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Chiral Kondo lattice in doped MoTe2/WSe2 bilayers
Daniele Guerci1*, Jie Wang1, Jiawei Zang2, Jennifer Cano1,3, J. H. Pixley1,4, Andrew Millis1,2

We theoretically study the interplay between magnetism and a heavy Fermi liquid in the AB-stacked transition
metal dichalcogenide bilayer system, MoTe2/WSe2, in the regime in which theMo layer supports localized mag-
netic moments coupled by interlayer electron tunneling to aweakly correlated band of itinerant electrons in the
W layer. We show that the interlayer electron transfer leads to a chiral Kondo exchange, with consequences
including a strong dependence of the Kondo temperature on carrier concentration and anomalous Hall effect
due to a topological hybridization gap. The theoretical model exhibits two phases, a small Fermi surfacemagnet
and a large Fermi surface heavy Fermi liquid; at the mean-field level, the transition between them is first order.
Our results provide concrete experimental predictions for ongoing experiments on MoTe2/WSe2 bilayer hetero-
structures and introduces a controlled route to observe a topological selective Mott transition.
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INTRODUCTION
Transition metal dichalcogenide (TMD) moiré devices created by
stacking two TMD monolayers have recently emerged as a highly
tunable platform to realize strongly correlated and topological
states (1–21). This experimental flexibility has opened the door to
control and observe phenomena that has been out of reach in con-
ventional solid-state platforms such as a continuous Mott transition
(4, 5) in a single sample. Forming heterobilayers with distinct chem-
ical composition allows one to effectively tune the density and the
interaction within an individual layer, which can open the door to
synthetically realize orbital selective Mott transitions (22–26) to
emulate several strongly correlated electron systems of interest.

Here, we focus on the AB-stacked MoTe2/WSe2 bilayer hetero-
structure of recent experimental (1) and theoretical (13–18) interest
and show that it realizes a chiral Kondo lattice. In this system, the
lattice mismatch between the two materials leads to a hexagonal
moiré lattice with a moiré lattice constant of aM ∼ 5 nm. As
shown in Fig. 1A, the two sublattices of the hexagonal moiré
lattice correspond to the MoTe2 (Mo) and WSe2 (W ) layers, with
the two sublattices connected by the interlayer hopping.

The combination of the strong spin-momentum locking of the
monolayer materials and the AB stacking configuration reduces the
magnitude of the interlayer tunneling to a value much smaller than
the intralayer hopping of the WSe2 moiré band (27). The small in-
terlayer coupling means that the two layers can be discussed sepa-
rately and then the effects of the interlayer coupling can be
considered. The atomic physics of the monolayer materials deter-
mines that the MoTe2 layer has a narrower moiré conduction
band than does the WSe2 layer so that the MoTe2 layer may be re-
garded as strongly correlated with an upper and lower Hubbard
band, while the WSe2 layer has a wider bandwidth and a carrier con-
centration typically far from n = 1 and may be regarded as weakly
correlated (14, 27). The resulting density of states (DOS) is sketched
in Fig. 1B. The energy offset between the bands, defined here as Δ,

and the total chemical potential μ can be controlled in situ by ap-
propriate gate voltages.

Figure 1C shows a qualitative phase diagram in the plane of band
offset (Δ) and total density (n = 1 + x). At large positive Δ, the
MoTe2 band is well separated from the bottom of the WSe2 band.
The first carriers added to the system go into the MoTe2 layer,
forming a correlated metal, which at n = 1 becomes a triangular-
lattice Mott insulator with 120∘ antiferromagnetic (AFM) order.
At carrier concentration n = 1, decreasing Δ is predicted (14–18,
27) and observed (1, 2) to cause a transition to a quantum anoma-
lous Hall (QAH) state, followed by a transition to a conventional
metallic state. At Δ > 0, carriers in excess of the Mott concentration
at half-filling (n = 1 per moiré unit cell) go into the WSe2 band (if, as
we assume,U > Δ) and are coupled to the spins of the Mott insulator
via an exchange coupling JK ≏ t2h=Δ derived perturbatively from the
interlayer hybridization th so that the MoTe2/WSe2 system can be
described by an effective Kondo lattice model on the moiré scale
whose study is the central topic of this paper.

