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Abstract

The blind pursuit of high yields via increased fertilizer inputs increases the environmental

costs. Relay intercropping has advantages for yield, but a strategy for N management is

urgently required to decrease N inputs without yield loss in maize-soybean relay intercrop-

ping systems (IMS). Experiments were conducted with three levels of N and three planting

patterns, and dry matter accumulation, nitrogen uptake, nitrogen use efficiency (NUE), com-

petition ratio (CR), system productivity index (SPI), land equivalent ratio (LER), and crop

root distribution were investigated. Our results showed that the CR of soybean was greater

than 1, and that the change in root distribution in space and time resulted in an interspecific

facilitation in IMS. The maximum yield of maize under monoculture maize (MM) occurred

with conventional nitrogen (CN), whereas under IMS, the maximum yield occurred with

reduced nitrogen (RN). The yield of monoculture soybean (MS) and of soybean in IMS both

reached a maximum under RN. The LER of IMS varied from 1.85 to 2.36, and the SPI

peaked under RN. Additionally, the NUE of IMS increased by 103.7% under RN compared

with that under CN. In conclusion, the separation of the root ecological niche contributed to

a positive interspecific facilitation, which increased the land productivity. Thus, maize-soy-

bean relay intercropping with reduced N input provides a very useful approach to increase

land productivity and avert environmental pollution.

Introduction

With the continuous increase in the global population, food security problems are increasing,

particularly in China and India with 37% of the world population [1]. In China, food produc-

tion has greatly improved with the increased application of chemical N fertilizer. However,
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sustainable agricultural is attracting increased interest due to the depletion of fossil fuels and

problems with food security. Industrially produced N fertilizer increases the environmental

costs of agricultural production and environmental pollution [2]. Additionally, the abuse of N

fertilizer further increases the environmental cost and decreases N use efficiency [3]. The

inputs of chemical N fertilizer can be reduced by breeding N efficient cultivars, optimizing N

nutrient management and choosing a suitable cropping system [4–6].

Intercropping and relay intercropping are used globally as sustainable practices, e.g., in

China, India, Southeast Asia, Latin America, and Africa. These practices use land efficiently,

are high-yield, and provide efficient control of weeds, diseases and pests [7, 8]. Environmental

resources, such as heat and light, can limit cropping systems, but with sufficient contributions

of these resources, annual crop harvests increase. Heat and light resources are used efficiently

with the practices of intercropping and relay intercropping to increase land output. Maize-soy-

bean intercropping is used in areas with two crops a year (or three crops), e.g., the Huang-

Huai-Hai region and in northwest China [9], whereas in areas with one crop a year (or three

crops in two years), e.g., in southwest China [10], maize-soybean relay intercropping is the

practice. In relay intercropping systems, the behaviors of component crops differ from those

in sole cropping, and the grain yield and NUE are also affected. In a previous study, relay inter-

cropping with legumes significantly increased the N uptake of the subsequent crop, leading to

a 30% increase in grain yield [11]. Compared with the corresponding monocultures, overall

nitrogen resources are used 30–40% more efficiently in legume-cereal intercropping [12].

Maize-soybean relay intercropping increases farm land productivity (i.e., the land equivalent

ratio of maize-soybean relay intercropping systems ranges from 1.61 to 1.59), in contrast to

the monocultures [13]. According to Yamane et al., the land equivalent ratio of relay intercrop-

ping is higher than that of double cropping in a legume cropping system [14].

However, most studies focus on relay intercropping systems in which the legumes play a

secondary role, i.e., the legumes are used as a cover crop, and the legume yield is not consid-

ered. Previous studies show that facilitation and competition coexist in intercropping systems,

particularly in legume/non-legume intercropping systems [2]. Xia et al. reported that legumes

facilitate the root system and grain yield of maize considerably [13], whereas Fan et al. found

that the grain yield of fava bean decreased in a wheat/fava bean intercropping system in con-

trast with a monoculture [2]. Generally, the architecture of a plant influences the relative com-

petitive ability. Soybean seedlings often grow under the shade of the maize canopy and then

are transferred to full sunlight after the harvest of maize [15]. Moreover, the distribution of the

root system plays a key role in the acquisition of belowground nutrients. The roots of cereals

occupy soils both near the surface and in deeper layers, whereas the roots of legumes are dis-

tributed in the upper soil layers [16]. The competitive ability of cereals for soil N is stronger

than that of legumes in an intercropping system [17]. Furthermore, the separation of the root

ecological niche between component crops is well known to affect the total grain yield of inter-

cropping systems. In a maize/fava bean system compared with that of a wheat/fava bean sys-

tem, the total grain yield was significantly higher [2]. Nitrogen recovery efficiency and uptake

efficiency can increase significantly through the interaction of roots between crops. Further-

more, the bi-directional N transfer and positive N competition between crops are advanta-

geous to improve to NUE in the wheat/maize/soybean relay intercropping system [18].

Early studies demonstrated that the land equivalent ratio (LER) of maize-soybean relay

intercropping is greater than 1 [19], namely, maize-soybean relay intercropping can increase

land productivity. However, previous studies focused on resource utilization in maize-soybean

relay intercropping, and the distribution of roots belowground remains unclear [12, 19, 20].

Little information is available on the effect of reduced N on the yield advantage and increase in

NUE in relay intercropping systems. Additionally, no evidence is available on the effect of

Maintaining crop yield with reduced N input in maize-soybean intercropping

PLOS ONE | https://doi.org/10.1371/journal.pone.0184503 September 14, 2017 2 / 19

https://doi.org/10.1371/journal.pone.0184503


reduced N inputs on facilitation in maize-soybean relay strip intercropping. Therefore, the

aims of this study were (i) to evaluate the effect of reduced N input on crop grain yield and

NUE in the maize-soybean relay strip intercropping system, and (ii) to assess the effect of

reduced N input on crop roots distribution in the maize-soybean relay strip intercropping sys-

tem, and (iii) to analyze the effects of crop roots distribution on crop growth in the maize-soy-

bean relay strip intercropping system.

