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Asthma is a heterogeneous respiratory disease reflecting distinct
pathobiologic mechanisms. These mechanisms are based, at
least partly, on different genetic factors shared by many other
conditions, such as allergic diseases and obesity. Investigating
the shared genetic effects enables better understanding of the
mechanisms of phenotypic correlations and is less subject to
confounding by environmental factors. The increasing
availability of large-scale genome-wide association study
(GWADS) for asthma has enabled researchers to examine the
genetic contributions to the epidemiologic associations between
asthma subtypes and those between coexisting diseases and/or
traits and asthma. Studies have found not only shared but also
distinct genetic components between asthma subtypes,
indicating that the heterogeneity is related to distinct

genetics. This review summarizes a recently compiled analytic
approach—genome-wide cross-trait analysis—to determine
shared and distinct genetic architecture. The genome-wide
cross-trait analysis features in several analytic aspects: genetic
correlation, cross-trait meta-analysis, Mendelian
randomization, polygenic risk score, and functional analysis. In
this article, we discuss in detail the scientific goals that can be
achieved by these analyses, their advantages, and their
limitations. We also make recommendations for future
directions: (1) ethnicity-specific asthma GWASs and (2)
application of cross-trait methods to multiomics data to
dissect the heritability found in GWASs. Finally, these

analytic approaches are also applicable to complex and
heterogeneous traits beyond asthma. (J Allergy Clin Immunol
2021;147:796-807.)
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EPIDEMIOLOGIC FACTORS ASSOCIATED WITH
ASTHMA

Asthma is a common chronic respiratory disease that affects
approximately 340 million individuals worldwide.' Epidemio-
logic studies have identified many factors associated with asthma,
including the following: genetic factors; demographics (eg, age
and sex); personal and family history of allergic diseases and
comorbid illnesses (eg, obesity and mental illnesses); and
environmental (eg, air pollution), nutritional, and lifestyle (eg,
physical activity) factors.”

Of the various factors associated with development of
asthma, allergic diseases such as atopic dermatitis and allergic
rhinitis play a pivotal role. The coexistence of allergic diseases with
asthma in children and adolescences is high (eg, as high as 60% to
80% for allergic rhinitis).” In both children and adults, allergic
sensitization to allergens has been found to be an important risk
factor for asthma and bronchial hyperresponsiveness.* " It is likely
that the frequent coexistence of allergic diseases and asthma is due
to their similar pathobiologic mechanisms.’

Another major factor associated with asthma is obesity in both
children and adults.'*"" This relation is complex: “obese-asthma
syndrome” consists of multiple subgroups (eg, de novo asthma,
asthma modified by obesity, and obesity predisposed by
asthma).'’ Yet, studies have suggested the causal link from
(anthropomorphically defined) overweight or obesity to
asthma inception.'”'>'* Emerging evidence also suggests
the role of adiposopathy—“sick fat” or adipose tissue
dysfunction—in the pathogenesis of complex disease conditions,
including asthma.' Adiposopathy is characterized by impaired
adipogenesis, altered lipid metabolism, and adipose and/or
systemic inflammation (eg, upregulated IL-6, Tyl polarization,
and Ty17 pathways).'”

Furthermore, studies have also reported that mental health
disorders, such as attention-deficit/hyperactivity disorder,'*
anxiety, and major depressive disorder, are a comorbidity of
asthma.'® Yet, studies have suggested that such associations are
potentially bidirectional.'®!” For example, anxiety can induce
asthma symptoms,'® whereas living with an asthma condition
(eg, poor asthma control and worse asthma-related quality of
life) may have mental health implications.'” The exact
mechanisms that underlie these mental health disorder—asthma
associations remain uncertain.
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Abbreviations used
ASSET: Association analysis based on SubSETSs
CAAPA: Consortium on Asthma among African-Ancestry
Populations in the Americas
CPASSOC: Cross-phenotype association
ENCODE: Encyclopedia of DNA elements
eQTL: Expression quantitative trait locus
GTEx: Genotype-Tissue Expression Project
GWAS: Genome-wide association study
ImmGen: Immunological Genome Project
LD: Linkage disequilibrium
LDSC: Linkage disequilibrium score regression
SNP: Single-nucleotide polymorphism

ASTHMA HETEROGENEITY AND ITS RELATED
GENETICS

Understanding the exact pathobiology of asthma involves
several major challenges—the identification of causal
mechanisms, the effect of multiple environmental factors (eg,
diet, physical activity, air pollution, and environmental
microbiome), and the heterogeneity of asthma itself. Although
asthma had been considered a single disease for decades, a
growing body of literature has revealed that asthma comprises a
range of heterogeneous subtypes differing in presentation and
disease course'® and that the heterogeneity is based, at least
partly, on different genetic factors for asthma subtypes (eg, child-
hood vs adult asthma, allergic vs nonallergic asthma).'*'**"
Accordingly, examinations of subtype-specific genetics in
conjunction with shared genetic factors between coexistent
diseases or traits (eg, allergic diseases and obesity) and asthma
should inform research on the heterogeneity in asthma and
provide insight into corresponding pathology (Fig 1).”"*

The genetic effect of asthma is significant, with the heritability
estimates ranging from 35% to 95%.%* Genome-wide association
studies (GWASs) have been widely applied to complex diseases
for more than 2 decades, with a greatly increased sample size.
However, according to Schoettler et al, in the GWAS of asthma,
a larger sample size with heterogeneous subtypes is not
necessarily better than a smaller sample size for homogeneous
subtypes to identify the relevant genetic variants because the
genetic background between asthma subtypes may be different.”*
Thus, investigating the shared genetic contribution to
coexistent diseases or traits (eg, allergic disease, obesity) and
specific asthma subtypes (eg, allergic asthma, obesity-
associated asthma phenotype) would boost the power to detect
subtype-specific variants that would have been masked by a
traditional single-disease GWAS (Fig 1). A comprehensive
characterization of these shared genetic architectures would
improve understanding of the multiple dimensions of asthma
pathobiology.

