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The interplay of mathematical modelling with experiments is one of the central

elements in systems biology. The aim of reverse engineering is to infer, analyse

and understand, through this interplay, the functional and regulatory mechan-

isms of biological systems. Reverse engineering is not exclusive of systems

biology and has been studied in different areas, such as inverse problem

theory, machine learning, nonlinear physics, (bio)chemical kinetics, control

theory and optimization, among others. However, it seems that many of

these areas have been relatively closed to outsiders. In this contribution, we

aim to compare and highlight the different perspectives and contributions

from these fields, with emphasis on two key questions: (i) why are reverse

engineering problems so hard to solve, and (ii) what methods are available

for the particular problems arising from systems biology?
1. Introduction
In the late 1960s, Mesarović [1, p. 83] stated something that is still relevant

today: ‘the real advance in the application of systems theory to biology will

come about only when the biologists start asking questions which are based

on the system-theoretic concepts rather than using these concepts to represent

in still another way the phenomena which are already explained in terms of bio-

physical or biochemical principles’.

Four decades later, Csete & Doyle [2], considering the reverse engineering

of biological complexity, argued that, although biological entities and engin-

eered advanced technologies have very different physical implementations,

they are quite similar in their systems-level organization. Furthermore, they

also noted that the level of complexity in engineering design was approaching

that of living systems. When viewed as networks, biological systems share some

important structural features with engineered systems, such as modularity,

robustness and use of recurring circuit elements [3]. Frequently, important

aspects of the functionality of a network can be derived solely from its structure

[4]. It seems therefore natural that systems engineering and related disciplines

can play a major role in modern systems biology [5–9].

Today, a decade after the reverse engineering paper of Csete & Doyle, recent

research [10] clearly shows the feasibility of comprehensive large-scale whole-

cell computational modelling. This class of models includes the necessary

detail to provide mechanistic explanations and allows for the investigation of

how changes at the molecular level influence behaviour at the cellular level

[11]. Multi-scale modelling, which considers the interactions between metab-

olism, signalling and gene regulation at different scales both in time and

space, is key to the study of complex behaviour and opens opportunities to

facilitate biological discovery [12,13]. The interplay between experiments and

computational modelling has led to models with improved predictive capabili-

ties [14]. In the case of evolutionary and developmental biology, reverse

engineering of gene regulatory networks (GRNs) and numerical (in silico) evol-

utionary simulations have been used [15,16] to explain observed phenomena
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and, more importantly, to suggest new hypotheses and future

experimental work. Finally, model-based approaches are

already in place for the next step, namely, synthetic biology [17].

Most reverse engineering studies of biological systems

have considered microbial cells. In this context, a wide range

of modelling approaches have been adopted, which can

be classified according to different taxonomies. Stelling

[18] distinguished between three large groups: interaction-

based (no dynamics, no parameters [19,20]), constraint-based

(no dynamics, only stoichiometry parameters [21,22]) and

mechanism-based models (dynamic, with both stoichiometry

and kinetic parameters). Other classifications can be found in

more recent literature, such as those based on modelling form-

alisms [23,24], which include Boolean networks, Bayesian

networks (BNs), Petri nets, process algebras, constraint-based

models, differential equations, rule-based models, interacting

state machines, cellular automata and agent-based models.

Regardless of the type of representation chosen, the impor-

tance of taking into account the system dynamics has to be

acknowledged [25,26]. It has been stated that the central

dogma of systems biology is that the functioning of cells is a con-

sequence of system dynamics [5]. In particular, regulation—

usually achieved by feedback—plays a key role in biological

processes [27]. Hence, the study of the rich behaviour exhibited

by biological systems requires the use of engineering tools,

namely from the systems and control areas [7]. Furthermore, it

has been argued that even more interesting than the application

of systems engineering ideas to biological problems is the

inspiration that these problems provide in the development of

new theories [8]. Systems engineering aims to design systems,

while biology aims to understand (reverse engineering)

them; it is natural then that these two communities have tra-

ditionally specialized in solving different problems. However,

the interplay between both disciplines can be mutually beneficial

[6]; in this sense, systems biology can be seen ‘not as the appli-

cation of engineering principles to biology but as a merger of

systems and control theory with molecular and cell biology’ [5].

This work reviews different perspectives for the reverse

engineering problem in biological systems. The first step

in the identification of a dynamic model is to establish its

components and connectivity, a task for which either prior

knowledge or data-driven statistical methods is required [28].

We begin by discussing these methods in §2, where we address

the reduced problem of recovering interaction structures. We

classify the methods proposed for this task in three main strat-

egies: correlation-based, information-theoretic and Bayesian.

Then in §3, we discuss the different perspectives for the reverse

engineering of complete dynamic models,1 grouping them

in eight areas: inverse problems, optimization, systems and

control theory, chemical reaction network theory, Bayesian

statistics, physics, information theory and machine learn-

ing. We finish this review with some conclusions about the

convergence of these perspectives in §4.
2. Interaction networks: three main strategies
We address now the question of reverse engineering systems

modelled as interaction networks. This problem can be for-

mulated as follows: given a list of nodes (variables), infer

the connections (dependencies) among them using the infor-

mation contained in the available datasets. The goal is the

determination of the existing interactions, not the detailed

characterization of these interactions. Thus, the recovered
models do not include differential equations, and there is no

need to estimate parameter values such as kinetic constants.

This problem can be considered as a reduced version of the

general reverse engineering problem, which will be considered

in the following sections. However, this does not mean that it is

easy to solve; on the contrary, it is still a very active area

of research. The key task is to estimate the strength of the

dependence among variables using the available data.

Most of the methods used to infer interactions are

ultimately related to statistics. In this context, it is worth men-

tioning that there are several schools of thought in statistics:

Bayesian, frequentist, information-theoretic and likelihood

(the latter being a common element in all of them). However,

roughly speaking, the Bayesian and frequentist approaches

are usually considered the main paradigms [33,34].

The history of statistics reveals that the Bayesian approach

was initially developed in the eighteenth century. Bayes himself

only considered a special case of the theorem that receives his

name, which was actually rediscovered independently and

further developed in its modern form by Laplace years later.

At that time, the theory received the name of inverse prob-

ability. Frequentist statistics was developed during the first

decades of the twentieth century by Pearson, Neyman and

Fisher, among others. The frequentist theory rapidly displaced

the inverse probability (Bayesian) approach and became the

dominant school in statistics. Bayesian ideas barely survived,

mostly outside statistics departments (a detailed history is

given in [35]). The use of Bayes prior information was regarded

by many frequentists as the introduction of subjectivity, and

therefore, a biased approach, something not acceptable in the

scientific method. Although refinements, e.g. empirical Bayes

methods [36] (prior distribution based on existing data, not

assumptions), tried to surmount this, Bayesian approaches

still had another major problem: the computations needed

were extremely demanding.

In the 1980s, the application of Markov chain Monte Carlo

(MCMC) methods [37,38] changed everything. MCMC and

related techniques [39,40] made feasible many of the complex

computations necessary in Bayesian methods and the theory res-

urfaced and started to be applied in many areas [41], including

bioinformatics and computational systems biology [42–44].

