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Abstract: Neurodegenerative diseases (NDs) extend the global health burden. Consumption of
alcohol as well as maternal exposure to ethanol can damage several neuronal functions and cause
cognition and behavioral abnormalities. Ethanol induces oxidative stress that is linked to the develop-
ment of NDs. Treatment options for NDs are yet scarce, and natural product-based treatments could
facilitate ND management since plants possess plenty of bioactive metabolites, including flavonoids,
which typically demonstrate antioxidant and anti-inflammatory properties. Hypericum oblongifolium is
an important traditional medicinal plant used for hepatitis, gastric ulcer, external wounds, and other
gastrointestinal disorders. However, it also possesses multiple bioactive compounds and antioxidant
properties, but the evaluation of isolated pure compounds for neuroprotective efficacy has not been
done yet. Therefore, in the current study, we aim to isolate and characterize the bioactive flavonoid
folecitin and evaluate its neuroprotective activity against ethanol-induced oxidative-stress-mediated
neurodegeneration in the hippocampus of postnatal day 7 (PND-7) rat pups. A single dose of ethanol
(5 g/kg body weight) was intraperitoneally administered after the birth of rat pups on PND-7. This
caused oxidative stress accompanied by the activation of phosphorylated-c-Jun N-terminal kinase (p-
JNK), nod-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like
protein (ASC), and cysteine-aspartic acid protease-1 (caspase-1) proteins to form a complex called the
NLRP3-inflammasome, which converts pro-interleukin 1 beta (IL-1B) to activate IL-1B and induce
widespread neuroinflammation and neurodegeneration. In contrast, co-administration of folecitin
(30 mg/kg body weight) reduced ethanol-induced oxidative stress, inhibited p-JNK, and deactivated
the NLRP3-inflammasome complex. Furthermore, folecitin administration reduced neuroinflam-
matory and neurodegenerative protein markers, including decreased caspase-3, BCL-2-associated
X protein (BAX), B cell CLL/lymphoma 2 (BCL-2), and poly (ADP-ribose) polymerase-1 (PARP-1)
expression in the immature rat brain. These findings conclude that folecitin is a flavone compound,
and it might be a novel, natural and safe agent to curb oxidative stress and its downstream harmful
effects, including inflammasome activation, neuroinflammation, and neurodegeneration. Further
evaluation in a dose-dependent manner would be worth it in order to find a suitable dose regimen
for NDs.
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1. Introduction

One of the common and growing global health burdens, particularly in the elderly,
is neurodegenerative diseases (NDs) that inexorably progress to severe disability and
death. NDs are linked with other risk factors such as the presence of the ApoE e4 allele,
cerebrovascular diseases, hyperlipidemia, smoking, diabetes, obesity, and traumatic brain
injury [1]. These risk factors impose additional health and economic burden. Chronic
consumption of alcohol induces the development of NDs as it changes many biochemical
and physiological actions in the central nervous system (CNS), of which some alterations
pertain to specific neurotransmitter system changes and intricate signaling pathways [2].
Moreover, alcoholic beverage consumption during pregnancy can produce a wide range of
toxic effects, including teratogenicity and lethality to the prenatal fetus, leading to neuronal
damage, abnormal childbirth, and postnatal mental health problems [3,4].

Among many established mechanisms of alcohol-induced NDs, oxidative stress has
received much more attention in the last few years due to excessive ethanol ingestion
producing an increasing amount of reactive oxygen species (ROS) and, to a lesser extent,
reactive nitrogen species (RNS); it suppresses antioxidant defense mechanisms, which
inactivate the ROS system, thereby resulting in oxidative stress (OXS) and/or nitrosative
stress (NSS) [3,5,6]. Because of OXS, high ethanol consumption involves the depletion
of beneficial glutathione (GSH) levels and the elevation of harmful malondialdehyde,
hydroxyl-ethyl radical, and hydroxynonenal protein adducts, resulting in serious cell and
tissue malfunction and the progression of neuroinflammation, which can be the cause
of NDs [7]. Moreover, ethanol smoothly overcomes the blood–brain barrier and induces
OXS that accelerates neuronal damage by stimulating BAX and endorsing the cleavage
of caspase-3 [8,9]. Since fetal brain development requires a low oxygen environment
and produces limited antioxidants [5], their CNS is vulnerable to maternally consumed
alcohol-mediated ROS-induced OXS [10].