Traditionally, examining the phenotypic correlation or
coexistence of other factors is a useful way to investigate the
heterogeneity of asthma. However, this approach may have
residual confounding and provide insufficient biologic insight
as to which underlying mechanism(s) drive the association.
A major advantage in going from phenotypic correlations to
genetic correlations is improved understanding of the
mechanism(s): shared genetic components can be identified at
different levels from the whole genome to individual variants,
providing insights into the reasons why asthma and coexistent
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diseases or traits are correlated. Furthermore, genetic correlations
are less subject to confounding by environmental factors for
several reasons. After adequate. control for population ancestry,
genetic correlation would occur only if the germline genetic
variant is causal or in linkage disequilibrium (LD) with the causal
variant of both traits. A purely environmental confounding factor
(eg, air pollution) would not lead to genetic correlation because it
is not associated with any genetic variant (Fig 2, A and B). In
contrast, if an environmental factor is an intermediary step
between the genetic variant and the trait, it is in the causal
pathway and is not considered a confounder (ie, it does not create
a false genetic correlation between the 2 traits) (Fig 2, C).
Population stratification is arguably the only confounding factor
in GWAS, but it can be effectively controlled by using principal
components from genome-wide genetic markers.”” Once the
genetic effect on diseases and traits has been robustly established,
the genetic correlation between diseases and traits can be reliably
. . 26-29 . . .
estimated and replicated. In the following sections, we will
discuss a range of detailed analyses that can be used to compile
a comprehensive investigation between asthma and other coexis-
tent diseases or traits.

GENOME-WIDE CROSS-TRAIT ANALYSIS STUDY
DESIGN

With the increasing availability of large-scale genetic data for
asthma, such as the GABRIEL Consortium,” the Trans-National
Asthma Genetic Consortium,’' and the UK Biobank,'>?!-?%26:32
as well as the advancement of genetic epidemiology and statisti-
cal genetics methods, researchers are now able to examine the ge-
netic contribution to the epidemiologic associations between
asthma subtypes and those between coexistent diseases or traits
and asthma. For example, to understand the genetics of asthma
heterogeneity, 2 recent studies examined the genetic overlap be-
tween asthma subtypes—childhood asthma and adult asthma—
by using the UK Biobank and 23andMe data.'”*" They both
found substantially shared (eg, ILIRLI, HLA-DQAI) but also
distinct (eg, ORMDL3 specific for childhood asthma) genetic
components between these 2 subtypes, supporting the idea that
the heterogeneity is related to distinct genetics.'>*’ These funda-
mental studies largely depend on single-trait analysis, and they
can be further extended by our recently implemented study design
called genome-wide cross-trait analysis, which is broadly appli-
cable to asthma and many other diseases and/or traits. The design
has been successfully applied to the UK Biobank and GWAS con-
sortia data sets and has determined the shared genetic
architectures between asthma and allergic diseases,?> obesity,12
and mental health disorders,”' which were reproducible in other
studies.”®>” A genome-wide cross-trait analysis features several
analyses: genetic correlation, cross-trait meta-analysis, Mende-
lian randomization, polygenic risk score, and GWAS functional
analysis. Each component is discussed in more detail in subse-
quent sections and depicted in Fig 3. A glossary of the cross-
trait GWAS terminology may be found in Table I. A summary
of genome-wide cross-trait analysis methods may be found in
Table II.

PLEIOTROPY AND CAUSALITY
Genetic pleiotropy refers to the same gene simultaneously
influencing multiple traits.*® A gene can be associated with more
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B shared genetics between risk factors
(e.g., allergic diseases, obesity, and
mental health disorders) and asthma

A Shared and distinct
genetics between asthma
subtypes, e.g., allergic asthma
vs. non-allergic asthma

Non-allergic

Allergic asthma
specific genetics

Non-allergic asthma
specific genetics

Shared genetics
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Mental health
disorders

FIG 1. Venn diagram of shared and distinct genetics between asthma subtypes and those between
coexistent diseases or traits and asthma. A, Shared and distinct genetics between asthma subtypes
(eg, allergic asthma vs nonallergic asthma). B, Shared genetics between coexistent diseases/traits
(eg, allergic diseases, obesity, mental health disorders) and asthma. The overlapping size between 3
example coexistent diseases/traits and asthma are based on the order of their genetic similarities, with
allergic diseases sharing the most genetic components with asthma, followed by obesity and mental health
disorders. A and B, The area covered by horizontal cross-lines indicates similar underlying genetic
components/mechanisms in allergic asthma and shared genetics of allergic diseases and asthma.