Depending on the statistic used to measure the interaction

strength, the most common reverse engineering approaches

can be classified into three classes: correlation, mutual infor-

mation and Bayesian (see figure 1). Their main characteristics

are discussed in the following subsections; more detailed sur-

veys can be found in [45–49]. With a more specific focus,

Bayesian methods were covered in [50,51] and information-the-

oretic approaches in [52] (figure 1).
2.1. A classical tool: correlation
The correlation coefficient r, commonly referred to as the

Pearson correlation coefficient, quantifies the dependence

between two random variables X and Y as

rðX;YÞ ¼
Pn

i¼1 ðXi � �XÞðYi � �YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðXi � �XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðYi � �YÞ2

q ; ð2:1Þ

where Xi, Yi are the n data points and �X; �Y are their averages.

If both variables are linearly independent, r(X,Y ) ¼ 0; in the

opposite situation, where one variable is completely determined

by the other, r(X,Y ) ¼+1.
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Figure 1. Approaches for inferring interaction networks. Schematic of the process of inferring a network structure from data, showing three approaches for measur-
ing dependence among variables: correlation-based, information theoretic and Bayesian.
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Correlation-based methods can be used for unsupervised

learning from data and have been widely used to discover

biological relationships. While most applications have been

developed for genetic networks [53,54], there are also

examples in reverse engineering metabolic networks. One

such method is correlation metric construction [55], which

takes into account time lags among species and was

successfully tested on the glycolytic pathway [56]. A more

sophisticated measure of association between variables is

the distance correlation method [57,58], which has theoretical

advantages over Pearson’s coefficient and has been recently

used in biological applications [59,60].
2.2. Perspective from information theory
While the Pearson coefficient is appropriate for measuring

linear correlations, its accuracy decreases for strongly non-

linear interactions. A more general measure is mutual

information, a fundamental concept of information theory

defined by Shannon [61]. It is based on the concept of

entropy, which is the uncertainty of a single random variable:

let X be a discrete random vector with alphabet x and

probability mass function p(x). The entropy is

HðXÞ ¼ �
X
x[x

pðxÞ log pðxÞ ð2:2Þ

and the conditional entropy H(YjX ) is the entropy of a variable

Y conditional on the knowledge of another variable X

HðYjXÞ ¼
X

x
pðxÞHðYjX ¼ xÞ

¼ �
X

x

X
y

pðx; yÞlog pðyjxÞ: ð2:3Þ
The mutual information I of two variables measures the

amount of information that one variable contains about

another; equivalently, it is the reduction in the uncertainty of

one variable owing to the knowledge of another. It can be

defined in terms of entropies as [62]

IðX;YÞ ¼ HðXÞ �HðXjYÞ: ð2:4Þ

As mutual information is a general measure of depen-

dencies between variables, it may be used for inferring

interaction networks: if two components have strong inter-

actions, their mutual information will be large; if they are

not related, it will be theoretically zero. Mutual information

has been applied for reverse engineering biological net-

works since the 1990s. In early applications [63–67], genetic

interactions were hypothesized from high values of pair-

wise mutual information between genes. The success of this

approach encouraged further research and increasingly soph-

isticated techniques were developed during the following

decade. One of the most popular methods for GRN inference

is ARACNE [68], which exploits the data processing inequal-

ity (DPI, [62]) to discard indirect interactions. The DPI states

that if X! Y! Z is a Markov chain, then I(X,Y ) � I(X,Z ).

ARACNE examines the gene triplets (X,Y,Z ) that have a sig-

nificant value of mutual information and removes the edge

with the smallest value, thus reducing the number of false

positives. A time-delay version of ARACNE, which is

especially suited for time-course data, is also available [69].

In reverse engineering applications, the probability mass

functions p(x), p(y) are generally unknown; however, they

can be estimated from experimental data using several

methods. The simplest one is to partition the data into bins

of a fixed width, and approximate the probabilities by the
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frequencies of occurrence. This naive solution has the

drawback that the mutual information is systematically over-

estimated [70]. To avoid this problem, one can either make

the bin-size dependent on the density of data points (adap-

tive partitioning, [71]), or use kernel density estimation [72].

The influence of the choice of estimators on the network

inference problem has been studied in [73].

Information-theoretic methods have a rigorous theoretical

foundation on concepts that allow for an intuitive inter-

pretation. This facilitates the development of new methods

that are aimed at specific purposes. An example is the distinc-

tion between direct and indirect interactions, which has

motivated the design of methods, such as minimum redun-

dancy networks [74], three-way mutual information [75],

entropy metric construction and entropy reduction technique

[76], among others. Another example is the modification of

the calculation of mutual information by taking into account

the background distribution for all possible interactions, as

done by the context likelihood of relatedness technique

(CLR) [77]. The combination of CLR with another method,

the Inferelator [78], became one of the top performers at the

DREAM4 100-gene in silico network inference challenge

[79]. In yet another example, a recently presented statistic

called maximal information coefficient [80] aims to enforce

equitability, a property that consists of assigning similar

values to equally noisy relationships, independently of the

type of association.

Cantone et al. [81] argued in 2009 that information-theoretic

methods were not appropriate for reconstruction of small net-

works, because they could not infer the direction of regulations.

However, in the years following that statement some progress

was made, and some information-theoretic methods capable of

recovering directions are already available [69,82].

2.3. Incorporating prior knowledge: the Bayesian
inference perspective

Prior knowledge can be incorporated into the inference pro-

cedure using a Bayesian framework. The Bayes rule for two

variables X and Y is

pðXjYÞ ¼ pðYjXÞpðXÞ
pðYÞ ; ð2:5Þ

where p(Y ) and p(XjY ) are called prior and posterior proba-

bilities, respectively. In a typical scenario, X may be the value

of a parameter and Y the available data. The Bayes rule

allows the belief in a prediction to be updated given new obser-

vations. In practice, complications may arise owing to the fact

that typically neither p(Y ) nor p(YjX ) is known. Estimation

of these quantities usually involves computationally costly cal-

culations, which do not scale up well for large networks. It may

be necessary to decompose the full problem according to the

underlying conditional independence structure of the model

[42]; graphical models appear in this context. Probabilistic

graphical models represent joint probability distributions as a

product of local distributions that involve only a few variables

[83]. BNs are probabilistic graphical models in which the vari-

ables are discrete; their graphical representation is given by a

directed acyclic graph (DAG).

BNs can be automatically inferred from data, a problem

known as Bayesian inference. Reverse engineering a BN con-

sists of finding the DAG that ‘best’ describes the data. The

goodness of fit to the data is given by a score calculated from
the Bayes rule. It should be noted that the search for the best

BN is an NP-hard problem [84], and therefore heuristic methods

are used for solving it. Additionally, it is possible to look for

approximations that help to decrease the computational com-

plexity: approximate Bayesian computation (ABC) methods

estimate posterior distributions without explicitly calculating

likelihoods, using instead simulation-based procedures [85,86].

A Bayesian method for constructing a probabilistic network

from a database was first presented in [87].

