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Abstract
Calcium silicate-based cements (CSCs) or mineral trioxide aggregate (MTA) lookalike materials are blocks of
cement or root canal sealers produced from calcium (Ca) and silicate. They have superior sealing ability,
bioactivity, and marginal adaptability, making them appropriate for various dental treatment applications.
Mineral trioxide aggregate is widely used in numerous endodontic repair techniques. The capacity of this
cement to promote tissue regeneration and stimulate mineralization accounts for its widespread usage in
pulp capping, apexification, apical surgeries, and revascularization. Several studies have been conducted to
investigate changes in the components of MTA-based types of cement directed to improve their
presentation clinically. To improve flowability, new Ca silicate-based formulations have been introduced
commercially. In these new formulations, essential features such as adequate radiopacity and setting time,
color stability, alkaline pH, and calcium ion release and biocompatibility must be considered. Owing to an
increased range of indications of CSCs, including some for restorative dentistry, and with the emergence of
novel silicate calcium-based materials with considerable changes in their compositions, it is necessary to
examine the available scientific literature that evaluates their usage in these applications. Therefore, this
review paper aims to assess the existing knowledge of CSCs, emphasizing their potential uses in restorative
and endodontic dentistry. This report strives to update doctors' understanding of CSCs, allowing for a better
therapeutic approach.
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Introduction And Background
Reparative techniques are vital in endodontics, and conservative measures help preserve the vitality of teeth
and ensuring they are in good health [1,2]. Mineral trioxide aggregate (MTA) is a biocompatible compound
that has found widespread usage in clinical endodontic therapy because of its low cytotoxicity and high
biocompatibility and ability to stimulate new dentin development. It has been the material of paramount
importance since its introduction in the 1900s [3]. Uses of MTA include conservative management of root
fractures, perforation repair [4], pulp capping agent [5], apexification [6], retrograde filling material in apical
microsurgeries [7], and revascularization measures as a coronal barrier [2]. The above procedures involve
close contact with the body fluids and vital tissues, favoring physical alterations and chemical/biological
communications with the material [8].

Various properties of MTA, such as physical, chemical, and biological, have been explored for extended
periods, leading to discoveries of its efficient substitutes. However, improvisations are still needed to arrive
at an ideal composition of the constituents of the cement. The development of a model, unflawed restorative
material is still long due. To achieve this it should possess the following characteristic properties: sealing
ability, dimensional [9] and color stability [10], radio-opacity [11], insolubility when in contact with body
fluids, and ability to flow with easy insertion. It should also possess biological and chemical properties such
as alkaline pH, calcium (Ca) ion release, bioactivity, cell attachment, and biocompatibility [12]. Mineral
trioxide aggregate owns most of the mentioned ideal properties but lacks a few, primarily color and
consistency which require the most improvisations [13]. Therefore, materials with newer innovations have
been launched commercially to overcome these shortcomings. This review intends to highlight the
properties of MTA with their limitations and to arrive at the developments in innovative Ca silicate-based
cements (CSCs).

Review
Clinical properties and characteristics
The main emphasis should be on the clinical facet of these CSCs, as the site of placement directly influences
and determines material properties [14]. Mineral trioxide aggregate is a dynamic, active material as its
application and placement result in constant contact of the cement with tissues and fluids. It persists for
years after its insertion [15]. Its mechanism comprises Ca hydroxide leaching out of the hydrated MTA,
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thereby highlighting the bioactivity of MTA, which relates to the calcium ion (Ca2+) release. Placement of
MTA is usually required at the site where there is a presence of blood that contaminates it, affecting the
structure of the set material and reducing the Ca2+ release [6,16]. The principal limitations of MTA include a
delayed setting time, lack of good handling features, and the disadvantage of discoloration.

Also, the contact of MTA with blood can alter the color of the material and interferes with radiopacity over
time [17]. Moisture drastically affects the time of setting and the material solubility. Excessive water results
in increased solubility and setting time of MTA. During the setting process of MTA, it chemically interacts
with tissues making the environment alkaline by releasing Ca2+ ions, which are linked to the development of
portlandite (calcium hydroxide) by tricalcium silicate (C3S) and dicalcium silicate (C2S) [18].