Ethanol is one of the most abused drugs. As maternal exposure to ethanol impairs
many neuronal functions, which lead to cognition and behavioral abnormalities, broadly
labeled as fetal alcohol syndrome (FAS) [11], animal models have been used for NDs
induced by exposure to ethanol to understand the underlying mechanisms and to inves-
tigate potential therapeutics [12–14]. Even though, arguably, no animal model of NDs
fully phenocopies human disease, many models recapitulate the initial proteinopathy
or other pathological features linked to the human disorder [15]. Among many animal
models, rodents are predominantly used to induce a specific characteristic of ND, as per
the experimental objective. Rodents exposed to a few hours of a single exposure to ethanol
at the developmental stage have significant neuronal loss throughout the forebrain [16],
which might continue to the mature stage [17]. The hippocampus in the developing brain
is important for learning and memory and spatial navigation, emotional behavior, and the
regulation of hypothalamic functions. However, it is one of the most sensitive organs to
ethanol exposure, which causes hippocampal tissue damages [18]. Thereby, hippocampal
tissue abnormalities disrupt cell density, inhibit presynaptic glutamate release and binding
affinity, and, ultimately, cause memory, learning, and behavioral impairments [19].

The precise mechanisms leading to neuronal loss in the development of the brain
while exposed to ethanol are not yet fully understood. Ethanol induces NDs by producing
ROS and through cascades of devastating effects on the neuronal cells. In short, ethanol
can block the N-methyl-D-aspartic acid or N-methyl-D-aspartate (NMDA) receptor, inhibit
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and inhibit downstream signaling
molecules, including the suppression of v-akt murine thymoma viral oncogene (AKT) and
the activation of serine/threonine protein kinase-3 (GSK3) [3,19–21].

Although the treatment opportunity to cure ND conditions is not available, there is an
increasing range of available therapeutic and supportive options. As therapeutic options,
natural products such as phytocompounds have gained esteemed popularity in recent
years [22–24]. Currently, about 75–80% of people of developing countries and about 25%
of people of developed countries rely either directly or indirectly on medicinal plants for
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the first line of treatment [25–27] as they are considered safer than synthetic drugs [28,29].
Since natural products are better models, with ideal pharmacokinetics/pharmacodynamics
properties, and about 80% of drugs are either natural products or analogs mimicking them,
with a steadily increasing approval rate by FDA, they are investigated widely for treat-
ment opportunities for the development of polypharmacological drugs for multifactorial
disorders, including infectious diseases, cancers, and NDs [30]. Moreover, the indication
of the importance and therapeutic efficacy of medicinal plants or natural products in reli-
gious scripts make them more attractive to researchers when establishing the validity of
traditional use to the scientific community [31,32]. Antioxidants extracted from medicinal
plants and fruits are ideal candidates to protect the neuronal damage caused by OXS [23].

Hypericum oblongifolium from the Hypericaceae family is native to Eurasia. It grows
at elevations of 4000–6000 m in the Himalayas, China, and northern parts of Pakistan,
including Kashmir, Hazara, and Murree Hills [33,34]. It is a flowering plant (6–12 m height),
traditionally used for hepatitis, gastric ulcers, external wounds, and other gastrointestinal
disorders [35]. H. oblongifolium has been studied for its significant antidepressant and
antinociceptive activities [33,34]. It also possesses potent in vitro anti-inflammatory, anti-
glycation, antioxidant, and anti-lipid peroxidation activities [36]. Additionally, it shows
anti-proliferative solid activity on HT-29 human colon adenocarcinoma [37]. Although
this plant has potential medicinal uses and pharmacological properties, the investigation
of the phytochemicals and their pharmacological activities is still limited. In 2015, Raziq
et al. [33] reported several novel flavonoids from H. oblongifolium and demonstrated potent
antioxidant properties. Flavonoids can cross the blood–brain barrier and affect different
mechanisms involved in the progressions of neuroinflammation and neurodegeneration
in the CNS [38]. Even though H. oblongifolium possesses potent anti-inflammatory and
antioxidant activities, to our best knowledge, no study has yet been conducted to evaluate
the effects of isolated pure flavonoid on OXS-induced NDs in a rat model. Therefore, this
study is designed to isolate a pure flavonoid and to evaluate its possible neuroprotective
effect against ethanol-induced ROS, inflammation, and neuronal apoptosis on the brain of
postnatal day 7 (PND-7) rat pups.

2. Materials and Methods
2.1. Chemicals

Ethanol, methanol, ethyl acetate, n-hexane, polyvinylidene fluoride (PVDF) membrane,
phosphate-buffered saline tablets, RNAwait solution, tissue protein extraction (T-PER) kit,
protein assay dye, sample buffer (2X Laemmli), trizma base, acrylamide, bis-acrylamide,
sodium dodecyl sulfate (SDS), ammonium persulfate (APS), tetramethylethylenediamine
(TEMED), glycine, skim milk, KCl, NaCl, Tween 20 and H2O2, guaiacol, phenazine metho-
sulphate, glacial acetic acid, sulfosalicylic acid, DTNB ascorbic acid, trichloroacetic acid,
and thiobarbituric acid were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO,
USA). All the chemicals and reagents were stored at the required temperature according to
the material safety and data sheet for experimental purposes.

2.2. Bioactive Compound Isolation
2.2.1. Plant Materials

H. oblongifolium was collected from Thandiyani, Abbottabad, Khyber Pakhtunkhwa,
Pakistan, and authenticated (voucher specimen no. Atk/102/2018) at the Department of
Botany, Government Post Graduate College, Attock City, Pakistan.