Genetic networks can be represented as probabilistic

graphical models, by associating each gene with a random

variable. The expression level of the gene gives the value of

this random variable. Bayesian approaches were first used

for reverse engineering genetic networks from expression

data in [88]. An important limitation of BNs is that they are

acyclic, while in reality most biological networks contain

loops. An extension of BNs called dynamic Bayesian net-

works (DBNs) can be used to overcome this issue. Unlike

BNs, DBNs can include cycles and may be constructed

when time-course data are available [89–92].
3. Dynamic models: perspectives from
different areas

Here, we focus on dynamic (kinetic) models of biological sys-

tems. These models typically consist of systems of differential

equations. From the identification point of view, one can dis-

tinguish among three main problem classes (in decreasing

order of generality):

(1) Full network inference (reverse engineering or reconstruc-

tion): given (high-throughput) dynamic data (i.e. time-

series of measured concentrations and other properties),

one seeks to find the full network (kinetic model structure

and kinetic parameters) that fits (explains) the data.

(2) Network selection (network refinement, retrofitting):

given dynamic data and an existing dynamic model

with possible structural modifications (or a set of alterna-

tive kinetic model structures), the objective is to find the

structural modifications and the kinetic parameters that

fit the data.

(3) Kinetic parameter estimation (model calibration, para-

metric identification): given dynamic data and a fixed

kinetic model structure, the objective is to find the kinetic

parameters that fit the data.

Problem (1) above is the most general, while problem (2)

is somewhere in the middle between the general inference

problem and the more focused parameter estimation pro-

blem. Although fitting existing data is usually the first

objective sought, one should also perform cross-validation

studies with a different set of existing data. Ultimately, one

should also seek to use the inferred model to allow for

high-quality predictions under different conditions. Problem

(1) has been usually solved using a bilevel approach, first

determining the interaction network (as discussed in §2),

and then identifying the kinetic details.

It has been widely recognized that all of the above pro-

blems are hard. Many approaches have been proposed for

solving them, using different theoretical foundations. Several

authors have carried out comparisons among methods using

simulated or experimental data; early examples can be found
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in [46,93]. It is particularly interesting to explore the con-

clusions of organizers of the DREAM (Dialogue for Reverse

Engineering Assessment and Methods) challenge, which is

probably the best current source of comparisons of different

methods. The DREAM challenges take place annually and

they seek to promote the interactions between theoretical

and experimental methods in the area of cellular network

inference and model building. In Prill et al. [94], the organizers

state: ‘The vast majority of the teams’ predictions were sta-

tistically equivalent to random guesses. Moreover, even for

particular problem instances like gene regulation network infer-

ence, there was no one-size-fits-all algorithm’. In other words,

reliable network inference remains an unsolved problem. The

organizers identify two major hurdles to be surmounted: lack

of data and deficiencies in the inference algorithms. We agree

with this diagnostic but, as we show below, we also think

that there are other hurdles that are as important and that

have been mostly ignored until recently.

The above problems are obviously not exclusive of systems

biology and have been (and continue to be) studied in different

areas, such as statistics, machine learning, artificial intelligence,

nonlinear physics, (bio)chemical kinetics, systems and control

theory, optimization (local and global), inverse problems

theory, etc. (figure 2). This is a rather ad hoc list, because there

is significant overlap between these disciplines, and some

people might claim that some are simply subareas of others.

However, our intention here is not to come up with a consensus

classification but rather to highlight that these different areas
(or, maybe better, communities) have looked in depth at the

reverse engineering problem during the last decades, arriving

at several powerful principles. However, despite the interdisci-

plinary nature of systems biology, these different perspectives

have apparently not exchanged notes to the degree that one

might expect for such a general problem.

In the following, we intend to give the reader the principal

components of these different perspectives. With the aim of

facilitating the readability of the associated literature, the pres-

entation of the different perspectives is ordered according to

the timeline of their key developments. In particular, we

want to consider the different answers to two main questions:

— Why are the problems (1–3) above so challenging?

— Which methods are available to solve them?

3.1. Perspective from inverse problems
Inverse problem theory [95,96] is a discipline that aims to find

the best model to explain (at least in an approximate way) a

certain set of observed data. The name comes from the fact

that it is the reverse of the direct (or forward) problem, i.e.

given a model and its parameters, generate predictions by sol-

ving the model. Hadamard [97] was already aware of the

difficulties associated with such an exercise, and defined

well-posed problems as those with the following properties:

— existence: a solution exists;

— uniqueness: the solution is unique; and
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— stability: the solution’s behaviour hardly changes when

there is a slight change in the initial condition or par-

ameters (the solution depends continuously on the data).

Inverse problems are often ill-posed in the sense of

Hadamard. Furthermore, many problems are well-posed

but ill-conditioned, meaning that the solution of the inverse

problem is very sensitive to errors and noise in the data. In

these situations, solving the original problem can result in

overfitting, i.e. the fitted model will describe the noise instead

of the underlying relationship. An overfitted model might be

able to describe the data well but will have poor predictive

value. This situation can be avoided by using cross-validation

and/or regularization methods.

Cross-validation [98,99] tries to estimate the performance of

a predictive model in practice. In its simplest form, the avail-

able data are partitioned into two subsets, using the first to

solve the inverse problem, and then evaluating its predictive

performance with the second subset.

Regularization tries to reduce the ill-conditioning by intro-

ducing additional information via a penalty function in the cost

term to be minimized. For linear systems, Tikhonov regula-

rization [100] is the most popular approach. For nonlinear

dynamical systems, it remains an open question, although

successful applications of Tikhonov-inspired schemes have

been reported. Engl et al. [101] review these topics in the con-

text of systems biology and present results supporting the

use of sparsity-enforcing regularization. We will revisit

the sparsity-enforcing concept and its consequences below.
3.2. Perspective from optimization
Identification problems are usually formulated using an

optimization framework, seeking to minimize a cost function

which is a metric of the distance between the predicted

values and the real data. Convex optimization [102] problems

have nice properties: the minimum is unique and algorithms

for solving them scale up well with problem size. However,

the identification of nonlinear dynamic models results in

non-convex problems, which exhibit a wide range of possible

pitfalls and difficulties [103] when one attempts to solve them

with standard local optimization methods: convergence to

local solutions, badly scaled and non-differentiable model

functions, flat objective functions in the vicinity of solutions,

etc. Therefore, the use of popular local methods, such as

Levenberg–Marquardt or Gauss–Newton, will result in

different solutions depending on the guess for the starting

point in the parameter space.

It is sometimes argued that these difficulties can be

avoided by using a local method in a multi-start fashion

(i.e. repeated solutions of the problem starting with different

guesses of the parameters). However, this folklore approach

[104] is neither robust (it fails with even small problems)

nor efficient (the same local optima are found repeatedly

since many of the initial guesses are inside the same basins

of attraction of local minima).

As a consequence, there is a need for proper non-convex

(global) optimization methods [105,106]. Deterministic approa-

ches for global optimization in dynamic systems [107,108]

can guarantee the global optimality of the solution, but the

associated computational effort increases very rapidly with

problem size. This is a consequence of the NP-hard nature of

these problems. In fact, global optimization problems are
undecidable in unbounded domains [109], and NP-hard on

bounded domains [110]. Therefore, based on the current status

of the NP issue [111], approximate methods (such as stochastic

algorithms and metaheuristics) are a more attractive alternative

for problems of realistic size [112–114]. The price to pay is the

lack of guarantees regarding the global optimality of the solution

found. However, as the objective function to be minimized has a

lower bound, which can be estimated from a priori consider-

ations, obtaining a value close to that bound gives us enough

indirect confidence of the near-global nature of a solution.