In vitro studies done with MTA Angelus and ProRoot MTA revealed Ca2+ ion discharge and alkalization of
the environment when the material was submerged in water. The release of Ca2+ ions was detected by von
Kossa staining of subcutaneous tissues of rats [19]. These properties lead to mineralization on the surface of
the set MTA in pulpotomy procedures. This is proven by studies where hard tissue was formed apically in a
dog's teeth which were seen along with the sealing ability in cases of furcation perforation [20].

In an in vivo study by Han et al., the odontogenic potential of osteostatin (OST) and the combined effect
with bioceramic materials on human dental pulp stem cells (hDPCs) were investigated, and it was
discovered that the combination of MTA and OST had a synergistic odontogenic differentiation of hDPCs
when compared to MTA alone [21]. Micro-CT research demonstrated that OST with ProRoot MTA groups
formed more mineralized dentin bridges [22].

Color stability
During dental operations, the most significant property of observation is color. Tooth discoloration damages
the tooth's aesthetic appearance. The complex response between filling materials and coronal dentine of the
pulp chamber, which modifies the crown’s appearance, is a significant cause of tooth discoloration.

Initially, when developed, MTA had a grey color owing to the presence of tetra Ca aluminoferrite, making it
unsuitable for its application on anterior teeth. Therefore, this led to the establishment of white MTA which
is devoid of iron to prevent the discoloration of the tooth. On the contrary, many studies have proven the
alteration in color even with white MTA [23]. The composition of white MTA includes C2S and C3S silicate
with 20% of bismuth oxide. According to reports, the amount of bismuth oxide added to MTA to increase its
radio-opacity was only 8.4% in the set material compared to 21.6% in the unset material [8]. When reduction
of bismuth oxide occurs along with its contact with the tooth structure, it alters the color of the cement and
the color of the adjacent tooth structure. The cause of color change has been identified and attributed to the
loss of stability of the bismuth oxide molecules, which occurs as they come in close contact with a potent
oxidizing agent [24]. Hence, it is suggested that if the radiopacifier agent is changed, it can help prevent the
discoloration of the tooth. Two materials have been lab tested to replace bismuth oxide, namely zirconium
oxide and Ca tungstate. However, large amounts are necessary to match the radiopacity of bismuth oxide.
Adding such large amounts can negatively impact the chemical and physical properties of the dental
material [25]. Newer CSCs such as Biodentine and Bioceramic (BC) sealer, and MTA high plasticity (HP) can
alter the radiopacifier agent into Ca tungstate or zirconium oxide. These constituents caused no alteration
in color [26]. The second substitute is the addition of 5% zinc oxide (ZnO) to MTA as this ZnO converts
bismuth oxide into bismite, a product that helps prevent the change of color [10].

Consistency
There is a difference in opinion regarding the consistency of MTA. The ratio of powder to water is essential
as increasing the quantity of water reduces radiopacity. The particle size is vital here as the newer advances
in silicate types of cement have been developed using nanoparticles of Ca silicate (CS). The BC sealer and
biosealer containing nanoparticles of CS with the addition of a polymer help in easy handling and give an
ideal material consistency. Adding propylene glycol to MTA caused no interference in its biological
properties. Propylene glycol was tested using different ratios for chemical and physical properties in which
20% propylene glycol was mixed with 80% distilled H2O, which led to efficient handling of MTA, pH,
enhanced Ca release, and flowability. However, it caused slight alterations in setting time [27]. Few studies
have proven that propylene glycol caused improved adhesion of MTA.

Newer preparations
The advances which lead to enhanced flow ability comprise MTA HP, MTA Flow, Biodentine (Septodont,
Saint-Maur-des-Fossés, France), and ones having ceramic complexes incorporated with Biodentine,
EndoSequence (Brasseler, Savannah, GA, USA), and BioAggregate (Verio Dental Co. Ltd., Vancouver,
Canada).