Materials and methods

Ethics statement

No specific permits were required for the described field studies. All experiments were per-

formed according to institutional guidelines of Sichuan Agricultural University, China.

Description of study sites

Experiments were conducted from 2012 to 2014 at two sites in Sichuan Province, China, as

detailed below.

Experiment 1. The experiment was conducted in Renshou County (29˚60’ N, 104˚00’ E),

Sichuan Province, China. The field climate was subtropical monsoon humid, with average

annual temperature of 17.4˚C, rainfall of 1009.4 mm, and sunshine of 1196.6 hours. Fig 1

shows the temperature, daylight hours, precipitation and evapotranspiration for the cropping

seasons. Total N, total P, total K, alkali hydrolysable N, Olsen-P and exchangeable K in the top

Fig 1. The temperature, daylight hour, precipitation and evapotranspiration during the cropping seasons from 2012 to 2014.

https://doi.org/10.1371/journal.pone.0184503.g001
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20 cm of soil of the experimental site were 0.90 g kg-1, 0.50 g kg-1, 14.28 g kg-1, 77.35 mg kg-1,

22.83 mg kg-1, and 196.63 mg kg-1, respectively.

The long-term field experiment consisted of three planting patterns, i.e., monoculture

maize (MM), monoculture soybean (MS), and maize-soybean relay strip intercropping (IMS),

and three application rates of total nitrogen, i.e., no nitrogen (NN), reduced nitrogen (RN) of

180 kg N ha-1, and conventional nitrogen (CN) of 240 kg N ha-1. The compact maize (Zea
mays L. cv. Denghai-605) and shade-tolerant soybean (Glycine max L. cv. Nandou-12) were

used as experimental crops. Maize was sown on April 1, 2012, April 3, 2013, and April 5, 2014;

and harvested on July 29, 2012, August 1, 2013, and August 2, 2014, respectively. Soybean was

sown on June 10, 2012, June 11, 2013, and June 15, 2014, with simultaneous application of

maize topdressing and soybean base fertilizer; and harvested on October 31, 2012, October 29,

2013, and October 26, 2014, respectively.

Monoculture was planted with row spacing and plant density for maize (MM) of 1.0 m and

58,500 per hectare (ha.) and for soybean (MS) of 0.5 m and 117,000 per ha. The plant spacing

was 17 cm for all treatments, with a post-emergence density of 1 maize and 1 soybean plant

per hole for the corresponding monocultures. The post-emergence density was 1 maize and 2

soybean plants per hole for maize-soybean relay strip intercropping. The plant density per unit

area was equal for intercropping and the corresponding monocultures. All plots were planted

with three strips that were 6 m in length and 2 m in width. The total number of plots was 27.

In the maize-soybean relay strip intercropping system (IMS), a wide-narrow row planting (160

cm for wide rows and 40 cm for narrow rows) was adopted, resulting in a total ratio of maize

to soybean rows of 2:2. Maize plants (IM) were in the narrow rows with row spacing of 40 cm,

and soybean plants (IS) were in the wide rows with row spacing of 40 cm. Additionally, the dis-

tance between maize and soybean rows was 60 cm (Fig 2).

Fig 2. Maize-soybean relay intercropping system in August. Left side is RN treatment plot, right side is

NN treatment, and the yellow line is the plot boundary.

https://doi.org/10.1371/journal.pone.0184503.g002
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Potassium chloride, superphosphate, and urea were used as P, K and N fertilizers, respec-

tively. The N fertilizer for maize was divided into two applications, 72 kg N ha-1 for base fertil-

izer and the rest for topdressing. The P and K fertilizers were used as base fertilizers at 105 kg

P2O5 ha-1 and 112.5 kg K2O ha-1 for maize and 63 kg P2O5 ha-1 and 52.5 kg K2O ha-1 for soy-

bean, respectively. All fertilizers were base placement, except for the RN treatments in the

maize-soybean relay strip intercropping system. In RN and CN, the N fertilizer for maize was

divided into two applications, 72 kg N ha-1 for base fertilizer and the rest for topdressing.

Under RN treatment, the base N fertilizer for IM was base placement. The N topdressing for

IM was integrated with the soybean base fertilizer and strip placement, with a distance of 25

cm from maize rows to soybean rows in IMS (the optimizing of fertilization methods, unpub-

lished data).

Experiment 2. The intercropping advantages in grain yield and N utilization identified in

Experiment 1 suggested that belowground facilitation might be responsible for the above-

ground growth and efficient use of nutrients. Experiment 2 was conducted with the same three

planting patterns and rates of total nitrogen application as in experiment 1. The planting den-

sity and fertilization methods and amounts were same as in Experiment 1; however, the row

spacing was different, which was 60 cm for all treatments. This experiment was conducted

within a rhizo-box, which had a length, width, and height of 1 m, 0.38 m and 1 m, respectively.

Each rhizo-box was planted with 2 rows and 2 holes per row, with row spacing and plant spac-

ing of 0.6 m and 0.17 m, respectively. IMS was planted with 2 maize and 4 soybeans; MM was

planted with 4 maize plants; and MS was planted with 8 soybeans.

Determination of crop dry matter and N uptake

In field experiment 1, samples were collected in the middle row of each plot, and the crop

grain yield and straw and root dry matter at physiological maturity were determined. Crop

roots were collected from soil blocks, with the length and depth 34 cm (dug in the middle of

two plants in a row) and 40 cm, respectively, and the width (dug in the middle of two crop

rows) 100 cm for MM, 50 cm for IM, and 50 cm for MS and IS. After manual identification,

root samples were hand-washed and oven-dried at 80˚C for 72 h before weighing. Crop straw

was oven-dried at 80˚C for 72 h before weighing. Samples were weighed, and the N content of

straw and grain was determined using the Kjeldahl method [21].