These methods have been successfully applied to different

benchmark problems with excellent results [115]. Moreover,

they can be parallelized, so their application to large-scale kinetic

models is feasible [116]. Further computational efficiency can be

gained by following divide and conquer strategies [117].

A common question in this context is to identify the best

performing method to solve a particular global optimization

problem. Wolpert & Macready [118] caused quite a stir with

the publication of the NFL (no free lunch) theorem. Basically,

the theorem shows that if method A outperforms method B

in solving a certain set of problems, then B will outperform

A in a different set. Thus, considering the space of all possible

optimization problems, all methods are equally efficient (so

there is no free lunch in optimization). A number of miscon-

ceptions from this theorem were derived by others, including

(i) the claim that there is no point in comparing metaheuristics

for global optimization, as there can be no winner owing to NFL

and (ii) the whole enterprise of designing global optimization

methods is pointless owing to the NFL nature of optimization.

What is fundamentally wrong in these claims is that the NFL

theorem considers ALL possible problems in optimization,

which is certainly not the case in practical applications such

as parameter estimation. Furthermore, the theorem considers

methods without resampling, an assumption not met by most

modern metaheuristics. Finally, many modern metaheuris-

tics exploit the problem structure to increase efficiency. For

example, scatter search has proved to be a very efficient

method when the local search phase is performed by a special-

ized local method [114,116]. Again, in these conditions, the NFL

theorem does not apply.

The above does not mean in any way that global optimiz-

ation problems cannot be extremely hard. It is quite easy to

build a needle-in-a-haystack type of problem, which will be

pathologically difficult for any algorithm, because it has no

structure, and therefore requires full exploration of the

search space (or a lot of luck). For this type of problem, it

becomes obvious that on average, no method will perform

better than pure random search, and therefore we might

be tempted to assume that the NFL theorem is right after all.

Fortunately, needle-in-a-haystack problems do not appear in

practice, and if they do, they will very likely be the consequence

of extremely poor modelling.

In summary, the NFL theorem can be regarded as one

of those impossibility theorems which, although true for the

general assumptions considered, do not really have major

implications in a real practice framework, and therefore it

offers a pessimistic view which is the consequence of its uni-

versality (‘all possible problems’). This is similar to Godel’s

incompleteness theorems, which have not stopped advances

in mathematics [119]. As we will see below with yet another

impossibility theorem, the fact that our practical problems

have a structure that can be exploited allows us to escape

from such a pessimistic trap.
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3.3. Perspective from systems and control theory
System identification theory [120,121] was developed and

applied in the control engineering field with the purpose of

building dynamic models of systems from measured data. This

theory is well developed for linear systems, but remains as a

very active research area for the nonlinear dynamic case [122].

Although the systems and control area has been primarily

focused on engineered systems (mechanical, electrical and

chemical), it also has a long record of applications in biology.

For example, back in 1978 Bekey & Beneken [123] published a

review paper on the identification of biological systems. In

fact, we could also consider the pioneer contributions of

Wiener [124] and Ludwig von Bertalanffy [125] as seminal

examples of the interactions between biology and systems

and control theory. It has been increasingly noted that these

interactions can be instrumental in solving relevant problems

in areas, such as medicine and biotechnology [126].

A key concept in system identification is the property of

identifiability: roughly speaking, a system is identifiable if

the parameters can be uniquely determined from the given

input/output information (data). One can distinguish between

structural [127] and practical identifiability [128]. In the struc-

tural case, identifiability is a property of the model structure

(its dynamics), and the observation and stimuli (control

inputs) functions (perfect measurements are assumed). In the

case of practical identifiability, the property is related to the

experimental data available (and their information content).

Despite its importance, most modelling studies in systems

biology have overlooked identifiability. Fortunately, recent lit-

erature is correcting this (e.g. [129–140]). Despite the frequent

problems of lack of full identifiability, models can still be useful

to predict variables of interest [141,142]. To address the issues

of sparse and noisy data, Lillacci & Khammash [143] propose a

combination of an extended Kalman filter (a recursive esti-

mator well known in control engineering) with a posteriori
identifiability tests and moment-matching optimization. The

resulting approach may be used for obtaining more accurate

estimates of the parameters as well as for model selection.

A closely related topic is that of optimal experimental

design (OED), i.e. how we should design experiments that

would result in the maximum amount of information so as

to identify a model with the best possible statistical properties

(which are user defined and can be related to precision, dec-

orrelation, etc.). The advantages for efficient planning of

biological experiments are obvious and have been demon-

strated in real practice. For example, Bandara et al. [144]

showed how two cycles of optimization and experimentation

were enough to increase parameter identifiability very signifi-

cantly. The topic of optimal design of dynamic experiments

in biological systems is receiving increased attention

[144–152]. Balsa et al. [145] presented computational pro-

cedures for OED, which was formulated as a dynamic

optimization problem and solved using control vector para-

metrization. He et al. [148] compared two robust design

strategies, maximin (worst-case) and Bayesian, finding a

trade-off between them: while the Bayesian design led to

less conservative results than the maximin, it also had a

higher computational cost.

Improving the quality of parameter estimates is not the

only purpose of OED; it can also be used for inferring the net-

work topology. Tegnér et al. [153] proposed a reconstruction

scheme where genes in the network were iteratively
perturbed, selecting at each iteration the perturbation that

maximized the amount of information of the experiment.

Another common application of OED is discrimination

among competing models [147]. With this aim, Apgar et al.
[129] proposed a control-based formulation, where the stimu-

lus is designed for each candidate model so that its outputs

follow a target trajectory; the quality of a model is then

judged by its tracking performance. In [149], three different

approaches were considered, each of which optimized initial

conditions, input profiles or parameter values corresponding

to structural changes in the system. Other methods have

exploited sigma-point approaches [151] or Kullback–Leibler

optimality [150,152].

OED with dynamic stimuli is therefore a powerful

strategy to maximize the informative value of experim-

ents while minimizing their number and associated cost.

Ingolia & Weissman [154] highlight the importance of

choosing the way to perturb biological systems, because it

determines what characteristics of those systems can be

observed and analysed, as illustrated in [155,156]. In sum-

mary, there is a need for technologies that permit a wide

range of perturbations and for OED methods which can

make the most out of them.