2.2.2. Folecitin Isolation and Characterization

Folecitin was isolated from fresh leaves of H. oblongifolium and characterized according
to Raziq et al. [33]. Briefly, fresh leaves (15 kg) were pulverized and macerated in 70%
methanol for 14 days, with constant stirring using a steel rod. After this extraction period,
the solvent was settled, poured, and filtered with Whatman 42 filter paper with a 2.5 µm
pore size (catalog # Whatman 1442-042). The crude solvent was concentrated under vacuum
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at 45 ◦C using a rotary evaporator (Büchi Rotavapor R-210, New Castle, DE, USA). To
obtain the maximum concentration of methanolic crude extract, the same procedure was
repeated for an additional seven days using fresh 70% methanol. This crude extract was
mixed with 1 L of distilled water in the fractionating column and fractionated using ethyl
acetate.

About 400 g of ethyl acetate fraction was exposed to column chromatography (CC)
over silica gel mesh size 230 (Merck, Germany) to isolate folecitin. The column length
and diameter was 1000 and 40 mm respectively. The column was run under gravitational
force, and the fraction was eluted with an n-hexane:ethyl acetate (2:8) solvent system ratio
and a flow rate of 2 mL/min. Finally, a total of 150 fractions (10 mL each) were obtained
based on the fingerprinting analysis of thin-layer chromatography (TLC; silica gel 60 PF254,
Merck, Germany). After the pooling of similar fractions, 16 major fractions were obtained.
Fraction 14 (1.2 g) was subjected to the CC (400 × 10 mm) over flash silica gel (ethyl
acetate:chloroform, 1:1) under gravitational force. The reanalysis of this fraction in TCL
resulted in 12 major fractions (10 mL each). Fractions 5–9 were combined and led to the
isolation of a compound (70 mg).

Folecitin was visualized by spraying solid iodine and cerium sulfate (CeSO4), followed
by a heating process. The structure of folecitin was confirmed with 1H and 13C NMR,
HMBC, COSY, and HSQC spectra with Bruker spectrometers (Billerica, MA, USA) (Avance
Av 500, 600/150 MHz).

2.3. Neuroprotective Efficacy of Folecitin
2.3.1. Animals Used in the Experiment

Sprague–Dawley PND-7 rat pups (~18 g each) were obtained from the Veterinary
Research Institute, Peshawar, KPK, Pakistan. They were moved to the experimental lab
with extensive care without allowing any external effects on the pups. They were kept in
rat cages group-wise, with their mother in the animal lab at a controlled room temperature
(25 ± 2 ◦C) and humidity (60–65%). The pups’ mothers were allowed to access food and
water ad libitum. For animal care and treatment, we followed the guidelines of the UK
Animals (Scientific Procedures) Act 1986 [39]. The experimental procedures on animals
were approved (Ref. No. NMMRC/03/2019) on 11 September 2019 by the ethics committee
of the Neuro Molecular Medicine Research Center (NMMRC), Ring Road, Peshawar,
Pakistan.

2.3.2. Experimental Design and Approach

The following experimental design and approach (Figure 1) were set to accomplish
the hypothesis of this study. Only male PND-7 rat pups were chosen in this study to
evade ambiguous sex-dependent differences. PND-7 rat pups were randomly divided
into four groups (n = 6): PND-7 rat pups were (i) treated with a single dose of saline
(250 µL) as a vehicle (control group); (ii) treated with a single dose of ethanol (5 g/kg
body weight), injected intraperitoneally (i.p.) (Eth group); (iii) treated with a single dose of
folecitin, injected subcutaneously at a dose of 30 mg/kg body weight after 30 min of i.p.
administration of ethanol at a dose of 5 g/kg body weight (Eth + F group); and (iv) treated
with a single dose of the only folecitin, injected subcutaneously at a dose of 30 mg/kg body
weight (F group). After this, all experimental groups were kept under observation for a
total of 4 h.
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Figure 1. Experimental design, animal grouping (n = 6 each group), dosage regimen for the drug,
and the biochemical experimental approach for the whole study. BW: body weight, CAT: catalase,
POD: peroxidase, SOD: superoxide dismutase, GSH: glutathione, TBARS: thiobarbituric acid reactive
substances.

2.3.3. Protein Extraction for Biochemical Analysis and Immunoblotting

At the end of the experiment, the PND-7 rat pups were sacrificed, and the brains were
collected immediately; the hippocampus was separated carefully, and the tissue was frozen
on dry ice and store at −80 ◦C. The brain samples were homogenized using a tissue protein
extraction reagent (T-PER) with a phosphatase inhibitor and protease inhibitor cocktail
and then centrifuged at 10,000× g at 4 ◦C for 5 min. The supernatants were collected and
stored at −80 ◦C for further use.