Synthetic Kondo lattice models in moiré systems have been pre-
viously discussed in the context of the interplay between localized
orbital and delocalized electrons in twisted bilayer (28) and trilayer
graphene (29), and in relation to the orbital selective Mott transition
in a two-band moiré TMD model (30). More recently, a gate-
tunable Kondo interaction in trilayer TMDs has been predicted to
realize heavy fermion quantum criticality (31). Here, we focus on
how the combination of strong spin-orbit coupling (SOC) and
the nonlocal structure of the interlayer hybridization substantially
enriches the physics relative to the standard Kondo lattice/orbitally
selective Mott transition picture.

Derivation of the Kondo moiré lattice model
The low-energy properties of the moiré system are described (14) by
a Hubbard model on the honeycomb lattice shown in Fig. 1A. The
two sublattices of the honeycomb lattice give the centers of Wannier
states formed from the Mo (red) and W (blue) sites, respectively.
Wannierization of band structure calculations (14) gives same-sub-
lattice hopping parameters tW ≃ 9 meV, tMo ≃ 4.5 meV, and an in-
terlayer hopping th ≃ 2 meV shown as solid arrows in Fig. 1A. The
monolayer Ising SOC implies that tW has a spin-dependent complex
phase factor ±2π/3 placing theW band minima at the Dirac points κ
(spin up) and κ′ (spin down), respectively; for details, see (14, 27) or
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the Supplementary Materials (32). The local interaction U, which is
taken to be the same on both layers for simplicity, is believed to be
large,U/tMo ≫ 1 (13, 14), and, for Δ > 0, gives rise at filling n = 1 per
moiré unit cell to a 120° AFM charge transfer insulator (14). At
nonzero electron doping =1 + x (x > 0), the extra carriers go into
the W charger-transfer band (blue shaded region of DOS in
Fig. 1B) and Mo sites remain singly occupied. Because of the
large bandwidth and the small doping x, we assume that the corre-
lation effects in theW band can be, at first approximation, ignored.
The hybridization term th induces an effective spin-exchange
Kondo coupling (32–34) between the dispersive electrons in the
conduction band from the W and the local moments Sr from the
Mo layer. The resulting moiré Kondo lattice (spin-fermion)

model reads

H ¼
X
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where ξkσ ¼ � 2tW
P3

j¼1cosðk� ai þ 2πsσ=3Þ � εF is the electron
dispersion for the W band, a1 ¼

ffiffiffi
3
p
aMð1; 0Þ,

a2;3 ¼
ffiffiffi
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aMð� 1=2;+
ffiffiffi
3
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=2Þ are the lattice vectors, where aM = 5
nm is the moiré-lattice constant, s↑,↓ = ± 1, and ϵF is the Fermi
energy fixing the filling x of electrons in the conduction band
P

r;σhc
y
rσcrσi=N ¼ x. The exchange JH arises from a combination

of the spin rotational invariant Heisenberg exchange in the Mo
layer and virtual excitations in the W band mediated by th. The
reduced spin rotational symmetry in the W layer induces the XXZ
anisotropy γ ≠ 1/2 and also Dzyaloshinskii-Moriya D interactions
(8). For simplicity, we use the Heisenberg form γ = 1/2 in Eq. 1 in
our calculations, and we treat JH as a phenomenological parameter.

In the last term of Eq. 1, Jk;p ¼ JKV�kVp, where
JK ¼ 2t2h½1=Δþ 1=ðUMo � ΔÞ� is the Kondo exchange and the
hopping th between opposite sublattices gives the form factor
Vk ¼

P3
j¼1e

i δj�k, where δj are displayed as green arrows in
Fig. 1A. In proximity to the high-symmetry points κ and κ ′,
centers of the spin up and down Fermi sea at low doping, respec-
tively, the form factor takes the p-wave chiral form Vκ+k ≃ −3aM(kx
− iky)/2 and due to time-reversal symmetryV κ0þk ¼ V�κ� k. The dis-
placement field dependence (31) and chirality will be seen to have
important physics consequences.