A topic that deserves special attention is the analysis of

kinetic models under uncertainty. Kaltenbach et al. [157]

offer an interesting study focused on epistemic uncertainty

(lack of knowledge about the cellular networks) owing to

practical limitations. These authors support the idea that

the structure of these networks is more important than the

fine tuning of their rate laws or parameters. As a result,

methods that are based on structural properties are able to

extract useful information even from partially observed and

noisy systems. Kaltenbach et al. [157] also offer an excellent

overview of methods from different areas, noting the ‘cul-

tural’ differences that need to be addressed in systems

biology. Vanlier et al. [140] provide an introduction to various

methods for uncertainty analysis (focusing on parametric

uncertainty). In addition to giving an overview of current

methods (including frequentist and Bayesian approaches),

these authors highlight how the applicability of each type

of method is linked to the properties of the system considered

and the assumptions made by the modeller. This type of

study is of great interest as it provides system biologists

with a balanced view of the requirements and results that

are expected in each method. Ensemble modelling is a par-

ticularly interesting type of Monte Carlo methodology that

has been used to account for uncertainty in many areas,

from weather forecasting to machine learning. Applications

in systems biology have already appeared [158,159]. Another

related successful approach for robust inference is the

wisdom of crowds [160].

Finally, advances in the identification of biological sys-

tems ultimately lead to their control [8], and here the

possibilities are enormous, especially in synthetic biology

[161–167].
3.4. Perspective from chemical reaction network theory
The fundamentals of chemical reaction network theory

(CRNT) were established back in the 1970s by Horn, Jackson

and Feinberg [168–170]. The theory remained rather dormant

until authors like Bailey [171] highlighted its potential for the
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analysis of biological networks. The basic idea is that, using

CRNT, we can characterize kinetic models (multi-stability,

oscillations, etc.) without knowing the precise values of the

kinetic parameters. During the last decade, research based

on CRNT has gained momentum [172–178] leading to

major contributions [179].

Regarding the identification of biological systems, CRNT

offers several results of considerable importance. Craciun &

Pantea [180] make use of CRNT to show that, given a (mass

action) reaction network and its dynamic equations (ODEs),

it might be impossible to identify its rate constants uniquely

(even with perfect measurements of all species). Furthermore,

they also show that, given the dynamics, it might be impossible

to identify the reaction network uniquely.

Szederkenyi et al. [181] make use of CRNT principles to

explore inherent limitations in the inference of biological net-

works. Their results show that, in addition to the obstacles

identified by Prill et al. [94] (lack of data and deficiencies in

the inference algorithms), we must be also aware of fundamen-

tal problems related to the uniqueness and distinguishability

of these networks (even for the utopian case of fully observed

networks with no noise). More importantly, uniqueness and

distinguishability of models can be guaranteed by carefully

adding extra constraints and/or prior knowledge. A topic

that deserves further investigation is the effect of imposing a

sparse network topology. Data from cellular networks suggest

such a sparse topology, so it is a common prior enforced in

many inference methods [182,183]. However, Szederkenyi

et al. [181] show that the sparsity assumption alone is not

enough to ensure uniqueness. Moreover, in the case of linear

dynamic genetic network models, too sparse structures can

be harmful.
3.5. Perspective from Bayesian statistics
As previously mentioned, the origin of the Bayesian approach

goes back to the eighteenth century, and the statistical methods

used during the nineteenth century were mostly Bayesian as

well. However, during the twentieth century the frequentist

paradigm clearly dominated statistics [184]. Frequentism was

the default approach used for estimation and inference of kin-

etic (dynamic) models, where most studies (cited in the

previous subsections) considered maximum-likelihood and

related metrics as the cost functions to optimize. However,

fuelled by important developments in MCMC methods in

the 1990s, the beginning of the twenty-first century witnessed

a Bayes revival, and studies on Bayesian methods for dynamic

models started to appear as a result of theoretical and compu-

tational advances and the greater availability of more powerful

computers. In parallel, systems biology was taking off with the

new century, requiring methods that were able to handle

the biological complexity. Bayesian methods, which are espe-

cially useful to extract information from uncertain and noisy

data (the most common scenario in bioinformatics and compu-

tational systems biology), started to receive greater attention

[42,44,185]. Bayesian estimation in stochastic kinetic models

was considered in several seminal works regarding diffusion

models [186,187]. Similarly, in the case of deterministic kinetic

models, the last decade has seen a rapidly growing Bayesian lit-

erature. Pioneering work using Monte Carlo methods were

presented by Battogtokh et al. [188] and Brown & Sethna [189].

Sanguinetti et al. [190], considering a discrete time state space

model, presented a Bayesian method for genome-wide
quantitative reconstruction of transcriptional regulation. Giro-

lami [191] illustrated the use of the Bayesian framework to

systematically characterize uncertainty in models based on

ordinary differential equations. Vyshemirsky & Girolami [192]

compared four methods for estimating marginal likelihoods,

investigating how they affect the Bayes factor estimates, which

are used for kinetic model ranking and selection.

When the formulation of a likelihood function is difficult

or impossible, ABC-like approaches can be adopted [85].

ABC schemes replace the evaluation of the likelihood function

with a measure of the distance between the observed and simu-

lated data. Briefly, ABC algorithms sample a parameter vector

from the distribution and use it for generating a simulated

dataset. Then, they calculate the distance between this dataset

and the experimental data, and if it is below a certain threshold

they accept the candidate parameter vector. The weakness of

this approach, at least in its simplest form, is that it can have

a low acceptance rate when the prior and posterior are very

different. To overcome this problem, Marjoram et al. [193] pre-

sented a MCMC algorithm (ABC MCMC) that accepts

observations more frequently and does not require the compu-

tation of likelihoods. The price to pay is the generation of

dependent outcomes, and the risk of getting stuck in regions

of low probability of the state space for long periods of time.

An alternative is to use sequential Monte Carlo (SMC) tech-

niques, which use an ensemble of particles to represent the

posterior density, with each sample having a weight that rep-

resents its probability of being sampled. SMC particles are

uncorrelated, and the approach avoids being stuck in low prob-

ability regions. Sisson et al. [194] proposed a likelihood-free

ABC sampler based on SMC simulation (ABC SMC) and a

related formulation was proposed by Toni et al. [195,196],

who applied it for parameter estimation and model selection

in several biological systems.

ABC schemes can also be used to improve computational

efficiency, which is an important issue in Bayesian approaches.

Using the full probability distribution of parameters instead of

single estimates of parameter values entails calculating the like-

lihood across the whole parameter space, a step that can be

very costly.

The availability of these theoretical and computational

advances has led to their successful application in combination

with biological experimentation. For example, Xu et al. [197]

considered the ERK cell signalling pathway and found unex-

pected new results of biological significance, demonstrating

the capability of Bayesian approaches to infer pathway topolo-

gies in practical applications, even when measurements are

noisy and limited. In another recent application, Eydgahi

et al. [198] used Bayes factor analysis to discriminate between

two alternative kinetic models of apoptosis. It is interesting

to note that the approach allowed these authors to assign a

much greater plausibility to one of the models even though

both presented equally good fits to data. Moreover, it is also

remarkable that, despite non-identifiability of the models, the

Bayesian approach resulted in predictions with small confi-

dence intervals. Regarding experimental design, Liepe et al.
[199] illustrated the combination of Bayesian inference with

information theory to design experiments with maximum

information content and applied it to three different problems.

Recently, Raue et al. [200] presented an interesting study

combining the frequentist and the Bayesian approaches.

These authors note that for kinetic models with lack of iden-

tifiability (structural and/or practical), the Markov chain in
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MCMC-based Bayesian methods cannot ensure convergence

and will result in inaccurate results. To surmount this, they

suggest a two-step procedure. In the first step, a frequentist

profile-likelihood approach is used in iterative combination

with experimental design until the identifiability problems

are solved. Then, in the second step, the MCMC approach

can be used reliably.