2.3.4. Biochemical Analysis
Catalase Assay (CAT)

For the CAT, 3 mL of the mixture contained 2.5 mL of phosphate buffer saline (PBS;
50 mM) at pH 5.0, 100 µL of H2O2 (5.9 mM), and 100 µL of brain supernatant. The change
in absorbance of the reaction blend was measured at an interval of one minute at 240 nm.
The alteration in absorbance of 0.01 units/min was measured as one unit of activity.

Peroxidase Assay (POD)

The reaction blend for the peroxidase assay consisted of 300 µL of H2O2 (40 mM),
2500 µL of PBS (50 mM) at pH 5.0, 100 µL of guaiacol (20 mM), and 1000 µL of brain
homogenate supernatant. The alteration in absorbance of the reaction merger was noted at
a one-minute interval at 470 nm. One unit of POD action was regarded as the alteration in
absorbance of 0.01 units/min.

Superoxide Dismutase Assay (SOD)

To estimate the SOD action, the reaction blend contained 1200 µL of sodium pyrophos-
phate buffer (0.052 mM, pH 7.0), 100 µL phenazine methosulphate (186 µM), and 300 µL
of supernatant brain homogenate. To start the enzymatic response, 200 µL of reduced
nicotinamide adenine dinucleotide (NADH) (780 µM) was incorporated into the reaction
mixture, and, after 1 min, 1000 µL of glacial acetic acid was added as the discontinuing
agent. The amount of chromogen formed was determined by taking the absorbance of the
reaction mixture (at 560 nm); outcomes were noted as units per mg of protein.
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Reduced Glutathione Assay (GSH)

To estimate reduced GSH levels, 1 mL of the brain (homogenate) was used to pre-
cipitate proteins by adding an equivalent volume of 4% sulfosalicylic acid solution. The
reaction blend was incubated at 4 ◦C for 1 h, later centrifuged for 20 min at 4 ◦C at 1200× g.
The reaction blend contained 2.7 mL of PBS (0.1 M) at pH 7.4, 100µL of centrifuged aliquot,
and 200 µL of 100 mM Ellman’s reagent (5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB). The
absorbance of the reaction blend was taken immediately at 412 nm. The effects of reduced
GSH were communicated as µM/g tissue.

Approximation of Lipid Peroxidation

The thiobarbituric acid reactive substance (TBARS) assay was used to determine lipid
peroxidation. The reaction mixture was 1 mL, which contained 580 µL of PBS (0.1 M; pH
7.4), 200 µL of ascorbic acid (100 mM), 200 µL of supernatant brain homogenate, and 20 µL
of ferric chloride (100 mM). The reaction blend was incubated for one hour in pulsating
water bath maintained at 37 ◦C. To stop the reaction, 1 mL of trichloroacetic acid (10%)
solution was added. Later, 1 mL of thiobarbituric acid (0.67%) was added to the tubes, and
the tubes were positioned in a hot water bath (95 ◦C) for 20 min, then rapidly moved to
the crushed ice and centrifuged for 10 min at 2500 rpm. The quantity of lipid peroxidation
made in every section was determined by calculating the absorbance of the supernatant on
a UV spectrophotometer at 535 nm. The outcomes were stated as nM TBARS/min/mg of
tissue at 37 ◦C (the TBARS molar extinction coefficient is 1.56 × 105 M−1cm−1).

2.4. Western Blotting

Western Blot analysis was performed according to the previously described methods,
with minor modifications [22–24]. Briefly, the extracted proteins from the hippocampus of
PND-7 were analyzed quantitatively using BioRad protein assay solution. The quantity of
protein was assessed and analyzed through SDS-PAGE. An equal amount of protein (30 µg
per sample) was loaded on a 10–15% SDS-PAGE gradient gel under reduced conditions. A
10–245 kDa range pre-stained protein marker (GangNam-STAIN™, iNtRon Biotechnology,
Inc., Seongnam, Korea) was used throughout the study to determine the desired protein’s
molecular weight.

A wide range of mouse-derived antibodies (Santa Cruz Biotechnology, Santa Cruz,
CA, USA) was used (1:500) to detect different proteins. including anti-poly (ADP-ribose)
polymerase 1 (PARP-1) anti-tumor necrosis factor α (TNFα), anti-nuclear factor kappa-
light-chain-enhancer of activated B-cells (NF-kB), anti-Jun N-terminal kinase p-JNK, anti-
NLRP-3, anti-caspase-1, anti-interleukin-1-beta (IL-1β), anti-apoptosis-associated speck-
like protein (ASC), anti-BCL-2-associated X protein (BAX), and anti-B cell CLL/lymphoma
2 (BCL-2). To lessen the binding of non-specific proteins, 5% (w/v) skim milk was used to
block the membranes [22,40]. Incubation with the primary antibody was performed for
24 h at 4 ◦C. After rinsing the blots, horseradish-peroxidase-conjugated goat anti-mouse
secondary antibodies (IgG-HRPs) (Santa Cruz Biotech 1:1000) were incubated with the
blots for two hours at room temperature. According to the manufacturer’s instructions,
an ECL (Amersham Pharmacia Biotech, Uppsala, Sweden) detection reagent was used for
visualization after using membrane-derived secondary antibodies. The X-ray films were
scanned, and the optical densities were analyzed by densitometry using the computer-
based Sigma Gel program version 1.0 (SPSS, Chicago, IL, USA). The list of primary and
secondary antibodies, along with catalog numbers, is shown in Table 1.
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Table 1. List of primary and secondary antibodies with catalog numbers.

