysis model suggested. For the notation, we refer to

Table 7. Discontinuation: Pooled effects posterior median and HPD 95% credibility intervals.

treatments Copula MONMA Liu et al. MONMA

median 2.50% 97.50% median 2.50% 97.50%

NAL-PLB 0.78 0.63 0.97 0.75 0.55 0.99

ACA-PLB 0.8 0.65 0.97 0.81 0.66 1

NAL+ACA-PLB 0.75 0.42 1.28 0.82 0.47 1.4

ACA-NAL 1.03 0.78 1.32 1.1 0.79 1.49

NAL+ACA-NAL 0.96 0.54 1.58 1.1 0.59 1.75

NAL+AC-ACA 0.93 0.53 1.57 1.02 0.58 1.72

https://doi.org/10.1371/journal.pone.0231876.t007

Table 6. Return to drinking: Pooled effects posterior median and HPD 95% credibility intervals.

treatments Copula MONMA Liu et al. MONMA

median 2.50% 97.50% median 2.50% 97.50%

NAL-PLB 0.61 0.44 0.83 0.57 0.41 0.75

ACA-PLB 0.51 0.42 0.59 0.52 0.41 0.65

NAL+ACA-PLB 0.4 0.26 0.6 0.4 0.22 0.64

ACA-NAL 0.83 0.59 1.15 0.94 0.65 1.29

NAL+AC-NAL 0.66 0.4 1.12 0.71 0.37 1.08

NAL+AC-ACA 0.78 0.52 1.25 0.76 0.44 1.25

https://doi.org/10.1371/journal.pone.0231876.t006

Table 8. Alcohol dependence: Within outcomes correlations.

correlations Copula MONMA

median 2.50% 97.50%

Outcome 1—Outcome 2 0.62 -0.13 0.95

Outcome 1—Outcome 3 0.51 -0.23 0.92

Outcome 2—Outcome 3 0.78 0.25 0.96

Outcome 1 is Return to Heavy Drinking, Outcome 2 Return to Drinking and Outcome 3 is Discontinuation.

https://doi.org/10.1371/journal.pone.0231876.t008
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the model depicted in Fig 1.
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de l’Université de Paris 8. 1959;229–231.

48. Nelsen R.B. An Introduction to Copulas. Second Edition. Springer, New York. 2006.

49. Smith MS. Bayesian Approaches to Copula Modelling. In: Damien P, Dellaportas P, Polson NG, Ste-

phens DA, editors. Bayesian Theory and Applications. Oxford University Press; 2013.

50. Dias S, Welton NJ, Sutton AJ, Ades AE. A Generalised Linear Modelling Framework for Pairwise and

Network Meta-analysis of Randomised Controlled Trials. NICE DSU; 2011.

51. Achana FA, Cooper NJ, Bujkiewicz S, Hubbard SJ, Kendrick D, Jones DR, et al. Network meta-analysis

of multiple outcome measures accounting for borrowing of information across outcomes. BMC Medical

Research Methodology. 2014; 14(92):1–16.

52. Higgins JP, Whitehead A. Borrowing strength from external trials in a meta-analysis. Statistics in Medi-

cine. 1996; 15(24):2733–2749. https://doi.org/10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-

SIM562>3.0.CO;2-0 PMID: 8981683

53. Leonard T, Hsu JS. Bayesian inference for a covariance matrix. Annals of Statistics. 1992; 20(4):1669–

1696. https://doi.org/10.1214/aos/1176348885

54. Danaher PJ, Smith MS. Modeling Multivariate Distributions Using Copulas: Applications in Marketing.

Marketing Science. 2011; 30(1):4–21. https://doi.org/10.1287/mksc.1090.0491

55. Pinheiro JC, Bates DM. Unconstrained parameterisations for variance–covariance matrices. Statistics

in Computing. 1996; 6(3):289–296. https://doi.org/10.1007/BF00140873

56. Kendrick D, Coupland C, Mulvaney C, Simpson J, Smith S, Sutton A, et al. Home safety education and

provision of safety equipment for injury prevention. Cochrane Database Syst Rev. 2007; 1(1):197–204.

57. Srisurapanont M, Jarusuraisin N. Naltrexone for the treatment of alcoholism: a meta-analysis of ran-

domized controlled trials. International Journal of Neuropsychopharmacology. 2005; 8(2):267–280.

https://doi.org/10.1017/S1461145704004997 PMID: 15850502

58. Rosner S, Hackl-Herrwerth A, Leucht S, Lehert P, Vecchi S. Soyka. M. (2010). Acamprosate for alcohol

dependence. Cochrane Database of Systematic Reviews; 9.

59. DeSantis SM, Zhu H. A Bayesian mixed-treatment comparison meta-analysis of treatments for alcohol

dependence and implications for planning future trials. Medical Decision Making. 2014; 34(7):899–910.

https://doi.org/10.1177/0272989X14537558 PMID: 24935915

60. Webb EL, Forster JJ. Bayesian model determination for multivariate ordinal and binary data. Computa-

tional Statistics & Data Analysis. 2008; 52(5):2632–2649. https://doi.org/10.1016/j.csda.2007.09.008

61. Talhouk A, Doucet A, Murphy K. Efficient Bayesian inference for multivariate probit models with sparse

inverse correlation matrices. Journal of Computational and Graphical Statistics. 2012; 21(3):739–757.

https://doi.org/10.1080/10618600.2012.679239

PLOS ONE A Bayesian multiple outcome network meta-analysis model

PLOS ONE | https://doi.org/10.1371/journal.pone.0231876 April 28, 2020 17 / 17

https://doi.org/10.18637/jss.v080.i05
https://doi.org/10.1002/jrsm.1184
http://www.ncbi.nlm.nih.gov/pubmed/26461457
https://doi.org/10.1002/jrsm.1186
http://www.ncbi.nlm.nih.gov/pubmed/26461816
https://doi.org/10.1002/sim.8360
https://doi.org/10.1002/sim.8360
http://www.ncbi.nlm.nih.gov/pubmed/31583750
https://doi.org/10.1111/rssc.12220
https://doi.org/10.1093/biomet/93.3.537
https://doi.org/10.1080/01621459.2011.644501
https://doi.org/10.1080/01621459.2011.644501
https://doi.org/10.1198/106186006X160681
https://doi.org/10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0
https://doi.org/10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0
http://www.ncbi.nlm.nih.gov/pubmed/8981683
https://doi.org/10.1214/aos/1176348885
https://doi.org/10.1287/mksc.1090.0491
https://doi.org/10.1007/BF00140873
https://doi.org/10.1017/S1461145704004997
http://www.ncbi.nlm.nih.gov/pubmed/15850502
https://doi.org/10.1177/0272989X14537558
http://www.ncbi.nlm.nih.gov/pubmed/24935915
https://doi.org/10.1016/j.csda.2007.09.008
https://doi.org/10.1080/10618600.2012.679239
https://doi.org/10.1371/journal.pone.0231876