than 1 trait in 2 ways: horizontal pleiotropy and vertical
pleiotropy (Fig 4). Horizontal pleiotropy, which is often
simplified as pleiotropy, is defined as 1 genetic variant having
independent effects on multiple traits. Vertical pleiotropy, which
is often called genetic causality, is defined as a genetic variant
having an effect on a trait via its genetic effect on an intermediate
trait. Identification of pleiotropy may improve the understanding
and utility of disease-gene biology in multiple ways. First, there is
a potential to detect the broad biologic impact of a gene, such as
through phenome-wide association studies.”* Second, if a
pharmacologic genetic target could affect multiple traits or dis-
eases, it might allow a drug developed for 1 disease to be
repurposed for other diseases. For example, 3-hydroxy-3-
methyl-glutaryl-coenzyme A reductase inhibitors, commonly
known as statins, have also been found to have several molecular
actions beyond cholesterol reduction,” such as reducing the
development of type 2 diabetes.’® Third, knowing the genetic
causality can help develop disease prevention strategies via
intervention in relation to nongenetic modifiable factors. For
example, because the obesity-asthma genetic association suggests
obesity-to-asthma effects, reduction of body mass index in
patients with obesity might counteract the genetic effect, thereby
potentially preventing the development of asthma. Therefore,
distinguishing horizontal pleiotropy from vertical pleiotropy in
cases in which both contribute to genetic correlations is important
and can be challenging. We discuss methods for these analyses in
the following sections on cross-trait meta-analysis and Mendelian
randomization.

GENETIC CORRELATION

The genetic correlation between 2 traits (eg, A and B) measures
the Pearson correlation between the genetic variant effect on traits
A and B.*”** It could be the result of horizontal pleiotropic action
of genes on trait A and B or a causal link between A and B. Ge-
netic correlation indicates intrinsic correlations between 2 traits
unaffected by environmental confounders, which are common
and often unavoidable in conventional epidemiologic studies.
Several methods have been developed to estimate genetic
correlations, such as linkage disequilibrium score regression
(LDSC/stratified-LDSC),”’” genome-wide complex trait analysis
(GCTA/GCTA-linkage disequilibrium and minor allele fre-
quency stratified-I),”® and SumHer/BLD-LDAK from Linkage-
Disequilibrium Adjusted Kinships (LDAK).”> Among these,
LDSC becomes one of the most commonly used methods for
estimating genetic correlations because it uses GWAS summary
statistics, which largely reduces computational burden and
accounts for confounding in single-trait heritability (such as
population stratification) and confounding in genetic correlation
(such as shared study subjects).””*’ The genetic correlation
estimate (the Rg value) ranges from —1 to 1, where —1 indicates
a perfect negative genetic correlation and 1 indicates a perfect
positive genetic correlation. For example, Ferreira et al recently
reported that the genetic correlation between childhood and adult
asthma is 0.67 using same set of control samples, indicating both
shared and distinct genetics between 2 asthma subtypes at the
genome-wide level.'” A recent study also conducted sensitivity
analyses to examine the potential bias in LDSC due to
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A
G: Shared genetic variants bl
Trait 1
b2
E: Shared environmental Trait 2
factors (not affected by
shared genetic variants,
i.e., purely enviroment)
B E: Shared environmental

factors (not affected by
shared genetic variants,
i.e., purely enviroment)

/\

G: Shared genetic variants

G: Shared genetic variants |—»

» Traitl » Trait 2
Trait 1
d1
E: Shared environmental
factors (partially affected by
shared genetic variants)
42 Trait 2

FIG 2. Directed acyclic graphs of relationship between shared genetic or environmental factors with traits.
A, Shared environment factors (not affected by shared genetic variants) will not bias genetic correlation.
After appropriately control for population ancestry, the genetic effects b7 and b2 are unrelated to E, and
therefore the genetic correlation—correlation b7 and b2—is not related to E. B, Another situation in which
shared environment factors (not affected by shared genetic variants) will not bias genetic correlation.
C, Shared environment factors (partially affected by shared genetic variants). In this case, E is not
considered a confounder; rather, it is considered a mediator in the causal pathway of interest; c represents
the effect of shared genetic variants on environmental factors, and d7 and d2 represent the effect of shared

environmental factors on traits.

overlapping subjects; the study used the following 4 scenarios
while maintaining the same sample size: (1) no case overlap or
control overlap, (2) case overlap and no control overlap, (3) no
case overlap and control overlap, and (4) case overlap and control
overlap. The sensitivity analyses showed that the Rg estimate
from LDSC is unbiased to overlapping cases and/or controls.””

CROSS-TRAIT META-ANALYSIS

Genetic correlation depicts the genome-wide average sharing
of genetic effect between traits. To identify genetic variants with
pleiotropic effects, cross-trait GWASs have used a range of
conventional and recently developed meta-analysis methods.
Typically, summary statistics of distinct but potentially related
traits are combined in a meta-analysis framework to detect
specific loci with shared associations. Such univariate approaches

do not require access to individual-level genotype data and thus
are readily applicable to existing GWAS results. Combining
results across studies of different traits also improves the statistical
power of detecting modest cross-trait genetic effects that may not
have reached genome-wide significance for any single trait.
Many cross-trait meta-analysis methods are available.”' Two
specific methods, association analysis based on SubSETs
(ASSET)** for binary traits and cross phenotype association
(CPASSOC)™® for continuous or binary traits, have been shown
to outperform a range of alternatives for detecting pleiotropy
effects shared in all traits or a subset of traits.*' ASSET combines
an all-subsets fixed-effects GWAS meta-analysis with a bayesian
method to evaluate the best-fit configuration of genotype-
phenotype associations.*” Similar to the ASSET, CPASSOC as-
sumes that effects may exist only within a subset of traits.*’
This feature is not only useful for detecting overall pleiotropy
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Phase 1. Asthma GWAS data
availability

Phase 2. Genome-wide genetic
correlation analysis

_______________________________________________________________________________________________________ Lo eeee e

Phase 3. Identification of
pleiotropic variants, genetic
causal inference, functional

interpretation of GWAS signal

Asthma GWAS consortia

GABRIEL Consortium
Asthma case n=10,365
Control n=16,110
European ancestry
PMID: 20860503