Another important question concerns the scalability of

Bayesian approaches, i.e. can they handle large-scale kinetic

models? In a recent contribution, Hug et al. [201] discuss

the conceptual and computational issues of Bayesian esti-

mation in high-dimensional parameter spaces and present a

multi-chain sampling method to address them. The feasibility

and efficiency of the method is illustrated with a signal trans-

duction model with more than 100 parameters. The study is a

significant proof of principle and also a good example of the

care that must be taken regarding the verification of results.

The existing literature indicates the importance of ade-

quate selection of priors. Gaussian processes (GPs) can be

used for specifying a prior directly over the function space,

which is often simpler than over the parameter space. A GP

[202] is a stochastic process for which any set of variables

have a joint multi-variate Gaussian distribution. Gaussian

processes are generalizations of Gaussian probability distri-

butions: they describe the properties of functions rather

than of scalars or vectors. They have also been applied in

the development of efficient and reliable sampling schemes.

Here, Calderhead et al. [203] illustrated how GPs can be

used to greatly accelerate Bayesian inference in nonlinear

dynamic models. Other notable recent advances in sampling

methods have been presented by Girolami & Calderhead

[204,205] and Schmidl et al. [206].
3.6. Perspective from physics
Physics has made numerous and highly relevant contri-

butions to inference and mathematical modelling in general.

In fact, the origins of many of the ideas classified in the sec-

tions above can be traced back to developments in physics.

Therefore, our intention here is not to present any type of

overview of such vast history.

Rather, we will focus on recent research that has spurred a

broad discussion about whether there exist fundamental

limitations regarding dynamic modelling of biological sys-

tems. Gutenkunst et al. [207] discuss the concept of sloppy

models (introduced by Brown & Sethna [189]), i.e. multi-

parametric models whose behaviour (and predictions)

depends only on a few combinations of parameters, with

many other sloppy parameter directions which are basically

unimportant. These authors tested a collection of 17 systems

biology models and concluded that (i) sloppiness is universal

in systems biology models and (ii) sloppy parameter sensi-

tivities help to explain the difficulty of extracting precise

parameter estimates from collective fits, even from compre-

hensive data. The previous study by Brown & Sethna [189]

presents a sound theoretical analysis based on statistical

thermodynamics and Bayesian inference.

This work has received great attention from the systems

biology community. Here, we would like to highlight some

open questions to be addressed, and comment on possible

misconceptions surrounding it. Some of our remarks below

can also be found in the correspondence by Apgar et al.
[208] and related comments [209,210].
Although the work of Gutenkunst et al. [207] is a valuable

contribution which nicely illustrates the difficulties that

plague parameter estimation problems in dynamic models,

we believe that:

(i) links between sloppiness and previous works on

identifiability (which are not cited) should have been

established. Our own biased opinion is that identifia-

bility is probably a better framework to analyse the

above-mentioned challenges. To begin with, sloppiness

seems to lump together lack of structural and practical

identifiability. However, structural problems can be

addressed by model reformulation or reduction. Practi-

cal identifiability problems can be surmounted by

more informative data and, ideally, by OED (see related

comments by Apgar et al. [208]). Consequently, identi-

fiablity seems to be a more powerful concept in the

sense that it also provides us with guidelines on how

to improve it;

(ii) as model sloppiness can be reduced by the above strat-

egies, it is not a universal property in systems biology.

See also Apgar et al. [208] for more on this. To be fair,

Gutenkunst et al. [207] clearly state that ‘universal’ has

a technical meaning from statistical physics (a shared

property with a deep underlying cause), so universal-

ity in this sense does not imply that all models must

necessarily share the property. But from conversations

with many colleagues, it seems that the latter incorrect

meaning has been often assumed; and

(iii) related with (i), the study by Brown & Sethna [189] con-

cludes that sloppiness is not a result of lack of data. Does

this imply that it is only related to lack of structural

identifiability? We do not get this impression, because

e.g. in the study by Apgar et al. [208] and related com-

ments [209,210], the issues discussed seem to be only

related to practical identifiability.

In a way, sloppiness has created a somewhat pessimistic

view towards parameter estimation in dynamic modelling,

similar to the one created by the NFL theorem in optimiz-

ation as described above. But, in this case, there is no

theorem, and there are ways to surmount structural and prac-

tical identifiability problems (model reformulaton and/or

better experiments can indeed lead to good parameter esti-

mations). We believe that an integrative study of sloppiness

and identifiability would be very valuable. We also believe

that, in many situations, the lack of informative data is the

source of such lack of identifiability, because most biological

systems of interest are only partially observed and current

measurement technologies often result in large errors. How-

ever, advances in such technologies, coupled with new

ways of introducing perturbations and the use of OED

methods, should lead to identifiable dynamic models

[208,211], so we should be optimistic about the calibration

of these models.
3.7. Perspective from information theory
Information theory was initiated by the work of Shannon

[61], who was interested in finding fundamental limits to

signal-processing processes in communication and com-

pression of data. The so-called sampling theorem (frequently

attributed to Shannon & Nyquist [212]) is one of such
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fundamental results: a signal’s information is preserved if it is

uniformly sampled at a rate at least two times faster than its

Fourier bandwidth (higher frequency). Or, in other words, a

time-varying signal with no frequencies higher than N hertz

can be perfectly reconstructed by sampling the signal at regular

intervals of 1/(2N) seconds. Therefore, if we do not have a

sampling above this threshold, we cannot recover exactly the

original signal.

We find again a theorem that establishes a fundamental

constraint on what we can infer from data. Once more, this

seems to be another case of a pessimistic view that can be

avoided if we exploit other information about the system.

Indeed, recent work [213–215] showed how sparsity patterns

can be used to perfectly reconstruct signals with sampling

rates below the Shannon limit. These works have created the

burgeoning new field of compressed (or compressive) sensing,

which has already seen the publication of a large number of

works, not only regarding the methodology and its extensions

but also applications. In the case of biological data, they have

been successfully applied in bioinformatics [216]. Very recently,

Pan et al. [217] presented a very interesting compressive sensing

approach for the reverse engineering of biochemical networks,

assuming fully observed networks. A key question remains

open: can we apply this framework to partially observed

networks?
3.8. Perspective from machine learning
Machine learning, generally considered a subfield of artificial

intelligence, aims to build systems (usually programs running

on computers) that can learn from data and act according to

requirements. In other words, it is based on data-driven approa-

ches where the systems learn from experience (data). Machine

learning methods have been widely used in bioinformatics

[218,219] and computational and systems biology [220,221].

Traditionally, the data-driven models used in machine learning

have been considered on the other side of the spectrum from

mechanistic models. However, recent machine learning advances

have made it possible to somehow link both and consider

the automatic generation of mechanistic models via data-driven

methods. In this line, Kell & Oliver [222] argue that data-

driven approaches should be regarded as complementary to

the more traditional hypothesis-driven programmes.