Data on root distribution in soil was obtained by washing off the soil on site [22], which

was a time-consuming and labor-intensive operation to conduct in the field. In a previous

study, the vertical distribution was determined using an auger to collect soil cores (5.5 cm

diameter) at 10 cm intervals to a maximum depth of 100 cm [13]. We conducted the rhizo-

box experiment to study crop root distribution, both during the coexistence period (at the V3

stage of soybean) and at the R2 stage of soybean growth [23]. Both the horizontal and vertical

distributions of root systems were investigated (S1 Fig). Crop roots were collected from soil

blocks, and after manual identification, root samples were hand-washed and oven-dried at

80˚C for 72 h before weighing. Soil block length, width, and height were 10 cm, 0.38 m and 20

cm, respectively. Soil blocks were collected at 10 cm intervals in the horizontal direction and

were centered on the crop stem base and sampled from maize row to soybean row in the coex-

istence period (or from soybean row to maize row at the R2 stage after maize harvest). In the

vertical direction, the blocks were divided into depth increments of 20 cm (0–20, 20–40, 40–

60, 60–80, and 80–100 cm for maize and 0–20 and 20–40 cm for soybean). Crop root contours

were determined using surfer v. 8.0 (Golden Software Inc., Golden, CO, USA), and data-gridd-

ing was performed using a natural neighbor method [13].
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Plant N uptake (NA, kg ha-1) was calculated as follows:

NA ðkg � ha� 1
Þ ¼ crop dry matter ðkg ha� 1

Þ � crop N concentration ðg g� 1Þ ð1Þ

The N use efficiency (NUE) was calculated as follows [24]:

NUE ð%Þ ¼
UMN þ USN � UM0 � US0

AMN þ ASN
� 100 % ð2Þ

where UMN (or USN) (kg N ha-1) is total N accumulation by maize (or soybean) with N applica-

tion, UM0 (or US0) is total N accumulation by maize (or soybean) without N application, and

AMN (or ASN) is the amount of N supplied during the growing season. The NUE of maize (or

soybean) was calculated from formula (2) in which USN (or UMN), US0 (or UM0) and ASN (or

AMN) were considered zero.

Competition ratio and system productivity index

Competition ratio and system productivity index are used to assess interspecific competition

and intercropping advantages, respectively. As an indicator, competition ratio is used to mea-

sure the degree of competition between crops in an intercropping system [25] and is calculated

with the following formula:

CRSM ¼
YIS=ðYMS � ASÞ

YIM=ðYMM � AMÞ
ð3Þ

where CRSM is the competitive ratio of maize relative to soybean, YIS and YMS are the yield or

nitrogen acquisition per unit area of maize under intercropping and monoculture, respec-

tively, YIM and YMM are the yield or nitrogen acquisition per unit area of soybean under

intercropping and monoculture, respectively, and AS and AM are the ratios of the area occu-

pied by maize and soybean under the intercropping system relative to that of the correspond-

ing monoculture, respectively. In this study, AS and AM were the same. A competition ratio

greater than 1 indicated the competitive ability of soybean was greater than that of maize in

the maize-soybean relay intercropping system. A ratio less than 1 indicated the competitive

ability of soybean was less than that of maize in the maize-soybean relay intercropping sys-

tem. System productivity index, SPI, is another indicator used to assess intercropping that

standardizes the yield of the secondary crop in terms of the primary crop [26] and is calcu-

lated as follows:

SPI ¼
SS

SM

� �

� YM þ YS ð4Þ

where SS and SM are the average yields of soybean and maize under monoculture, respec-

tively, and YS and YM are the average yields of soybean and maize under intercropping,

respectively.

Statistical analyses

Data were analyzed with analysis of variance (ANOVA) using the SPSS v.22 [27], and the aver-

age values were compared using least significant differences (LSD) at the 5% level. Surfer v.8

was used to draw the figures of root distribution [13], and Origin Pro 8 was used to draw the

figure.
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Results

Competition ratio, land equivalent ratio, and system productivity index

The level of N application affected the competition ratio of soybean relative to maize (CRSM)

in the maize-soybean relay intercropping system (Fig 3). The CRSM increased with the increase

in N input, and the ratio in all treatments was greater than 1 in 2012, suggesting interspecific

facilitation. Although the CRSM decreased in 2013, the CRSM of all treatments remained greater

than 1. However, in 2014, the CRSM of the NN treatment was less than 1, whereas that of RN

and CN treatments was greater than 1. The trends for CRSM indicated a positive interspecific

interaction between component crops in the maize-soybean relay intercropping system, and N

application was advantageous and improved the CRSM. With the increase in years of planting,

the interspecific facilitation converted to interspecific competition in the NN treatment,

although interspecific facilitation was retained under RN and CN, which suggested that N

input was required to achieve interspecific facilitation in long-term maize-soybean relay

intercropping.

The LER of all treatments was greater than 1, and the LER increased in RN and CN com-

pared with that NN in the three years (Table 1). The LER of RN was lower than that of CN in

2012 but was higher than that of CN in 2013 and 2014. Based on crop yield, the SPI is a simple

parameter that directly reflects the intercropping system productivity advantage, and the index

increased continually from 2012 to 2014 (Fig 3). However, with increased N application rates,

the SPI increased first and then decreased, and the SPI of RN was higher than that of CN by

21.35%, 18.28% and 21.71% in 2012, 2013 and 2014, respectively.