TAGC consortium
Asthma case n=10,365
Control n=16,110
Multi-ethnic and European
ancestry
PMID: 29273806

CAAPA consortium
Asthma case n=7,009
Control n=7,645
African-admixed ancestry
PMID: 30787307

Ferreira et al, 2017
Asthma/eczema case n=96,794
Control n=145,775
European ancestry
PMID: 29083406

Shrine et al, 2018
Moderate-severe asthma case
n=5,135
Control n=25,675
European ancestry
PMID: 30552067

Zhu et al, 2018
Asthma case n=14,085
Control n=76,768
European ancestry
PMID: 29785011

UK Biobank
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Ferreira et al, 2019
Childhood-onset asthma case n=13,962
Adult-onset asthma case n=26,582
Shared control n=300,671
European ancestry
PMID: 30929738

Zhu et al, 2019
Childhood-onset asthma case n=13,435
Adult-onset asthma case n=33,418
Atopic asthma case n=23,982
Non-atopic asthma case n=28,862
Control n=various by case type
European ancestry
PMID: 31669095

Pividori et al, 2019
Childhood-onset asthma case n=9,433
Adult-onset asthma case n=21,564
Shared control n=318,237
European ancestry
PMID: 31036433

Zhu et al, 2019
Asthma case n=46,802
Childhood-onset asthma case n=9,676
Adult-onset asthma case n=22,296
Shared control n=347,481
European ancestry
PMID: 31619474

Genome-wide
genetic correlation
analysis

'

!

Cross-trait meta-analysis

Mendelian randomization
analysis

GWAS functional
analysis

'

|
! !

!

eQTL enrichment
analysis

Fine-mapping credible

Variant functional

set analysis annotation

eQTL colocalization
analysis

FIG 3. Data availability for GWAS of asthma and study design of genome-wide cross-trait analysis.
Genome-wide genetic correlation analysis is used to examine the genetic correlation between a pair of traits
by using genome-wide SNPs. Cross-trait meta-analysis is used to determine the shared genetic variants
between multiple traits. Mendelian randomization analysis is used to examine the causal effect of the
exposure trait on the other trait by using the genetic variants for exposure trait as the instrument variables.
eQTL enrichment analysis is used to determine the enrichment of genetic variants associated with complex
traits in eQTL. Fine mapping credible set analysis is used to examine whether there is a potential causal
variant at each locus. Variant functional annotation is used to predict the functional effect of an individual
SNP on a transcript. eQTL colocalization analysis is used to determine the shared causal variants between
GWAS signals and eQTL signals. CAAPA, Consortium on Asthma among African-ancestry Populations in

the Americas; TAGC, Trans-National Asthma Genetic Consortium.

but is also important for detecting subset-specific effect (eg,
variants shared with only some but not all asthma subtypes
because of heterogeneity). Unlike ASSET, CPASSOC identifies
the subset of studies with effects by sequentially adding a trait
by an incremental order of their association significance. Among
the sequentially examined subsets, the one with the highest
meta-statistics is selected. Both methods are designed to correct
for inflation due to overlapping subjects. However, our previous
simulation analysis showed that caution is advised for CPASSOC
when almost all controls were shared between studies.*' Another
caveat is that it is sometimes difficult to retrieve the exact number
of overlapping subjects between 2 studies, which is required for
ASSET. A recently developed method called multitrait analysis

of GWAS™ describes a promising strategy to address the problem
by using LDSC.>” However, this method assumes that all
single-nucleotide polymorphisms (SNPs) share the same
variance-covariance matrix among all traits, which could be
violated when some SNPs are associated only with a subset of
traits.**

In a previous cross-trait analysis of allergic diseases and
asthma,”” ASSET was used to determine 38 shared loci, some
of which (such as variations in EVI5, NRROS, and Cl1Iorf30)
are newly discovered from the cross-trait meta-analysis. In the
cross-trait analysis of mental health disorders and asthma,?! the
use of ASSET identified 7 loci that are jointly associated with
attention-deficit/hyperactivity disorder and asthma, 1 locus that
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TABLE I. Glossary of terms related to genome-wide cross-trait analysis

Term

Definition

Cross-trait meta-analysis

eQTLs
Genetic correlation

GWAS

HLA/MHC region

A meta-analysis testing the null hypothesis that none of the traits being examined is associated with the genetic variant. One
genetic variant is tested at a time.

Genetic variants that are associated with the gene expression levels.

Assuming that all genetic variants have some effect on a trait and that their effect size follows a gaussian distribution (called
the infinitesimal model), the genetic correlation between 2 traits (A and B) measures the Pearson correlation between the
genetic variant effect on traits A and B.

An analytic method that tests the association between each genetic variant and a specific phenotype (a disease status or a
quantitative trait). One genetic variant is tested at a time.
A genomic region of an approximately 3.6-Mb genome sequence located on the chromosome 6p21, which is mainly known

for its pervasive pleiotropic effect and immune-related function. The extended MHC region is at 25 to 34 Mb on

chromosome 6.

Horizontal pleiotropy
Instrumental variables
exposure or risk factor.

Mendelian randomization

A genetic variant or gene having independent effects on multiple traits that do not have a causal effect on each other.
Variables that are associated with the modifiable exposure or risk factor of interest and affect the outcome only through the

An analytic approach that examines the causality of an observed association of a modifiable exposure or risk factor with an

outcome of interest by using >1 genetic instrumental variables.

Polygenic risk score

A score based on a set of disease and/or trait-associated genetic variants, commonly defined as the weighted sum of their

genotypes. Weights are chosen by their association effect on the disease and/or trait, directly from GWAS or further
modified on the basis of a suitable statistical model incorporating all genetic variants on the genome.