In 2009, Biodentine, a Ca silicate-based product, was introduced. Zirconium oxide is used instead of bismuth
oxide in Biodentine. Zirconium oxide is a bioinert substance with good mechanical qualities & corrosion
resistance. Dettwiler et al. 2016 observed this closely in an experiment [28]. Biodentine had a minor
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discoloration, higher solubility than MTA, and a significantly faster setting time. In as little as 12 minutes,
Biodentine can begin to block blood components, becoming denser and packed as it sets. As a result,
erythrocyte penetration is reduced, resulting in less tooth discoloration during the pulpotomy operation.
Because it comprises more powder with a water-reducing agent and less porosity, the Biodentine material
significantly impacts various factors such as absorption, strength, and density [29]. Biodentine and zinc
oxide-eugenol cement (IRM) had the lowest level or degree of porosity and the least amount of tooth
discoloration, according to Camilleri et al. in 2013 [14].

Endosequence root repair material (ERRM), is available as a premixed putty with uniform consistency and
easier handling and application. According to the manufacturer, the setting begins with the presence of
moisture in the dentinal tubules. When pulp cells were exposed to ERRM or ProRoot MTA, survival and
proliferation were identical, suggesting that it could be a good choice for pulp capping treatments [30].

BioAggregate (BA) contains monobasic Ca phosphate, amorphous silicon dioxide, and tantalum pentoxide
for radiopacity. And due to its Ca phosphate content, it is classified as a biphasic material (one that contains
two cementitious ingredients) [31]. It is more acid resistant than MTA, has a longer-lasting strengthening
effect on weaker teeth, and has a lower risk of discoloration [31]. In the treatment of immature teeth, it has
demonstrated similar results as MTA.

Biological properties of CS-based types of cement and newer advances
The main composition of MTA is CS. Bioactivity is one characteristic feature of Ca silicate-based types of
cement [27]. Newer CS-based restorative types of cement have been launched to substitute bismuth oxide
like Biodentine, Neo MTA Plus (Avalon Biomed Inc. Bradenton, FL, USA), and MTA Repair HP (Angelus,
Londrina, PR, Brazil). Others include MTA Fillapex (Angelus, Londrina, PR, Brazil), Neo MTA Plus, iRoot SP
(Innovative BioCreamix Inc, Vancouver, BC, Canada), and TotalFill BC (Davis Schottlander & Davis Ltd.
Letchworth, Herts, UK) sealer.

The MTA Fillapex cement comes in a paste-paste form which comprises salicylate and natural resin, infused
silica nanoparticles, MTA, and Ca tungstate which acts as radiopacifier. There is a newly introduced C2S
silicate-based system with a powder-gel formulation named Neo MTA, a remarkable restorative and
endodontic cement that can be used with various proportions of powder gel ratios. The composition of iRoot
SP is zirconium oxide, CS, Ca phosphate, Ca hydroxide, and thickening agents, which are commercially
accessible and is used as a root canal filling material. On the other hand, EndoSequence BC sealer and
TotalFill BC sealer comprises zirconium oxide, CS, monobasic Ca phosphate, Ca hydroxide, and thickening
agents. This latter cement is advantageous as it sets in the presence of dentin moisture and hence was used
as canal filling material.

A study on iRoot SP endodontic cement advocated the absence of cytotoxicity to fibroblasts when tested in
rats [32]. Alternative research by Zoufan et al., checked the cell compatibility of iRoot SP cement at two
stages: after the cement was freshly mixed, and after the cement had been set [33]. It was found that this
cement had a greater induction capacity of osteoblastic differentiation and decreased inflammatory
response with the periodontal ligament cells compared to Sealapex [34].

The MTA and iRoot SP types of cement have been proven to induce differentiation in osteoblastic cells in
the tooth germ. The iRoot SP significantly showed its antibacterial activity against Enterococcus faecalis [35].
Zhu et al. found evidence of the ability of BioAggregate cement to promote cell adhesion to each other,
migration, and fixation of human dental pulp cells, thus proving its cytocompatibility [36].