During the last decade, several studies have been presented

which examine the full automation of reverse engineering,

from hypothesis generation to experiments and back, in what

has been termed machine science [223]. A prominent exam-

ple is the robot scientist developed by King et al. [224–226]

and its applications in functional genomics, illustrating how a

machine can discover novel scientific knowledge in a fully

automatic manner.

An automated process for reverse engineering of nonlinear

dynamical systems was presented by Bongard & Lipson [227],

illustrating how the method could be used for automated mod-

elling in systems biology, including the automatic generation

of testable hypotheses. More recently, Schmidt & Lipson

[228] presented an approach to automatically generate free-

form natural laws from experimental data. Despite these

success stories, the large-scale and partially observed nature

of most biological systems will undoubtedly pose major chal-

lenges for the widespread application of these procedures in

the laboratory.
4. Conclusion: lessons from converging
perspectives

Reverse engineering can help us to infer, understand and

analyse the mechanisms of biological systems. In this sense,

modelling is a systematic way to efficiently encapsulate our

current knowledge of these systems. However, the value of

models can (and should) go beyond their explanatory

value: they can be used to make predictions, and also to

suggest new questions and hypotheses that can be tested

experimentally. Systems biology will succeed if the practical

value of theory is realized [5].

The above perspectives from different areas clearly show

overlaps and convergent ideas. For example, the ill-posed

nature of many identification problems, as described in inverse

problem theory, has obvious parallels in optimization (multi-

modality, flatness of cost functions), systems identification

(lack of identifiability) or CRNT (non-uniqueness). Similarly,

some regularization techniques can be regarded as Bayesian

approaches where certain prior distributions are enforced.

Other overlaps and synergies are not so obvious (e.g. the role

of sparsity in inference) and will require careful study.

Several basic lessons can be extracted from the different

perspectives that we have briefly reviewed. The first lesson

is that modelling should start with questions associated

with the intended use. These questions will also help us to

choose the level of description that must be selected [229].

We should focus on making the right questions, even if we

can only give approximate answers to them (an exact

answer to the wrong question is of little use [230]).

The second lesson is that these reverse engineering pro-

blems are extremely challenging, so pessimistic views are

understandable (e.g. Brenner [231] thinks that they are not

solvable). But, as nicely argued by Noble [232], the history

of science contains many incorrect claims to impossibility.

In fact, we have seen in previous sections that the existence

of several pessimistic theorems has not precluded advances

in related areas. Brenner [231] cites an article [233] on inverse

problems to justify his skepticism. In that work, Tarantola

[233] comments on the difficulties that plague inverse pro-

blems in geophysics, concluding that observations should

not be used to deduce a particular solution but to falsify poss-

ible solutions. In our opinion, even if this holds for inverse

problems in systems biology (which is questionable), it does

not mean that we are doomed to fail (Popper considers

science as falsification, and Tarantola’s view builds on that).

Besides, fortunately, optimistic views are also present in the

community, and modern statistical methods are here to

help (e.g., see the excellent preface in the book by Stumpf

et al. [185]).

In this context, it is also worth mentioning that, as described

by Silver [41], modelling and simulation have been very suc-

cessful in some areas (notably, short-term weather forecasts),

but have failed dramatically in others (e.g. earthquake predic-

tions). Many decades of research have been invested in both

topics. However, in the case of weather, we have better data

and a deeper knowledge of the physico-chemical mechanisms

involved. The atmosphere and its boundaries are much easier

to explore than the tensions and displacements underground.

The optimistic system biologist will rejoice in the description

of systems biology as cellular weather forecasting [5]. But we

should also bear in mind that it took many years to develop
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the theoretical and computational methods behind current

weather models.

The third lesson is that approximate methods can give us

rather good solutions to many of these hard problems. Nota-

bly, we have seen how randomized algorithms of several

types (e.g. stochastic methods for global optimization, or

MCMC sampling methods in Bayesian inference) can produce

good results in reasonable computation times. Needless to say,

this does not mean that deterministic algorithms should be

abandoned (e.g. in global optimization, they are making

good progress). Rather, it will be very interesting to see how

hybrids between deterministic and stochastic methods result

in techniques that scale up well with problem size.

The fourth lesson is that, although the Bayesian versus

frequentism controversy continues [234], Bayesian methods

are probably better suited for many of the inference problems

in systems biology. Stumpf et al. [185] mention the difficul-

ties of classical statistics with an area that is data-rich but

also hypotheses-rich. Incidentally, it is interesting to note

that Lindley [235] predicted a Bayesian twenty-first century.

However, as it has happened in other areas of science, join-

ing forces might be a strategy worth exploring, as recently

illustrated by Raue et al. [200].

The fifth lesson is that we need to establish links between

identifiability, as developed in the systems and control area,

and related concepts developed in other fields, such as sloppi-

ness [207]. The Bayesian view will also help in establishing the

practical limits for reverse engineering of kinetic models [236].

The sixth lesson is that we need to exploit the structure of

dynamic models. In addition to CRNT, Kaltenbach et al. [157]

also mention the theory of monotone systems [237] as a

promising avenue, highlighting the need of further research
to be able to apply these theories to biological networks of

realistic complexity.

A final seventh lesson is that, although systems biology

is a truly interdisciplinary area, we need to coordinate more

efforts and exchange more notes. Different communities have

developed theories and tools that have major implications for

the identification and reverse engineering of biological systems,

but in many cases they have been doing so in isolation from each

other. There are several notable examples where collaborations

have been very successful, such as SBML [238], BioModels Data-

base [239] or the DREAM challenges [94]. As indicated by

Kitano [240], international alliances for quantitative modelling

in systems biology might be needed. Whole-cell models will

require robust and scalable inference and estimation methods.

Much reverse engineering work lies ahead.
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Endnote
1This distinction between the reduced problem of recovering interactions
and the general reverse engineering problem is commonly made. For
example, the challenges designed in the DREAM initiative belong
to one of these two classes [29]. This entails that constraint-based
approaches, which are intermediate between the dynamic and inter-
action-based models, will not be explicitly considered here. We refer
the interested reader to the existing reviews on the subject [22,30–32].
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Oudenaarden A. 2008 The frequency dependence of
osmo-adaptation in Saccharomyces cerevisiae. Sci.
Signal 319, 482.