Vertical pleiotropy
(genetic causality)

A genetic variant or gene having an effect on a trait that has causal effect on another trait.

is jointly associated with anxiety disorder and asthma, and 10 loci
that are jointly associated with major depressive disorder and
asthma. Of note, the HLA region (chromosome 6, 25-34 Mb)
was found to be shared in the cross-trait meta-analysis of allergic
disease and asthma and in that between major depressive disorder
and asthma. The HLA region was commonly reported to have
important pleotropic effects.”” However, because of its high
gene density and extensive LD, GWAS signals within the HLA
region are difficult to map in fine resolution. Thus, a considerable
amount of work, which was recently developed in the sequencing
of the entire HLA region,% has established its central role in the
biology of the immune system and in predisposition to a large
number of inflammatory diseases. However, the extent to which
these diseases share the same causal risk variants or genes remains
unclear. Finally, in the cross-trait analysis of obesity and asthma,
CPASSOC has been used to determine potential shared loci and
variations in MYL6 and ACOXL and replicated them in a mouse
model."?

Many cross-trait effects are not surprising. For example,
variants in the CIlorf30, ILIRI, and FLG genes, as well as in
the HLA region, are associated with allergic diseases and
asthma,”® as was found in previous studies with individual
traits.”® Others are perhaps less intuitive and can shed light on
hitherto unknown connections between traits. For example,
variants in the POLI gene have been shown to affect risk of
both major depressive disorder and asthma. These seemingly
unrelated diseases share pathways involved in immune
processes.” These results demonstrated a key benefit of
cross-trait meta-analysis, namely, discovery of shared loci that
have not been reported as having genome-wide significance
(P <5 X 107 from the individual-trait GWAS. As another
example, whereas the RERE gene was found to be associated
only with asthma in the single-trait GWAS,* the top variant,
rs301817, within RERE gene was found to be shared by major
depressive disorder and asthma,”' although the biologic role of

RERE between asthma and major depression needs further
exploration.

MENDELIAN RANDOMIZATION

When 2 traits are known to be correlated (phenotypically or
genetically), identification of causality between the traits is
imperative. Here, GWAS data for these traits provide a unique
opportunity to make robust causal inference by using GWAS
summary statistics without requiring individual-level data for
both traits in the same set of subjects. Mendelian randomization
refers to an analytic approach that uses the genetic variants for 1
trait (exposure [eg, body mass index]) as the instrument variables
to examine the causal effect of the exposure trait on the other trait
(outcome [eg, asthma]). This method is based on the theory that
the germline alleles of these variants are randomly allocated,
which can be seen analogously to the randomized treatment
assignment in a randomized controlled trial resulting in an
unconfounded exposure-outcome relationship.’” It provides a
valuable tool—especially when randomized controlled trials are
not feasible and observational studies provide a biased estimate
for causal effects because of unmeasured confounding, model
misspecification, or reverse causation. Of note, the validity of
Mendelian randomization depends on 3 key assumptions:
(1) the relevance assumption, (2) the independence assumption,
and (3) the exclusion restriction, which have been thoroughly
described in a previous review."’ Briefly, relevance assumption
refers to the genetic variants that are strongly associated with
the exposure of interest; independence assumption refers to the
effect of genetic variants on the outcome of interest that is
unconfounded; and exclusion restriction refers to the genetic
variants that affect the outcome only through the exposure of
interest.

With the availability of large-scale GWASs, it has become
easier to find genetic variants that are strongly associated with the
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TABLE Il. Summary of genome-wide cross-trait analysis methods
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Analysis method Software

Advantages

Disadvantages

Examples of application
in asthma or complex
traits/PMID

Genetic LDSC/S-LDSC

correlation

GCTA/GCTA-
LDMS

SumHer/BLD-
LDAK

Cross-trait ASSET

meta-analysis
CPASSOC

MTAG

Mendelian Inverse

randomization variance—
weighted
approach

Egger regression

Weighted median

estimator

Weighted
mode-based
estimate

(weighted MBE)

Requires only GWAS summary
statistics; computationally
efficient; accounts for additive
confounding in single-trait
heritability (such as population
stratification) and confounding in
genetic correlation (such as
overlapping samples); can allow
relatively flexible heritability
architecture in MAF, LD, and
functional categories (the authors
LDSC recommended S-LDSC)

Estimates genetic correlation with
high accuracy; the LD and
association effect are computed
from the same genotype data;
accounts for different genetic
architectures by MAF and LD
categories (the authors of GCTA
recommended GCTA-LDMS-I)

Is similar to LDSC but assumes a
specific parametric model for
MAF/LD-dependent genetic
architecture and multiplicative
inflation bias due to population
stratification or family relatedness;
can allow the same baseline LD
categories as in LDSC (the authors
of LDAK recommended
BLD-LDAK/BLD-LDAK-alpha)

Accounts for overlapping samples

Is applicable to both binary and
continuous traits

Accounts for possibly unknown
sample overlap

Is applicable when the genetic
variants’ pleiotropic effects
(genetic variant—outcome direct
effect) happen to cancel out

Is applicable when the genetic
variant—exposure association is
independent of the pleiotropic
effect; appears to protect false
positives in several simulation
studies

<50% (counts or total weights) of the
genetic variants are invalid
instruments

Is applicable when the variants
satisfying the exclusion restriction
assumption give a causal effect
estimate that is the majority
among the effect estimates from
all variants in the analysis; appears
to protect false positives in several
simulation studies