Bioceramic endodontic cement-like Endosequence BC sealer has displayed promoting superior cell viability
than AH Plus sealer and also offered an increased level of biocompatibility when compared with newly
handled AH Plus and MTA Fillapex, when freshly mixed and after the setting. Bioceramic sealer has shown
satisfactory adhesion to fibroblasts [37]. Upon contact with the biological solution, discharge of Ca and
development of the Ca phosphate phase was seen. Antibacterial activity against biofilm formed on dentin
was greater when Endosequence BC sealer was used along with 5% sodium hypochlorite than the irrigation
solution alone [38]. In a study using confocal laser microscopy, Wang et al. concluded that in 30 days, a
BioCeramic sealer could eliminate 45% of E. faecalis from the dentinal tubules, indicating the antibacterial
action of the Bioceramic sealer lasted even after the setting of the material [39]. Total fill BioCeramic sealer
is identical to Endosequence BC sealer. The only difference is that the former promotes extensively higher
proliferation of cells compared to AH Plus and MTA Fillapex. The structure of cells embedded on Total Fill
BioCeramic Sealer and AH Plus showed similar physiognomies, along with the assembly of the extracellular
matrix. In contrast, limited fixation of cells was seen on discs of MTA Fillapex, with decreased number of
cells on the material surface [40].

The MTA Angelus, MTA HP, and Neo MTA P presented viability of cells and a higher degree of cellular
proliferation along with adhesion. Using HDPCs, greater viability was seen with MTA plus compared to
MTA Fillapex and Fillcanal; increased phosphates activity was observed with MTA Plus [41,42]. No cytotoxic
effect was seen with Neo MTA Plus, MTA Angelus, and experimental C3S silicate-based cement with
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tantalum oxide (TSC/Ta205). According to the alizarin red assay, the three materials were proven to induce
the formation of mineralized nodules; on the other hand, NEO produced a considerable quantity of
mineralized nodules compared to MTA and TSC [43]. Following subcutaneous implantation in rats,
histological analysis established that MTA HP showed similar biomineralization and biocompatibility
potentials to MTA Angelus [43]. The MTA Angelus and MTA Plus showed no presence of cytotoxicity and
induced mineralized nodule formation. When PCR was used, the authors concluded that when HDCPs were
exposed to extract the two types of cement, it increased the expression of osteogenic markers of the cell [44].

According to Petrovic et al., materials based on CS and hydroxyapatite (HA-CS) showed a superior grade of
biocompatibility compared to MTA Angelus [45]. Also, improved outcomes were seen for CS and HA-CS
when subcutaneous implants were placed in rats. In the assessment of the biocompatibility of three Ca
silicate-based types of cement, which include Bioroot BC sealer (BR), Endoseal MTA (ES) & Nanoceramic
sealer (NCS), along with human periodontal ligaments stem cells (hPDLSCs), BR and NCS showed superior
cytocompatibility as compared to ES [46]. The BC sealer was proficient in hindering the release of
immunoreactive calcitonin gene-related peptide (iCGRP) from trigeminal ganglion neurons and excellent
biocompatibility, thereby reducing the symptomatology level after extravasation of the cement in ongoing
treatment [47].

In a study by Almedia et al., a comparison of physiochemical and biological properties of already mixed Ca
silicate-based endo sealers with routinely used root canal (RC) filling materials by thoroughly revising lab
investigations [48]. Calcium silicate-based endodontic sealers follow the ISO 6876:2012 standard for most
physicochemical properties, except solubility. The target sealers depicted commendatory biological traits in
comparison to conventional sealers. Despite failing to test the target premixed Ca silicate-based sealers in
long-term experimental clinical trials, they presented with good physicochemical and biological traits in
vitro.

Conclusions
Numerous formulations with added benefits have been introduced to surpass the shortcomings of MTA, and
are commercially available. The newer advances including MTA HP, MTA Flow, Biodentine, and those having
ceramic complexes incorporated in them, such as Biodentine and Endosequence, could serve as gifted
substitutes to MTA. However, additional research assessing their clinical outcomes is essential. The revised
formulations of CSC have identical elemental composition and biological proper; the only difference
between them is in either setting reaction time and physical properties. However, these traits could be of
lesser prime value when the use of these materials is confined to non-stress-bearing regions and multiple
visit appointments. The deciding factor for the usage of specific cement for endodontic repair will rely on
research quality investigating the clinical outcomes, site of application, strength, nature of overlying
restoration, preliminary strength, and choice of the clinician.
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