156. Bennett MR, Pang WL, Ostroff NA, Baumgartner BL,
Nayak S, Tsimring LS, Hasty J. 2008 Metabolic gene
regulation in a dynamically changing environment.
Nature 454, 1119 – 1122. (doi:10.1038/
nature07211)

157. Kaltenbach H-M, Dimopoulos S, Stelling J. 2009
Systems analysis of cellular networks under
uncertainty. FEBS Lett. 583, 3923 – 3930. (doi:10.
1016/j.febslet.2009.10.074)

158. Kuepfer L, Peter M, Sauer U, Stelling J. 2007
Ensemble modeling for analysis of cell signaling
dynamics. Nat. Biotechnol. 25, 1001 – 1006. (doi:10.
1038/nbt1330)

159. Tan Y, Lafontaine Rivera JG, Contador CA, Asenjo JA,
Liao JC. 2011 Reducing the allowable kinetic space
by constructing ensemble of dynamic models with
the same steady-state flux. Metab. Eng. 13, 60 – 75.
(doi:10.1016/j.ymben.2010.11.001)

160. Marbach D et al. 2012 Wisdom of crowds for robust
gene network inference. Nat. Methods 9, 796 – 804.
(doi:10.1038/nmeth.2016)

161. Tigges M, Marquez-Lago TT, Stelling J, Fussenegger
M. 2009 A tunable synthetic mammalian oscillator.
Nature 457, 309 – 312. (doi:10.1038/nature07616)

162. Holtz WJ, Keasling JD. 2010 Engineering static and
dynamic control of synthetic pathways. Cell 140,
19 – 23. (doi:10.1016/j.cell.2009.12.029)

163. Menolascina F, Di Bernardo M, Di Bernardo D. 2011
Analysis, design and implementation of a novel
scheme for in-vivo control of synthetic gene
regulatory networks. Automatica 47, 1265 – 1270.
(doi:10.1016/j.automatica.2011.01.073)

164. Menolascina F, Siciliano V, di Bernardo D. 2012
Engineering and control of biological systems: a
new way to tackle complex diseases. FEBS Lett. 586,
2122 – 2128. (doi:10.1016/j.febslet.2012.04.050)

165. Milias-Argeitis A, Summers S, Stewart-Ornstein J,
Zuleta I, Pincus D, El-Samad H, Khammash M,
Lygeros J. 2011 In silico feedback for in vivo
regulation of a gene expression circuit. Nat.
Biotechnol. 29, 1114 – 1116. (doi:10.1038/nbt.2018)

http://dx.doi.org/10.1109/37.768535
http://dx.doi.org/10.1016/j.arcontrol.2009.12.001
http://dx.doi.org/10.1016/j.arcontrol.2009.12.001
http://dx.doi.org/10.1016/0005-1098(78)90075-4
http://dx.doi.org/10.1016/j.arcontrol.2013.03.006
http://dx.doi.org/10.1016/0025-5564(70)90132-X
http://dx.doi.org/10.1016/0025-5564(70)90132-X
http://dx.doi.org/10.1101/gr.1226004
http://dx.doi.org/10.1038/nrm2030
http://dx.doi.org/10.1016/j.ymben.2008.07.004
http://dx.doi.org/10.1016/j.ymben.2008.07.004
http://dx.doi.org/10.1186/1752-0509-3-50
http://dx.doi.org/10.1093/bioinformatics/btp358
http://dx.doi.org/10.1093/bioinformatics/btp358
http://dx.doi.org/10.1111/j.1742-4658.2008.06844.x
http://dx.doi.org/10.1186/1752-0509-4-11
http://dx.doi.org/10.1016/j.jbiotec.2010.02.019
http://dx.doi.org/10.1016/j.jbiotec.2010.02.019
http://dx.doi.org/10.1016/j.mbs.2009.11.002
http://dx.doi.org/10.1371/journal.pone.0027755
http://dx.doi.org/10.1007/s00285-012-0614-x
http://dx.doi.org/10.1016/j.mbs.2013.03.006
http://dx.doi.org/10.1111/j.1742-4658.2012.08725.x
http://dx.doi.org/10.1111/j.1742-4658.2012.08725.x
http://dx.doi.org/10.1016/j.copbio.2010.09.014
http://dx.doi.org/10.1016/j.copbio.2010.09.014
http://dx.doi.org/10.1371/journal.pcbi.1000696
http://dx.doi.org/10.1371/journal.pcbi.1000696
http://dx.doi.org/10.1371/journal.pcbi.1000558
http://dx.doi.org/10.1371/journal.pcbi.1000558
http://dx.doi.org/10.1049/iet-syb:20070069
http://dx.doi.org/10.1042/BSE0450195
http://dx.doi.org/10.1371/journal.pcbi.0040030
http://dx.doi.org/10.1002/rnc.1558
http://dx.doi.org/10.1186/1752-0509-4-38
http://dx.doi.org/10.1093/bioinformatics/btq074
http://dx.doi.org/10.1093/bioinformatics/bts585
http://dx.doi.org/10.1371/journal.pone.0055723
http://dx.doi.org/10.1073/pnas.0933416100
http://dx.doi.org/10.1073/pnas.0933416100
http://dx.doi.org/10.1038/4541059a
http://dx.doi.org/10.1038/nature07211
http://dx.doi.org/10.1038/nature07211
http://dx.doi.org/10.1016/j.febslet.2009.10.074
http://dx.doi.org/10.1016/j.febslet.2009.10.074
http://dx.doi.org/10.1038/nbt1330
http://dx.doi.org/10.1038/nbt1330
http://dx.doi.org/10.1016/j.ymben.2010.11.001
http://dx.doi.org/10.1038/nmeth.2016
http://dx.doi.org/10.1038/nature07616
http://dx.doi.org/10.1016/j.cell.2009.12.029
http://dx.doi.org/10.1016/j.automatica.2011.01.073
http://dx.doi.org/10.1016/j.febslet.2012.04.050
http://dx.doi.org/10.1038/nbt.2018


rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20130505

15
166. Sootla A, Strelkowa N, Ernst D, Barahona M, Stan G-B.
2013 Toggling a genetic switch using reinforcement
learning. (http://arxiv.org/abs/1303.3183).

167. Uhlendorf J, Miermont A, Delaveau T, Charvin G,
Fages F, Bottani S, Batt G, Hersen P. 2012 Long-
term model predictive control of gene expression at
the population and single-cell levels. Proc. Natl
Acad. Sci. USA 109, 14 271 – 14 276. (doi:10.1073/
pnas.1206810109)

168. Horn F, Jackson R. 1972 General mass action
kinetics. Arch. Rat. Mech. Anal. 47, 81 – 116.
(doi:10.1007/BF00251225)

169. Feinberg M. 1972 Complex balancing in general
kinetic systems. Arch. Rat. Mech. Anal. 49,
187 – 194. (doi:10.1007/BF00255665)

170. Feinberg M, Horn FJ. 1974 Dynamics of open
chemical systems and the algebraic structure of the
underlying reaction network. Chem. Eng. Sci. 29,
775 – 787. (doi:10.1016/0009-2509(74)80195-8)

171. Bailey JE. 2001 Complex biology with no
parameters. Nat. Biotechnol. 19, 503 – 504.
(doi:10.1038/89204)

172. Craciun G, Tang Y, Feinberg M. 2006 Understanding
bistability in complex enzyme-driven reaction
networks. Proc. Natl Acad. Sci. USA 103,
8697 – 8702. (doi:10.1073/pnas.0602767103)

173. Wang L, Sontag ED. 2008 On the number of steady
states in a multiple futile cycle. J. Math. Biol. 57,
29 – 52. (doi:10.1007/s00285-007-0145-z)

174. Otero-Muras I, Banga JR, Alonso AA. 2009 Exploring
multiplicity conditions in enzymatic reaction
networks. Biotechnol. Prog. 25, 619 – 631. (doi:10.
1002/btpr.112)

175. Craciun G, Feinberg M. 2010 Multiple equilibria in
complex chemical reaction networks: semiopen
mass action systems. SIAM J. Appl. Math. 70,
1859 – 1877. (doi:10.1137/090756387)
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