Is sensitive to other genetic
architectures not captured by the
baseline LD model; requires that
the reference panel LD and GWAS
summary statistics be computed
from the same population

Requires genotype data; computation
is infeasible for an extremely large
data set

Is sensitive to other genetic
architecture deviated from the
assumed parametric model;
requires that the reference panel
LD and GWAS summary statistics
be computed from the same
population

Is applicable only to binary traits

Yields potential false positives due to
overlapping samples

Requires an assumption that all
variants share the same genetic
correlation across all traits (ie, no
subset-specific effect is assumed)

Accounts for only the designed
scenario; requires independent
variants

Accounts for only the designed
scenario; requires independent
variants; when the outcome
GWAS is low-power, its power to
detect causal effect could be
substantially smaller than that of
other methods

Accounts for only the designed
scenario

Accounts for only the designed
scenario

Childhood asthma and adult asthma/

30929738, allergic diseases and
asthma/29785011, obesity and

asthma/31669095, mental health
disorders and asthma/31619474

Complex traits/ 21167468

Complex traits/ 32203469

Allergic diseases and asthma/
29785011, mental health disorders
and asthma/31619474

Obesity and asthma/31669095

Complex traits/29292387

Asthma and cancer/32006205

Asthma and cancer/32006205

Asthma and cancer/32006205

Asthma and cancer/32006205

(Continued)
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TABLE Il. (Continued)
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Analysis method Software

Advantages

Disadvantages

Examples of application
in asthma or complex
traits/PMID

GSMR

MR-PRESSO

LCV

CAUSE

Polygenic
risk score

LDpred

MTGBLUP

MTAG

CTPR

Accounts for LD between variants;
detects and accounts for outliers
that could violate the exclusion
restriction assumption

Detects and accounts for outliers
that could violate the exclusion
restriction assumption

Distinguishes genetic correlation
from genetic causality; uses all
genome-wide variants

Allows genetic correlation and
genetic causality for different
variants; can estimate causal effect
size; uses all genome-wide
variants; has better power avoid
false positive trade-off than other
methods

Accounts for LD between SNPs

Simultaneously estimates genetic
effect and genetic correlation for
multiple traits

Provides improved polygenic
prediction thanks to a consistent
estimator, and its effect estimates
always have a lower genome-wide
mean squared error than the
corresponding single-trait GWAS
estimates do

Optimizes the prediction accuracy
for the primary trait of interest by
taking advantage of shared genetic
effects among multiple traits;
secondary traits of GWAS can be
individual-level data or summary
statistics

Requires sufficient numbers of
GWAS significant variants;
requires a genetic variant—
exposure association that
is independent of the pleiotropic
effect

Requires independent and sufficient
numbers of GWAS significant
variants; requires a genetic
variant-exposure association that
is independent of the pleiotropic
effect

Does not estimate causal effect size,
but does provide a scale parameter
with higher magnitude indicating
that it is closer to causality;
requires that the LD reference
match the study populations

Requires independent variants by
pruning GWAS results; may have
a higher than expected false-
positive rate than Egger regression
and MBE when a large fraction of
variants affect the exposure and
outcome through a strong shared
factor; in addition, the power for
both exposure and outcome
GWAS is high

Is computation-intensive when the
number of SNPs is more than a
couple of million

Assumes an infinitesimal genetic
architecture. Is computation-
intensive when the number of
SNPs is more than a couple of
million and becomes prohibitive
for more than hundreds of
thousands of samples

Requires an assumption that all
variants share the same genetic
correlation across all traits (ie, no
subset-specific effect is assumed);
power might be reduced when the
genetic correlations between traits
are not very high

Requires individual-level data for the
primary trait of interest

Obesity and asthma/31669095,
mental health disorders and
asthma/31619474

Asthma and cancer/32006205

Obesity and asthma/31669095

Complex traits/32451458

Asthma/32522462

Complex traits/25640677

Complex traits/29292387

Complex traits/30718517

BLD, Background linkage disequilibrium; CAUSE, causal analysis using summary effect estimates; CTPR, cross-trait penalized regression; GCTA, genome-wide complex trait
analysis; GSMR, generalized summary data—based Mendelian randomization; LCV, latent casual variable; LDMS-I: linkage disequlibrim and minor allele frequency stratified-I;
MAF, minor allele frequency; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; MTAG, multitrait analysis of GWAS; MTGBLUP: multi-trait genomic
best linear unbiased prediction; PMID, PubMed identifier; S-LDSC, stratified LDSC; SumHer, single-nucleotide polymorphism heritability.

exposure trait (satisfying the relevance assumption). Although
population stratification is arguably the only potential confounder
between the genetic variants and the outcome, it can be effectively
accounted for in standard GWAS analysis. Accordingly, the

independence assumption is not difficult to satisfy. The exclusion
restriction assumption is the nonexistence of other pathway(s)
from the genetic variant to the outcome except through the
exposure. This assumption is difficult to verify and hence has led
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Horizontal pleiotropy

Gene A

Trait A

(e.g., LOC152225)

\/

(e.g., Asthma)

Trait B

(e.g., Anxiety)

Vertical pleiotropy

Unmeasured
confounders
([ snP1
(e.g., FTO)
Instrumental
variables SNP2 Exposure Outcome
used by < e.g.iL6) [ | (e.g. BMI) *l(e.g., Asthma)
Mendelian ~
randomization
SNPk
L [ (e.9., LEP)

FIG 4. Diagram of horizontal pleiotropy and vertical pleiotropy with examples for asthma. BMI, Body mass

index.