Fig 3. Effect of N application rates on competition ratio and system productivity index of the maize-soybean intercropping

systems from 2012 to 2014. CRSM: yield competition ratio, SPI: system productivity index; Different lower case letters in the same column

indicate significant differences (LSD, P < 0.05).

https://doi.org/10.1371/journal.pone.0184503.g003
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Root dry matter and distribution

Planting patterns affected crop root growth (S1 Table). The effect of planting pattern on maize

root dry matter was not significant, but soybean root dry matter decreased significantly by

12.4% in IS compared with MS. Regarding N levels, both maize and soybean root dry matter

increased in RN and CN compared with that in NN, whether in a monoculture or intercrop-

ping pattern; the difference between RN and CN was not significant.

Crop root growth was influenced by interspecific competition (Figs 4 and 5; S1 and S2

Tables). The first sampling was during the coexistence period when maize was at the early

grain-filling stage and soybean was at the V3 stage of development. At that time, crop root dry

matter increased with increased N input and crop root distribution displayed a similar trend.

Compared with IM, maize root growth extended farther in the horizontal direction but fewer

roots were distributed in the vertical direction under MM (Fig 4). With increased N applica-

tion, the root dry matter of maize increased in both the upper 40 cm and at the 40–100 cm

depth. The increase was particularly striking at the stem base in the upper 40 cm, and the

maize root dry matter under IM rapidly increased at the stem base compared with that under

MM. The maize root dry matter under IM also increased at the 20–80 cm depth from maize to

soybean row (Fig 4).

During the coexistence period, soybean was at the V3 stage, and planting pattern and level

of N significantly influenced the root growth of soybean (S2 Table). When soybean was at the

V3 stage, the soybean root dry matter under IS was higher in CN than that in NN and RN (S2

Table). Under IS, soybean root dry matter declined compared with that in MS, but with

increased N application, root dry matter increased and that of CN was higher than that of NN

and RN (S2 Table). At the R2 stage of soybean, the root dry matter distribution under IS and

MS was similar, with more roots at shallow depths, particularly at the stem base and in the

upper 20 cm. The soybean root dry matter under IS increased with N application rates, but

roots were less distributed both vertically and horizontally (Fig 5).

Dry matter accumulation at the harvest stage

Planting patterns and N application rates had remarkable effects on crop grain yield (Table 2).

From 2012 to 2014, straw dry matter and grain yield of IM declined by 3.4% and 3.5%,

Table 1. Effects of N application rates on the land equivalent ratio (LER) of maize-soybean relay

intercropping.

N levels 2012 2013 2014

NN 2.00±0.03c 1.85±0.14b 1.97±0.09a

RN 2.24±0.07b 2.20±0.04a 2.06±0.06a

CN 2.36±0.07a 2.06±0.08a 1.96±0.04a

——————ANOVA——————

N levels (A) F = 23.7690 P = 0.0000

Years (B) F = 17.9269 P = 0.0001

A*B F = 6.2815 P = 0.0024

CV, % 8.00

The total N application rates are 180 kg N ha-1 for RN and 240 kg N ha-1 for CN, respectively. RN: reduced

nitrogen, CN: conventional nitrogen. Data are mean±S.D., different lower case letters in the same column

means significant differences between RN and CN. Values under ANOVA are the F-test, probabilities (P

value) and coefficient of variation of the sources of variation (LSD, P < 0.05).

https://doi.org/10.1371/journal.pone.0184503.t001
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respectively, compared with those in MM; however, the difference was not significant. Com-

pared with NN in IM, dry matter accumulation of RN and CN was significantly greater by

29.5% and 33.9% for straw dry matter and 19.6% and 26.6% for grain yield, respectively

(Table 2). Effects of planting pattern and N level on soybean dry matter accumulation differed

from those for maize. The straw dry matter and grain yield of MS increased and declined,

respectively, compared with those in IS. Under different N application rates in MS, the grain

yield of RN was greater than that in CN, whereas the straw dry matter of RN was lower. In IS,

grain yield and straw dry matter of RN were greater than those of CN.

Fig 4. Effect of different below-ground interactions and N application rates on maize root distribution at the early grain-filling

stage. MM with different N application rates (A), IM with different N application rates (B); the X-axis indicates depth (20 cm per layer) and the

Y-axis indicates sampling interval (10 cm per interval); N application rates are 0, 180 kg N ha-1 (shared by soybean and maize), and 240 kg

N ha-1 (180 kg N ha-1 for maize and 60 kg N ha-1 for soybean), respectively, the same as below.

https://doi.org/10.1371/journal.pone.0184503.g004
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Nitrogen uptake

Nitrogen application significantly increased N uptake under the different planting patterns

(Table 3). The N uptake of straw and grain was 7.4% higher and 4.0% lower, respectively, in

IM than in MM and 55.3% (significantly) higher and 8.5% lower, respectively, in MS than in

IS. Comparing N application rates in MM, the N uptake of grain in CN was greater than that

in RN, whereas the straw N uptake in RN was greater than that in CN. In IM, grain and straw

N uptake in RN were higher than those in CN. The N uptake of soybean in RN was the high-

est among all treatments, with N uptake of straw and grain greater in RN than in CN for MS

and IS.

Fig 5. Effect of different below-ground interactions and N application rates on soybean root distribution at the R2 stage of

development in 2014. MS with different N application rates (A), IS with different N application rates (B), the coordinate axis and N

application rates were same as Fig 4.

https://doi.org/10.1371/journal.pone.0184503.g005
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Nitrogen utilization

With reduced N input, NUE significantly increased for all planting patterns, and the NUE of

MM, IMS and MS was 32.1%, 103.7% and 545.8% greater, respectively, in RN than in CN

(Table 4). Intercropping maize with soybean increased NUE; the NUE of IMS increased by

105.1% over that of MM, and the NUE of RN was 139.0% greater in IMS than in MM

(Table 4).