S.# Antibodies Name Catalogue #

1 Anti-PARP-1 sc-8007

2 Anti-NLRP3 ab270449

3 Anti-TNFα sc-52746

4 Anti-NF-kB sc-8008

5 Anti-Caspase-1 sc-56036

6 Anti-Caspase-3 sc-7272

7 Anti-IL-1β sc-32294

8 Anti-BAX sc-7480

9 Anti- BCL-2 sc-7382

10 Anti-ASC sc-514414

11 Anti-p-JNK sc-6254

12 Anti-beta actin sc-47778

13 Goat anti-mouse (IgG-HRPs) secondary antibodies sc-2031

2.5. Statistical Analysis

Results are presented as mean ± standard deviation (SD). Multiple group means of
parametric data sets were compared using one-way analysis of variance (ANOVA) after it
was determined that the data conformed to a normal distribution with equal variances. If
an overall significance was found, Tukey’s multiple-comparison post hoc test was applied
using GraphPad Prism 5 (GraphPad Software Inc. San Diego CA, USA). A p < 0.05 value
was considered statistically significant.

3. Results
3.1. Folecitin’s Yield

After being re-chromatographed and eluted with n-hexane:ethyl acetate (2:8), 400 g of
ethyl acetate fraction finally yielded 70 mg of yellowish-brown crystalline solid powders,
equivalent to the yield of 175 mg/kg crude extract of fresh leaves (Table 2).

Table 2. Yield and Physical Characteristics of Folecitin.

Traits Results/Description

Physical state Yellowish-brown crystalline solid powders

UV activity UV active over TLC

Rf value 0.4 [methanol (1): ethyl acetate (9)]

Molecular formula C21H20O11

Crude extract 400 g (ethyl acetate fraction)

Isolated quantity 75 mg

Yield (kg/crude extract) 175

Melting point (◦C) 187–189

Solubility Sparingly soluble in methanol at room temperature

3.2. Folecitin’s Characterization

The characterization of this crystal powder was done by 1H and 13C NMR, followed by
HMBC, COSY, and HSQC spectra for the confirmation of the compound’s structure (Table
2). The compound was determined as folecitin, IUPAC: 3,5,7-trihydroxy-2-[3-hydroxy-
4 (3,4,5-trihydroxy-6-methyltetrahydro-2H–pyran–2-yloxy) phenyl]-4H-chromen-4-one
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(Figure 2). The mass and spectral data is supplied in supplementary data Figures S1–S10,
while the physical characteristics of folecitin are given below in Table 2.
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(δ = 6.90, 1H, d, J = 8.0 Hz), C-6′ (δ = 7.25, 1H, dd, J = 8.0, 2.0 Hz); carbonylic protons: C-3”
(δ = 4.59, 1H, dd, J = 3.5, 1.5 Hz), H-4” (δ = 3.23, 1H, m), H-5” (δ = 3.50, 1H, dd, J = 9.5, 3.5
Hz); methyl group: C-7” (δ = 0.807, 3H, d, J = 6.0 Hz) (Figures S2 and S3).

13C NMR (δ in ppm, DMSO-d6, 150 MHz): Quaternary -OH groups: C-3 (134.6), C-5
(161.7), C-7 (145.6), C-3′ (145.6), C-3” (70.44), C-4” (71.56), C-5” (70.73); C=O group: C-4
(178.14); methyl group: C-6” (17.9); secondary carbon group: C-2 (156.9), C-6 (99.1), C-8
(94.02), C-2′ (116.04), C-4′ (148.83), C-5′ (115.85), C-6′ (121.11), C-2” (102.22); tertiary carbon:
C-10 (104.5), C-1′ (121.5) (Figure S5).