to the development of various Mendelian randomization methods
that relax this assumption in 3 ways: (1) by using less stringent
assumptions, such as an inverse variance welghted approach,*®
Mendelian randomization-Egger regression,’ a_ welghted
median estimator,”® and a mode-based estimate’’; (2) by
removing genetic variants that violate the assumptlon such as
generalized summary data—based Mendelian randomization™
and Mendelian randomization pleiotropy residual sum and
outlier™; and (3) by estimating the likelihood from pure horizon-
tal pleiotropy to pure causality, such as the latent causal variable’*
and causal analysis using summary effect estimates.’” The major
features of each method can be found in Table II. Users can
consider the likely pathobiology of the exposure and outcome
to choose the most appropriate assumption and pick the most
appropriate method. Often, however, which assumptions have
been met is not clear. In such situations, we suggest conducting
the Mendelian randomization by using multiple methods as a
sensitivity analysis.”’® If multiple methods arrive at a similar
conclusion, then we would consider the results robust. However,
when the conclusions reached by using these methods do not
agree, we recommend close comparisons of their results,
including for consistency of the direction for causal effect
estimates, the magnitude of the effect, and the statistical
significance (related to the power and sample size). Later methods
(eg, latent causal variable, causal analysis using summary effect
estimates) might address some of the drawbacks of the methods
developed earlier (eg, the inverse variance—weighted method).
Thus, their disagreement would become more interpretable.
Accordingly, we recommend cautious interpretation of the results
when different methods yield discordant results.

POLYGENIC RISK SCORE

A genetic risk score aggregates genetic variants aiming to
predict disease risk or trait level, and it can thereby help guide
early prevention, targeted intervention, and characterization of
subtypes for complex diseases (including asthma).”’ With the
arrival of large-scale publicly available GWAS summary
statistics, a polygenic risk score integrating genome-wide variants
regardless of statistical significance is a promising approach to
realize its clinical utility and potential public health benefit.”*-"
Among the many available polygenic risk models, those that
are widely used include LD pruning followed by P value
thresholding (probability + threshold) and LDpred, a bayesian
framework that estimates posterior mean causal effect sizes
from GWAS summary statistics by assuming a prior for the
genetic architecture and LD information from a reference panel.(’0
This method was recently applied to investigate the association
between the asthma polygenic risk scores and COVID-19.°!
More recent methods have further improved prediction accuracy
by combining effects across multiple genetically related traits;
these methods include multi-trait genomic best linear unbiased
prediction,’” multitrait analysis of GWAS,** and cross-trait penal-
ized regression (which attempts to optimize the prediction accu-
racy for the primary trait of interest by taking advantage of shared
genetic effects among multiple traits through a multivariate
penalized least-squares method). These methods can use either
GWAS summary statistics or individual-level genotype data and
can thus provide an opportunity to integrate many GWAS re-
sults.®” The cross-trait design has demonstrated an advantage
over a single-trait design in terms of prediction accuracy and
model calibration.”® One limitation of most of the current
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polygenic risk score methods is the generalizability of the algo-
rithms to non-European racial/ethnic groups, which may exacer-
bate health disparities.”* Large-scale application of polygenic risk
scores in asthma studies is still ongoing and remains to be seen in
future publications, especially in studies involving non-European
racial/ethnic groups.

CROSS-TRAIT GWAS FUNCTIONAL ANALYSIS

Cross-trait meta-analysis methods are helpful to identify novel
genetic loci that are associated with multiple diseases and traits.
However, the functional impact of the shared loci on disease risks
or traits remain to be clarified. In the past decade, there has been
development of large-scale studies for genomic functions
annotation, including the Encyclopedia of DNA Elements®® and
National Institute of Health Roadmap Epigenomics Project,”
which can be readily used to categorize the functions for
GWAS-discovered loci. Another useful source of functional
annotation is use of expression quantitative trait loci (eQTLs),
namely, the discovery of genetic variants that explain the
variations in gene expression levels, providing annotation to the
regulatory regions outside coding sequence.

As of now, several eQTL databases are publicly available for
GWAS functional analysis. The databases that are
especially useful for asthma and other inflammatory diseases
include the Genotype-Tissue Expression (GTEx) project®’ and
Immunological Genome Project (ImmGen).”*’ The GTEx
project is a resource database for studying the relationship
between genetic variation and gene expression in different human
tissues.”” GTEx version 8 contains 54 types of human tissues and
17,382 RNA-sequencing samples from 948 donors. Among these,
49 tissues have eQTL data. The application of GTEx eQTL in
asthma can be useful. For example, in a cross-trait analysis, the
use of GTEx revealed that shared genes between allergic diseases
and asthma (eg, FLG) are most significantly enriched in epithelial
tissues, such as skin.”” Traditionally, researchers look to eQTL
databases to identify gene expression associated with disease
variants. However, a recent GTEx study has also pointed out
that nearly all common variations show some associations with
expression of at least 1 gene in at least 1 tissue and that care is
required when using their eQTLs as demonstration of a causal
gene.”” Thus, we also recommend colocalization analysis’’ to
determine the shared causal variants between GWAS signals
and eQTL signals. Colocalization analysis’’ has adapted a
bayesian model to compute the posterior probabilities for 4
scenarios that the 2 traits sharing causal variants at a specific
locus: (1) no causal variant exists for either trait, (2) causal
variants exist for only 1 trait, (3) causal variants exist for both
traits, but they are different variants, and (4) causal variants exist
for both traits, and they are the same variants. For example, in the
cross-trait meta-analysis of allergic disease and asthma,”” the
variant rs34290285 in the 2ql4 region was related to both
GAL3ST2 and D2HGDH genes, with both genes showing eQTL
signals in multiple tissues in GTEx. However, the colocalization
analysis has shown that asthma might share causal variants at the
rs34290285 locus with GAL3ST2 and in multiple tissues of GTEx
but not with D2ZHGDH.