Discussion

Effects of belowground interactions on crop performance in maize-

soybean relay intercropping

In this study, the increase in crop yield and land productivity with maize-soybean relay inter-

cropping was confirmed. The LER of the maize-soybean relay intercropping varied from 1.85

to 2.36 during the cropping seasons (Table 1). Results were similar for summer soybean-spring

maize relay intercropping with an increase in land output and an LER of the relay intercrop-

ping that varied from 1.38 to 1.59 [19]. In the U.S., the total grain yield is higher in winter

wheat-spring soybean relay intercropping than that with monoculture [28], and in China, the

LER of winter wheat-spring cotton relay intercropping ranged from 1.20 to 1.53 [29]. Interspe-

cific competition for nutrient resources is well known to affect crop growth and grain yield in

intercropping systems [7, 17, 25, 26]. Numerous studies show that belowground interactions

and competition for nutrients play a key role in intercropping and relay intercropping [6, 13,

Table 2. Effect of planting patterns and N application rates on crop dry matter accumulation (Mg ha-1).

Years N levels Maize Soybean Relay intercropping

Straw Grain Straw Grain Total Grain

MM IM MM IM MS IS MS IS IM+IS

2012 NN 6.52±0.18a 6.37±0.08a 6.17±0.20b 6.09±0.03c 2.26±0.08b 1.55±0.08b 1.55±0.05b 1.57±0.03c 7.66±0.04c

RN 6.76±0.26a 6.80±0.51a 6.91±0.20a 6.79±0.02a 2.77±0.15a 2.30±0.15a 1.89±0.07a 2.37±0.03a 9.15±0.02a

CN 6.61±0.20a 6.62±0.31a 7.19±0.15a 6.35±0.01b 2.20±0.02b 2.25±0.11a 1.47±0.04b 2.18±0.02b 8.52±0.04b

2013 NN 6.35±0.12b 5.19±0.30b 6.29±0.42b 5.63±0.62b 2.32±0.08b 1.90±0.01b 1.68±0.05b 1.59±0.01b 7.22±0.61c

RN 6.74±0.20a 6.88±0.47a 7.90±0.40a 8.64±0.21a 2.99±0.10a 2.24±0.13a 1.98±0.21a 2.22±0.29a 10.76±0.15a

CN 6.43±0.15ab 6.24±0.51a 8.10±1.07a 7.84±0.18a 3.08±0.23a 2.00±0.05b 1.80±0.05ab 1.95±0.01a 9.78±0.18b

2014 NN 3.31±0.14c 3.65±0.16b 5.60±0.35b 5.78±0.45b 2.90±0.12b 1.96±0.16b 2.35±0.10ab 2.18±0.13c 7.96±0.32c

RN 4.87±0.22b 5.45±0.66a 8.01±0.32a 8.01±0.24a 4.09±0.07a 2.63±0.04a 2.51±0.19a 2.66±0.08a 10.67±0.17a

CN 5.34±0.22a 4.90±0.26a 8.57±0.35a 7.46±0.15a 4.03±0.12a 2.47±0.09a 2.16±0.02b 2.36±0.02b 9.83±0.16b

——————————————————————————ANOVA——————————————————————————————————

Cropping system

(A)

F = 1.1320 P = 0.2944 F = 5.7591 P = 0.0217 F = 516.4056 P = 0.0000 F = 39.7325 P = 0.0000

N level (B) F = 50.9127 P = 0.0000 F = 119.4489 P = 0.0000 F = 133.7926 P = 0.0000 F = 78.7218 P = 0.0000 F = 41.3342 P = 0.0000

Year (C) F = 213.1326 P = 0.0000 F = 21.9925 P = 0.0000 F = 174.9464 P = 0.0000 F = 134.7953 P = 0.0000 F = 240.9101 P = 0.0000

A*B F = 4.1124 P = 0.0247 F = 6.4437 P = 0.0041 F = 3.0986 P = 0.0573 F = 20.2804 P = 0.0000

A*C F = 3.6301 P = 0.0366 F = 0.5561 P = 0.5783 F = 58.3170 P = 0.0000 F = 12.9331 P = 0.0001

B*C F = 10.8195 P = 0.0000 F = 11.1760 P = 0.0000 F = 7.7414 P = 0.0001 F = 3.3121 P = 0.0207 F = 13.9854 P = 0.0000

A*B*C F = 3.5312 P = 0.0157 F = 2.4430 P = 0.0642 F = 14.1536 P = 0.0000 F = 1.8861 P = 0.1341

CV, % 8.52 14.81 26.33 15.13 13.92

The total N application rates are 0, 180 kg N ha-1 and 240 kg N ha-1, respectively. MM: monoculture maize, IM: intercropped maize, MS: monoculture

soybean, IS: intercropped soybean; NN: no nitrogen, RN: reduced nitrogen, CN: conventional nitrogen. Data are mean±S.D., different lower case letters in

the same column means significant differences. Values under ANOVA are the F-test, probabilities (P value) and coefficient of variation of the sources of

variation (LSD, P < 0.05).

https://doi.org/10.1371/journal.pone.0184503.t002
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Table 3. N uptake of maize and soybean under different N levels and planting patterns (kg ha-1).