The 1H-1H correlation spectroscopy (COSY) spectrum shows correlations between
protons that are coupled at the adjacent carbons (Figure S8). Protons at C-5′ and C-6′

showed a COSY cross peak. Protons between C-3” and C-4”, C-4” and C-5”, C-5” and C-6”,
and C-6” and C-7” C-H protons at δ 4.59 (H-3”) showed COSY cross-peaks; the proton at
δ 3.23 (H-4”) showed COSY cross-peaks, which, in turn, showed COSY cross-peaks with
H-5” (δ 3.50). A relay of the COSY cross-peaks between methine (C-6”) and methyl (C-7”)
protons suggests that all of them are in the same cycle and ring (Figure 3).
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Heteronuclear multiple bond correlation spectroscopy (HMBC) shows the correlations
between protons and carbons that are separated by multiple bonds (Figure S10). The
HMBC spectrum indicated the correlations of the proton at C-6 (δ = 6.38) with the carbon
at C-8 (δ = 94.02) and C-10 (δ = 104.5). However, the proton at C-8 (δ = 6.38) correlated only
with the carbon at C-6 (δ = 99.1). The proton at C-6′ (δ 7.25) showed correlations with the
carbon at C-2 (156.9). It also demonstrated a correlation with the carbon at C-4′ (δ 145.6)
and C-2′ (δ 116.04) (not shown in Figure 4). The proton at C-5′ has shown correlation with
the carbon at C-1′ (δ 121.50) (Figure 4) as well as with the carbon at C-3′ (δ 145.6) (not
shown in Figure 4). Furthermore, the methyl protons at C-7” (d, 0.807) showed HMBC
cross-peaks with the carbon at C-5” (δ 70.73).
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Based on the interactions, as revealed from the COSY and HMBC spectral data and
other spectral analyses, the structure of the isolated compound was elucidated as 3,5,7-
trihydroxy-2-[3-hydroxy-4-(3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yloxy)phenyl]-
4H-chromen-4-one, which is named folecitin (Figure 2).

3.3. Neuroprotective Pharmacology
3.3.1. Folecitin Reduced Oxidative Stress Induced by Ethanol

The brain homogenates of all rat pups were subjected to different antioxidant assays,
such as POD, SOD, CAT, GSH, and TBARS assays. The results revealed that ethanol
significantly upgraded oxidative stress by inhibiting SOD (p < 0.001), POD (p < 0.001), CAT
(p < 0.01), and GSH (p < 0.01) and inducing lipid peroxidase activity (<0.001) in PND-7 rat
brains. Interestingly, the co-administration of folecitin significantly restored the activities
of antioxidant enzymes SOD (p < 0.001), POD (<0.001), CAT (p < 0.01), and GSH (p < 0.01)
while diminishing the activity of the lipid peroxidase (p < 0.01) (Figure 5).
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Figure 5. Folecitin abolished ethanol-induced oxidative stress in PND-7 pup brains. Effect of folecitin
on the homogenate levels of catalase (a), peroxidase (POD) (b), superoxide dismutase (c), glutathione
(GSH) (d), and lipid peroxidase (LPO) (e) in PND-7 pup brains for the experimental groups, including
control (C), ethanol (Eth), Eth + folecitin (F), and folecitin alone. Each bar represents mean levels ±
SD (n = 6 pups per group). ### p < 0.001, as compared to control group; ** p < 0.01, *** p < 0.001, as
compared to the ethanol alone group; one-way ANOVA followed by Tukey’s post hoc test.

3.3.2. Folecitin Inhibited Neuroinflammatory Markers

Ethanol is linked with a significant proliferation in the protein expression of markers
of neuroinflammation, i.e., p-JNK (p < 0.001), TNF-α (p < 0.05), and NF-kB (p < 0.001) in all
experimental pups. However, the treatment of pups with folecitin not only significantly
inhibited the expression of NF-kB (p < 0.001) and p-JNK (p < 0.001) but also significantly
decreased TNF-α expression (p < 0.05) in the brain homogenates of the pups, as shown in
Figure 6.
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Figure 6. Folecitin inhibited neuroinflammatory markers in PND-7 pup brains. (a) Western blots of
markers of neuroinflammation, including p-JNK, NF-kB, and TNF-α in the brain homogenates of
PND-7 pups for the experimental groups, including control (C), ethanol (Eth), Eth + folecitin (F), and
folecitin alone. Histograms of NF-kB (b), p-JNK (c), and TNF-α (d). The bands were quantified using
Image J software, and density histograms (expressed in arbitrary units; AU) relative to control were
prepared using GraphPad Prism software. Each bar represents mean ± SD for the indicated markers
(n = 6 pups per group). ### p < 0.001, as compared to control group; *** p < 0.001, as compared to the
ethanol-alone group; one-way ANOVA followed by Tukey’s post hoc test.