In addition to GTEX, other publicly available eQTL resources
focus on a specific area, such as the immune-related eQTL
database ImmGen.“® The ImmGen contains gene expression data
of 292 specific immune cell types from mice. It has established
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the baseline measurements of variations in the hematopoietic
transcriptome that allow for many eQTL analyses. For example,
Finucane et al recently developed a method based on LDSC to
investigate heritability enrichment in specific eQTL data,’’
including ImmGen. They found that both eczema and asthma
exhibited enrichment in Ty and natural killer T cells but not in
other immune cell types. In addition to eQTL, quantitative trait
locus mapping for other functional data such as methylation®
would also provide important functional insight into the shared
genetic variants discovered.

In addition to being applicable in eQTL analyses,
genome-wide cross-trait analysis is also applicable to other types
of functional investigation. For example, in addition to
identifying shared causal variants between disease GWAS signals
and functional data as already mentioned, colocalization analysis
is also applicable to cross-disease analysis. For example, a recent
study showed that 33 loci share causal variants (scenario 4)
between allergic diseases and asthma.”” These shared loci can
then be prioritized for the further functional investigation and
pathway analysis’® to identify shared biologic pathways. For
analysis involving more than 2 intermediate traits, it is possible
to examine the mediating role of these intermediate traits between
exposure and disease by using GWAS summary statistics based
on 2-step Mendelian randomization.””

DISCUSSION AND FUTURE DIRECTIONS

Genome-wide cross-trait analysis offers opportunities to
investigate shared genetics among complex traits by using
large-scale publicly available GWAS data. In this review, we
have summarized the current status of cross-trait genetics studies
for the shared and distinct genetic effects between asthma
subtypes and their shared genetics with coexistent diseases or
traits.'>'??2?92%31 We have surveyed a broad range of major
analytic methods at each phase of the genome-wide cross-trait
analysis, namely, genetic correlation, cross-trait meta-analysis,
Mendelian randomization, polygenic risk score, and functional
analysis. We have also discussed scientific goals for each phase,
as well as the advantages and limitations for these methods. Major
challenges to future genome-wide cross-trait studies involve the
availability of comprehensive and consistent phenotype data,
combining data from different GWAS imputation panels,
cross-ethnic genetic analysis, and integration of multiomics
data sets. We discuss these challenges and new opportunities in
the following paragraph.

First, although we listed several publicly available asthma
GWAS data in Fig 3, other uncommon phenotypes may not be
available in large-scale GWASs, such as food allergy, which
may also contains subtypes.”* Additionally, consistency between
the same phenotype across different studies is a challenge. For
example, the definition of childhood and adult asthma in the study
by Ferreira et al'? is different from that in the study by Pividori
et al.”” Such inconsistency in phenotype definition may lead to
different interpretations of cross-trait results. Second, there are
challenges in combining data from different GWAS platforms
and imputation panels used. We note that this is a major limitation
for many cross-trait meta-analysis methods. For example, con-
ducting cross-trait meta-analysis between a GWAS imputation
based on 1000 Genome and HapMap panels will usually lead to
use of only common SNPs between the 2 panels, which may
greatly reduce the chance of identifying cross-trait signals.
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Thus, standardization and imputation of GWASs is strongly rec-
ommended before cross-trait analysis. Third, most asthma
GWASs have been performed primarily in European populations
despite the widely recognized racial/ethnic disparities in
asthma.”” Tt is important to extend asthma GWASs to non-
European racial/ethnic groups, thereby providing opportunities
to gradually map the causal variants for the diseases and traits
by leveraging population specific LD, develop a more accurate
polygenic risk prediction model, and provide population-
matched GWAS summary statistics for 2-sample Mendelian
randomization. Several asthma GWASs in other non-European
populations are ongoing. For example, one of the largest non-
European asthma GWASs was recently conducted by the Con-
sortium on Asthma among African-Ancestry Populations in the
Americas, which identified 2 loci that are potentially specific to
asthma risk in the population with African ancestry.76 Yet the
sample size and diversity in population ethnicity are still far
from sufficient. Fourth, GWASs have successfully uncovered ge-
netic variants related to asthma in the past decades.'>'? %2013
However, these variants alone account for a limited proportion of
the phenotypic variance in asthma.’” The total additive heritabil-
ity provides an upper bound estimate for how much asthma
risk can be explained by the genetics. This has generated
interest in alternative sources of phenotypic variance (eg,
host-microbiome-environment interrelationships).”® Integrating
GWAS with other omics data, such as epigenomics, transcriptom-
ics, proteomics, metabolomics, and microbiomics data, will pro-
vide a potential for defining the pathobiology of asthma and its
subtypes. Additionally, we also note that to develop novel preven-
tion and treatment strategies, it is imperative to apply these
approaches integrated with causal inference methods to multio-
mics data. Examples of these causal inference methods are
cross-trait methods (including Mendelian randomization, as pre-
sented in this review), causal mediation methods,”® and causal
structure learning.*

In summary, this review has illustrated the utility of large-scale
genetic data coupled with advanced statistical genetic tools to
understand the shared and distinct components between asthma
subtypes as well as between coexistent diseases or traits and
asthma. The success of current cross-trait studies in asthma also
suggests useful applications to other complex and heterogeneous
traits beyond asthma, including diseases of major interest to the
allergy and immunology community, such as atopic dermatitis,
food allergy, and allergic rhinitis.
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