Years N levels Maize Soybean

Straw Grain Straw Grain

MM IM MM IM MS IS MS IS

2012 NN 49.4±1.7b 47.2±0.2b 65.1±2.8b 62.5±2.9c 20.7±0.6c 12.7±0.4c 96.5±3.6b 103.5±4.3c

RN 55.4±1.8a 60.9±4.2a 77.9±3.2a 76.1±3.0a 28.4±0.3a 22.1±3.3a 130.2±3.7a 160.6±5.2a

CN 50.6±3.0a 51.0±5.5b 79.9±1.2a 68.1±1.3b 24.1±1.7b 18.0±0.6b 100.3±3.7b 144.5±5.4b

2013 NN 44.0±0.4c 34.8±2.3b 75.2±3.5b 71.2±8.4b 29.7±1.1a 18.2±0.1b 134.6±4.0b 128.9±0.4c

RN 56.8±0.9a 60.5±3.3a 110.4±8.0a 118.7±5.3a 32.4±3.3a 21.9±1.1a 163.6±8.7a 178.1±13.9a

CN 51.7±4.2b 53.4±6.9a 119.5±15.9a 106.6±5.8a 32.2±1.3a 19.2±0.5b 142.5±5.1b 156.9±1.0b

2014 NN 16.2±1.9b 21.6±0.4b 46.7±7.1b 43.0±1.9c 34.2±2.9b 22.5±2.5b 154.8±5.3b 141.1±9.8c

RN 33.4±0.6a 43.9±7.0a 89.3±4.7a 96.2±3.3a 51.2±2.0a 29.5±1.1a 173.5±9.6a 176.6±7.0a

CN 36.5±2.6a 39.8±2.4a 95.3±11.5a 87.8±2.1b 50.2±3.1a 28.8±1.1a 144.6±1.6b 157.2±1.1b

——————————————————————————ANOVA————————————————————————

Cropping system (A) F = 3.0829 P = 0.0876 F = 3.5191 P = 0.0688 F = 597.9729 P = 0.0000 F = 49.2350 P = 0.0000

N level (B) F = 115.8064 P = 0.0000 F = 164.5326 P = 0.0000 F = 89.2205 P = 0.0000 F = 164.0866 P = 0.0000

Year (C) F = 211.7739 P = 0.0000 F = 105.5390 P = 0.0000 F = 316.6694 P = 0.0000 F = 162.9293 P = 0.0000

A*B F = 7.9545 P = 0.0014 F = 6.4252 P = 0.0041 F = 3.5793 P = 0.0382 F = 24.1328 P = 0.0000

A*C F = 7.0742 P = 0.0026 F = 0.4479 P = 0.6425 F = 44.1959 P = 0.0000 F = 22.0533 P = 0.0000

B*C F = 8.1159 P = 0.0001 F = 17.8079 P = 0.0000 F = 13.4760 P = 0.0000 F = 4.9729 P = 0.0027

A*B*C F = 1.9747 P = 0.1193 F = 0.4916 P = 0.7419 F = 6.1005 P = 0.0007 F = 0.8894 P = 0.4802

CV, % 28.84 27.48 37.51 15.82

The total N application rates are 0, 180 kg N ha-1 and 240 kg N ha-1, respectively. MM: monoculture maize, IM: intercropped maize, MS: monoculture

soybean, IS: intercropped soybean; NN: no nitrogen, RN: reduced nitrogen, CN: conventional nitrogen. Data are mean±S.D., different lower case letters in

the same column means significant differences. Values under ANOVA are the F-test, probabilities (P value) and coefficient of variation of the sources of

variation (LSD, P < 0.05).

https://doi.org/10.1371/journal.pone.0184503.t003

Table 4. Effect of planting patterns and N application rates on nitrogen use efficiency (%) in the maize-soybean relay strip intercropping system.

N levels 2012 2013 2014

MM MS IMS MM MS IMS MM MS IMS

RN 14.0±1.6a 92.0±1.4a 52.1±4.0a 35.6±3.7a 70.4±10.4a 70.1±11.0a 44.3±2.3a 79.4±9.5a 65.6±3.7a

CN 8.9±0.9b 12.0±2.9b 23.3±4.6b 28.9±8.1a 17.4±6.9b 34.6±4.9b 38.3±4.4a 9.6±3.5b 35.5±4.1b

———ANOVA———

Cropping system (A) F = 62.8788 P = 0.0000

N level (B) F = 506.5064 P = 0.0000

Year (C) F = 21.0712 P = 0.0000

A*B F = 132.4075 P = 0.0000

A*C F = 18.7850 P = 0.0000

B*C F = 1.3460 P = 0.2731

A*B*C F = 3.8721 P = 0.0102

CV, % 63.10

The total N application rates are 180 kg N ha-1 for RN and 240 kg N ha-1 for CN, respectively. MM: monoculture maize, IM: intercropped maize, MS:

monoculture soybean, IS: intercropped soybean, IMS: maize-soybean relay intercropping; RN: reduced nitrogen, CN: conventional nitrogen. Data are mean

±S.D., different lower case letters in the same column means significant differences between RN and CN. Values under ANOVA are the F-test, probabilities

(P value) and coefficient of variation of the sources of variation (LSD, P < 0.05).

https://doi.org/10.1371/journal.pone.0184503.t004
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22, 30]. Lv et al. demonstrated that competition for nutrients is more important than above-

ground competition for light in maize-soybean intercropping [30]. By contrast, Yang et al.

found no difference in yield between treatments in which roots were separated or not in

maize-soybean relay intercropping [31]. The different conclusions may be the result of the dif-

ference in coexistence periods, because the component crops in intercropping have a longer

coexistence period than that in relay intercropping; therefore, the following crop in relay inter-

cropping can benefit from the longer recovery period. In this study, the complementary eco-

logical niches of crop roots were advantageous to aboveground growth in the maize-soybean

relay intercropping system (Figs 4 and 5; Tables 1 and 2, S1 and S2 Tables). The separation of

root ecological niches in intercropping systems avoids interspecific competition for nutrients;

for example, the total yield of the maize/fava bean intercropping system was significantly

higher than that of the wheat/fava bean intercropping system [2]. During the coexistence

period, maize was at the grain-filling stage, whereas soybean seedlings were at the stage with 3

fully developed trifoliate leaves. Maize roots rapidly proliferated underneath the maize plants

in the soil top layer (0–40 cm) in relay intercropping compared with that in monoculture. The

roots of soybean seedlings were insufficiently developed and primarily distributed underneath

the soybean plants. However, after maize harvest (at the full-bloom stage of soybean), the soil

volume occupied by soybean roots was similar between relay intercropping and monoculture,

likely caused by the changes in root distribution and morphologies in space and time in relay

intercropping systems [32]. In previous studies, crop roots show plasticity in response to soil

nutrients and the distribution of water. With maize growth, the roots of maize extended to the

soybean strip and proliferated underneath soybean [22]. When roots of component crops

intermingle with one another, the preceding crop suppresses the growth of roots and decreases

the shoot biomass of the following crop [13]. However, with the regrowth of roots of the fol-

lowing crop after harvest of the preceding crop, and fertilizer use efficiency increases, ulti-

mately increasing the grain yield of the following crop [6, 13]. Thus, an optimized root system

is advantageous in the acquisition of soil nutrients and provides sufficient nutrition for plant

shoot growth.