3.3.3. Folecitin Deactivated the NLRP-3 Inflammasome Complex

In the ethanol-alone-administered groups, a significant increase in the expression
of the NLRP-3 inflammasome complex, including NLRP-3 (p < 0.001), ASC (p < 0.001),
caspase-1 (p < 0.001), and IL-1β (p < 0.001) proteins, was detected in the homogenates
of PND-7 rat brains. Co-treatment with folecitin significantly inhibited the exaggerated
protein expression of NLRP-3 (p < 0.001), ASC (p < 0.001), caspase-1 (p < 0.001), and IL-1β
(p < 0.01) in the homogenates of PND-7 rat brains, as shown in Figure 7.
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Figure 7. Folecitin deactivated NLRP3 inflammasome complex in PND-7 pup brains. (a) Western
blots of the NLRP3 inflammasome complex, including NLRP-3, ASC, caspase-1, IL-1β, β-actin in
the homogenates of PND-7. pup brains for the experimental groups, including control (C), ethanol
(Eth), Eth + folecitin (F), and folecitin alone. Histograms of caspase-1 (b) and IL-1β (c) and NLRP3 (d)
and ASC (e). The bands were quantified using Image J software, and density histograms (expressed
in arbitrary units; AU) relative to control were prepared using GraphPad Prism software. Each bar
represents mean ± SD for the indicated proteins (n = 6 pups per group). ### p < 0.001, as compared to
the control group; *** p < 0.001, as compared to the ethanol-alone group; one-way ANOVA followed
by Tukey’s post hoc test.

3.3.4. Folecitin Reversed the Expression of the Neuro-Apoptotic Proteins

The protein expression of different apoptotic markers, including BAX, BCL-2 and
caspase-3, and PARP-1 in the brain homogenates of PND-7 rat pups was determined
through the immunoblotting technique. Ethanol administration was associated with a
significant protein expression of BAX (p < 0.001), caspase (p < 0.001), and PARP-1 (p < 0.001),
while a significant decrease in the expression of BCL-2 (p < 0.001) was observed. Moreover,
the ratio of BAX to BCL-2 was significantly augmented (p < 0.001) in the brain homogenate
of pups that were exposed to ethanol alone. Co-treatment with folecitin significantly
reduced the increased protein appearance of BAX (p < 0.01), caspase-3 (p < 0.001), and
PARP-1 (p < 0.001). On the other hand, folecitin also significantly enhanced the protein
expression of BCL-2 (p < 0.001). Furthermore, the BAX to BCL-2 ratio was significantly
lessened (p < 0.01) after co-treatment with folecitin in the brain homogenates of PND-7 rat
pups, as shown in Figure 8.
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Figure 8. Folecitin reduced ethanol-induced neurodegeneration in PND-7 pup brains. (a) Immune-
blots of neurodegeneration markers, including BAX, BCL-2, caspase-3, and PARP-1, in the brain
homogenates of PND-7 pups for the experimental groups, including control (C), ethanol (Eth), Eth +
folecitin (F), and folecitin alone. β-actin was used as the loading control. Histograms of BCL-2 (b),
BAX (c), caspase-3 (d) and PARP-1 (e), and the BAX/BCL-2 ratio (f). The bands were quantified using
Image J software, and density histograms (expressed in arbitrary units; AU) relative to control were
prepared using GraphPad Prism software. Each bar represents mean ± SD for the neurodegenerative
markers (n = 6 pups per group). ### p < 0.001, as compared to the control group; * p < 0.05, *** p < 0.001,
as compared to the ethanol-alone group; one-way ANOVA followed by Tukey’s post hoc test.

4. Discussion

This study was conducted to study the therapeutic potential of flavonoids, i.e., folecitin,
isolated from the ethyl acetate fraction of H. oblongifolium against ethanol in PND-7 rat
pups. This animal model is a well-known and rapid method of ethanol intoxication [41].

Neuroprotection against ethanol-induced toxicity via flavonoid therapies has been
described in numerous studies [38,42–44]. Flavonoid-rich nutrition has been revealed to
diminish ethanol-induced impairment to the brain [45]. Similarly, another research finding
also confirmed that flavonoids containing supplements prohibited ethanol-encouraged
apoptosis in vitro [45,46]. Flavonoids have been highly valued for their incredible antioxi-
dant activity [47,48]. In our current study, a natural antioxidant flavonoid (folecitin) was
isolated from the ethyl acetate fraction of H. oblongifolium plants, and the structure elucida-
tion of folecitin was done through the techniques of gold-standard routinely used MASS,
NMR (COSY, NOESY, and HMBC) spectra [33] and screened to guard the developing
brain against the destructive properties of ethanol. Our findings recommend that folecitin
overturns ethanol-induced growth in the BAX/BCL-2 ratio and reduces the appearance
of stimulated caspase-3 (Figure 9). These results suggest that folecitin can reduce the
neurotoxicity caused by ethanol. Interestingly we also found that folecitin significantly
reversed the activities of several antioxidant enzymes, such as CAT, POD, GSH, SOD, and
LPO. Along with it, folecitin ameliorated the ethanol-induced neuro-apoptotic cascade,
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neuro-inflammation, and, last but not least, NLRP3 inflammasome complex deactivation in
postnatal rat pup brains. To the best of our knowledge, this study is novel because folecitin
was used for the first time in such an animal model of neurodegeneration.

Figure 9. Proposed neuroprotective mechanism of folecitin against ethanol-induced oxidative stress
in pup brains. Folecitin in a p-JNK dependent mechanism rescued ethanol-induced neuroinflamma-
tion and neurodegeneration.