The belowground benefits contributed to recovery of aboveground growth, thereby

improving soybean yield (Table 2). The recovery of growth in soybean is responsible for pod

formation, which improves the grain yield of soybean in the relay intercropping system [15].

The N competition ratio (NCR) of soybean relative to maize was greater than 1, indicating a

positive interspecific facilitation between component crops in the maize-soybean relay inter-

cropping system (Fig 3). This result is consistent with that of a previous study in which the

NCR of a legume was greater than that of maize, and therefore, interspecific complementation

between the component crops in fava bean-maize intercropping increased total grain yield [2].

In the present study, the N uptake and NUE of IMS increased through interspecific facilitation.

The loss of N by maize in IMS was compensated by a gain in soybean in IMS (Tables 2 and 3).

The NUE of IMS increased continually and was higher than that of MS in 2013 and 2014.

These results confirmed that after maize harvest, soybean roots recovered growth and prolifer-

ated in the soil layer that was previously occupied by maize. Additionally, planting patterns

have a large influence on crop root growth and nutrients utilization. For example, the interspe-

cific competition for nutrients is more important than competition for sunlight when the

number of maize rows to soybean rows is 1:1 and the distance between soybean and maize is

30 cm [30]. The roots of maize extend to soybean rows, whereas the roots of soybean are dis-

tributed primarily underneath the soybean plants when the number of maize rows to soybean

rows is 1:3 and the distance between soybean and maize is 30 cm [22]. With the number of

maize rows to soybean rows 2:2 and the distance between soybean and maize 60 cm, interac-

tions belowground become weaker than those in the forward intercropping systems [31].
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However, no difference is observed in the total grain yield between maize-soybean relay inter-

cropping and maize-soybean intercropping [30, 31].

The availability of nutrients in soil affects crop growth. Relay intercropping maize with soy-

bean can decrease soil pH and increase acid phosphatase activity, thereby increasing maize

P uptake and total grain yield [20]. Soybean is well known to increase soil N input, with a rate

of N fixation that varies from 100 to 140 kg N ha-1 per year [33]. Relay intercropping that

includes legumes can increase N input and maize yield [11]. However, Amuse et al. found that

the improvement in N use and grain yield was primarily a result of the biological N fixation of

legumes in the previous cropping season [11], which occurs because during the coexistence

period, the growth of legume seedlings is insufficient to compete for N or facilitate with wheat

in spring legume-winter wheat relay intercropping [11]. Soil mineral nutrients can be effi-

ciently utilized in intercropping and relay intercropping systems. On one hand, crop root exu-

dates can increase the availability of soil nutrients and use efficiency, e.g., legume exudates can

increase soil P availability, whereas those of cereals can increase soil Fe and Zn availability

[34]. On the other hand, cereal crops must acquire abundant inorganic N, resulting in

decreases in soil N concentration, which can increase the biological nitrogen fixation ability of

legume crops [35]. The decrease of soil N concentration is advantageous, because the “sup-

pressing effects” of soil N on N fixation by legumes are alleviated [36]. Additionally, relay

intercropping maize with soybean can promote N transfer from legume to nonlegume [18].

Notably, a recent study found that maize root exudates can promote soybean nodule formation

and increase soybean biological nitrogen fixation in maize-soybean intercropping [37]. There-

fore, a suitable component crop can increase grain yield by increasing soil nutrient availability

and utilization efficiency in relay intercropping or intercropping. However, information on

the role of rhizosphere processes in interspecific facilitation between component crops in relay

intercropping systems remains limited and inconclusive. Long-term location tests are required

to understand the development and mechanisms of interspecific facilitation in the maize-soy-

bean relay intercropping system.

Effect of reduced N on nitrogen use efficiency and total grain yield in

maize-soybean relay intercropping

Although chemical nitrogen fertilizers have been used worldwide to increase grain yields in

the most recent decades [38], excessive N input may lead to yield loss [20, 39]. Particularly in

China, nitrogen fertilizer use has successfully achieved food security in recent decades [40].

However, this high input of N has resulted in serious environmental pollution, which is

adverse to the development of sustainable agriculture [40], e.g., leading to water eutrophica-

tion, soil acidification and air pollution [38, 41–43]. Therefore, strategies for the efficient man-

agement of N are urgently required. Good et al. identified two ways to increase crop NUE,

traditional breeding and transgenic technology [44]. However, cropping techniques are

another equally important approach to achieve N efficiency, which can rapidly and further

promote the grain yield of highly nutrient-efficient cultivars; for example, intercropping and

relay intercropping are resource efficient and environment friendly cropping systems that can

increase farm land productivity [20, 31, 45]. In the present study, the NUE was higher in RN

than in CN in MM, and in MS, the NUE was significantly higher in RN than in CN. The grain

yield of MM increased significantly in CN compared with that in RN, whereas the grain yield

of soybean decreased significantly in CN compared with that in RN. The reason for the yield

loss might be soil acidification, because multiple fertilizer inputs can result in declines in soil

pH [41], in addition to declines in soil pH that can occur under intercropping soybean with

maize [20]. In IMS, the NUE of RN was significantly higher than that of CN, and the maize
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grain yield was maintained in RN, and soybean grain yield and NUE increased (Tables 1 and

3). These results confirmed that reduced N input led to grain yield loss in MM, in contrast to

reduced N supply leading to increased maize yield and NUE in IMS. The results in this study

are consistent with those of Yang et al. and Wang et al. who found that relay intercropping can

increase resource utilization and land productivity [10, 20] and are also consistent with obser-

vations that a reduced N supply can maintain crop yield [25], whereas excessive N leads to a

decline in LER [46].