Ethanol is a neurotoxin, and animal models suggest that its administration can hurt the
brain. This ethanol further triggers unstoppable neuro-inflammation, which results in neu-
ronal death [49]. In this regard, in the CNS, a large quantity of the NLRP3 inflammasome
complex occurs [50]. Its main mediators are ROS, neuroinflammatory markers, and endo-
toxin abundance [51]. As ethanol is responsible for inducing ROS and neuroinflammation,
along with other complications in the CNS, it can therefore trigger NLRP3 inflammasome
activation in the CNS. Here, in this study, we have observed that with ethanol, after the
induction of the oxidative-stress-activated NLRP3 inflammasome complex in PND 7 rat
brains. On the other hand, it is worth mentioning that folecitin reduced ethanol-induced
oxidative stress and deactivated the NLRP3 inflammasome complex by inhibiting the pro-
tein expression of different components of NLRP3, such as ASC and caspase-1, respectively.
It is also accompanied by the induction of matured cytokines, i.e., IL-1b, which further
causes widespread neuroinflammation and neurodegeneration [52]. This folecitin, through
its anti-inflammatory and anti-neurodegenerative capability, significantly abolished the
toxic IL-1b and its associated damage to the brains of PND-7 rat pups.

After successful isolation and identification, we have demonstrated in our study that
after 4 h of folecitin treatment, the ethanol-induced increased neuroinflammation and
ROS production and attenuated neuronal apoptosis in the brain of PND-7 male rat pups
is markedly inhibited. This also inhibits the activation of an inflammatory cascade by
suppressing activated caspase-3 and TNF-α/NF-κB signaling pathways (Figure 9). The
PND-7 developmental stage was chosen because it occurs in the midst of a brain growth
spurt period for both rats and mice, and rats at this age have previously shown peak
sensitivity to ethanol-induced apoptotic neurodegeneration [23]; male rats were chosen to
evade ambiguous sex-dependent differences.

Ethanol administration encouraged the stimulation of the phosphorylated JNK path-
way and inflammatory indicators such as TNF-α and NF-κB; co-treatment with folecitin
significantly reserved the stimulated NF-κB and TNF-α in the hippocampus of the PND-7
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brains (Figure 9). Previous findings also confirmed that ethanol is liable for encouraging
inflammation in the CNS [53,54]. For instance, exposure to long-lasting ethanol induces
inflammation via the stimulation of NF-κB [55]. Similarly, PND-7 pups exposed to ethanol
only once showed substantial neuronal apoptosis within 24 h [56,57]. Compared with the
fully-grown brain of adults, the emerging brain is additionally susceptible to neurotoxic
damage as it lacks suitable antioxidant enzymatic action [58]. Moreover, the hippocampal
and cerebellar areas of the brain are very placid to oxidative stress because of the low levels
of vitamin E. Vitamin E has been shown to reverse the stimulation of NF-κB encouraged by
ethanol in the hippocampus of PND-7 pup brains [59–61].

5. Conclusions

In summary, folecitin, being a flavonoid, completely abolished ethanol intoxication in the
immature rat brain. This beneficial effect of folecitin (30 mg/kg body weight) is attributed to
its antioxidative, anti-neuroinflammatory, anti-apoptotic, and anti-neurodegenerative effects
by inhibiting caspase-3, BAX/BCL-2, and PARP-1. Most importantly, the folecitin treatment
deactivated the NLRP3 inflammasome complex formation, which depicts its anti-neuro
immunological potential. These findings suggest that folecitin could be a novel, safe,
and readily available therapeutic agent in treating NDs. More in-depth research and
mechanistic approaches are warranted to precisely know the drug-like capabilities of
folecitin in both animal models and cell culture.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11080825/s1, Table S1: 1H and 13C-NMR data of compound 1; Table S2: Figure 6 densito-
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Figure 8 densitometry readings/intensity ratio; Figure S1: Mass spectrum of compound 1; Figure
S2: IR spectrum of compound 1; Figure S3: 1H NMR spectrum of compound 1; Figure S4: 1H NMR
spectrum of compound 1; Figure S5: 13C NMR spectrum of compound 1; Figure S6: 13C DEPT 135
NMR spectrum of compound 1; Figure S7: 13C DEPT 90 NMR spectrum of compound 1; Figure S8:
COSY spectrum of compound 1; Figure S9: HSQC spectrum of compound 1; Figure S10: HMBC
spectrum of compound 1; Figure S11: Figure S11. Uncropped Western blots of Figure 6 (Folecitin
inhibited neuroinflammatory markers in PND-7 pup brains); Figure S12: Uncropped Western blots
of Figure 7 (Folecitin deactivated NLRP3 inflammasome complex in PND-7 pup brains); Figure S13:
Uncropped Western blots of Figure 8: Folecitin reduced ethanol-induced neurodegeneration in
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