Aboveground growth is strongly influenced by belowground processes. Crop root systems

have the key role in soil nutrient acquisition, with effects on nutrient balance, and improve-

ments in root distribution increase the potential opportunities for nutrient use. Interspecific

root interactions in different cropping systems are manifested as competition or facilitation

[39]. A complementary root distribution is a prerequisite for high-yields in intercropping

systems [2]. In the present study, the coexistence period between maize and soybean was

approximately 8 weeks, with sampling at the grain-filling stage of maize and soybean at

approximately the V3 stage, and the results showed that the ecological niche of crop roots

was separated (Figs 4 and 5; S2 Table). In the coexistence period, with the increase in N lev-

els, the roots of maize rapidly proliferated underneath the maize plants and in the middle

soil layer (20–80 cm), whereas those of soybeans were primarily distributed underneath the

soybean plants. Although the soybean seedlings were weak, the seedlings helped to improve

soil nutrients and facilitate maize in relay intercropping [20], which is in contrast to a previ-

ous study in which legume seedlings were too weak to compete or facilitate with cereal in

relay intercropping [11]. This contrast may be the result of different legumes species. The CR

of soybean was stronger than that of maize, and soybean performed better under RN than

under CN. In a similar study, the CR of alfalfa was stronger than that of maize, and the yield

advantage was greater in maize-alfalfa intercropping than that in the corresponding mono-

cultures [47]. Additionally, N fertilizer input was required in long-term maize-soybean relay

intercropping (Tables 1 and 2, Fig 3). During the coexistence period, the demand for N was

high in the maize grain-filling stage, and an insufficient supply of N would result in yield loss

[41].

The NUE of IMS increased significantly in RN compared with that in CN (Table 4).

Under RN treatment, the nitrogen demand of maize was met, which led to increased NUE

and grain yield (Tables 1 and 3). This result is consistent with that of Hasegawa et al. [44].

Additionally, the N uptake of maize led to a decrease in soil N concentration. Gan et al.

found that low N levels were advantageous, because the suppressing effect of N on biological

nitrogen fixation was removed [42]. Similar results are reported that intercropping with

legumes can increase N input and thereby reduce chemical N fertilizer supply [17, 30, 32].

Reduced inputs of N can significantly reduce the residual N in soils and decrease N emissions

and leaching losses [43]. The advantage in intercropping is achieved by complementary use

of inorganic and atmospheric N and reducing competition for inorganic N, as occurs in

pea/barley intercropping [45]. Intercropping advantages also included alleviation of N acqui-

sition and increased sharing between maize and pea when compared with unfertilized inter-

cropping systems [40]. In the present study, the LER and SPI of IMS were higher in RN than

in CN, which is consistent with Yang et al. who found that reduced N can increase LER and

total grain yield [25]. However, the influence of rhizosphere processes on the effect of inter-

specific facilitation on biological nitrogen fixation in relay intercropping conditions remains

inconclusive. Long-term field location tests are required to explore the mechanisms and

changes that promote soybean biological nitrogen fixation in the maize-soybean relay inter-

cropping system.
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Conclusions

Our results revealed a positive interspecific facilitation between maize and soybean in the

maize-soybean relay strip intercropping system. The separation of the root ecological niche

contributed to interspecific facilitation. The selection of the component crop for relay strip

intercropping should consider the interspecific complementary characteristics in the case of

grain yield loss. For a long-term maize-soybean relay strip intercropping system, N fertilizer

input is required. The total grain yield of the maize-soybean relay intercropping system

increased under RN compared with that under CN. Furthermore, the nitrogen use efficiency

in RN increased notably compared with that in CN in long-term maize-soybean relay strip

intercropping.

Supporting information

S1 Fig. Diagram of root distribution investigation in rhizo-boxes in 2014. Setting the maize

stem base as origin, root distribution was investigated by hand digging from maize row to soy-

bean row. Numbers above lines are distances from maize to soybean rows. The sample interval

from maize base to soybean base in the grid is 10 cm long, while from crops to box edgd was

15 cm long, and soil blocks sampling width and depth were 38 and 20 cm.

(TIF)

S1 Table. Root dry matter of crops under different N application rates in 2012 and 2013

(Mg ha-1). The total N application rates are 0, 180 kg N ha-1 and 240 kg N ha-1, respectively.

MM: monoculture maize, IM: intercropped maize, MS: monoculture soybean, IS: inter-

cropped soybean; NN: no nitrogen, RN: reduced nitrogen, CN: conventional nitrogen. Data

are mean±S.D., different lower case letters in the same column means significant differences.

Values under ANOVA are the F-test, probabilities (P value) and coefficient of variation of the

sources of variation (LSD, P< 0.05).

(DOCX)

S2 Table. Effect of different below-ground interactions and N application rates on soybean

root dry matter accumulation (g/plant) at the V3 stage of development in 2014 (experi-

ment 2). The total N application rates are 0, 180 kg N ha-1 and 240 kg N ha-1, respectively. MS:

monoculture soybean, IS: intercropped soybean; NN: no nitrogen, RN: reduced nitrogen, CN:

conventional nitrogen. Data are mean±S.D., different lower case letters in the same column

means significant differences. Values under ANOVA are the F-test, probabilities (P value) and

coefficient of variation of the sources of variation (LSD, P< 0.05).

(DOCX)
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