To quantify the Kondo coupling at the Fermi energy, we intro-
duce a Fermi surface (FS)–averaged Kondo exchange JK as

JK ¼
JK
ρεF

3
ffiffiffi
3
p

a2
M

8π2

þ

FS
dkt
jVk j

2

jrkεkσ j
≃

xJK
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ð2Þ

where the line integral is over the conduction electron FS, kt is the
component of k along the tangent to the FS curve, and ρϵF is the
DOS at the Fermi energy, and in obtaining the explicit analytic
form, the W band dispersion was expanded to leading (quadratic)
order around its minimum.

RESULTS AND METHODS
In this section, we use the mean-field theory of Abrikosov fermions
(35–37) to study the competition between the magnetic and the
heavy Fermi liquid (HFL) phase. For this purpose, we factorize
the local magnetic spin into charge neutral spinons
Sr ¼ χyrα σαβχrβ=2 subject to a constraint

P
σχ
y
rσχrσ ¼ 1. In the fol-

lowing, we adopt σ for the spin degrees of freedom. In our notation,
cr is a spin-doublet (cr↑, cr↓)T and the same for χr. We treat the
Kondo interaction with an unrestricted Hartree Fock ansatz that
is equally split across the hybridization order parameter Φ and mag-
netic order M in the Mo layer, which can induce a nonzero polar-
ization in the W layer m. The HFL is captured by a nonvanishing
amplitude of the hybridization Φr ; �

P3
j¼1hc

y

rþ δjσ0χri=2; the
magnetic order is characterized by the variational parameters Mr

Fig. 1. Model and qualitative phase diagram. (A) Representation of real-space
structure of MoTe2/WSe2 bilayer showing the two triangular sublattices of the hon-
eycombmoiré lattice. Red and blue represent the centers of the Wannier functions
describing the relevant states in the bottom (Mo) and top (W ) layers, respectively.
The nearest neighbor vector δi, the Mo-W energy difference Δ, and the intralayer
tW/tMo and interlayer th hopping matrix elements are also indicated. (B) Schematic
density of states for filling near n = 1 representing the Mo layer as a narrow-band
strongly correlated system with lower (LHB) and upper (UHB) Hubbard bands sep-
arated by an energy gap U, while theW layer is shown as a wide-band weakly cor-
related system. Top: Positive Δ; showing filledMo LHB and carriers added beyond n
= 1 in the W layer. Bottom: Negative Δ; mixed valent situation with potential for
simultaneous occupancy of Mo- and W-layer states at n = 1. (C) Qualitative phase
diagram of the AB-stacked MoTe2/WSe2 bilayer as a function of hole carrier density
n and displacement field Δ showing expected phases: At carrier density n = 1, as Δ
is decreased, the 120° antiferromagnetic insulator (AFI) gives way to a QAH insu-
lator and then to an FL. For n > 1, the system can be described by a Kondo lattice
(KL) model. At other carrier concentrations, different metallic phases occur, includ-
ing moderate mass (FL) and heavy mass (HFL) Fermi liquids, a hole-doped single-
band antiiferromagnet (AFM), and a Kondo lattice AFM (KLAFM) with ordered
magnetism on the Mo layer coupled to mobile carriers in the W layer. The HFL is
connected to a topological Kondo semimetal (TKSM) at n = 2, which above a critical
Δ becomes a band insulator (BI).
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= (M∥ cosQ · r,M∥ sinQ · r,Mz) andmr = (m∥ cosQ · r,m∥ sinQ · r,
mz) with Q = κ − κ ′, Mk ¼

P
k½hχ

y

kσþχkþQi þ c:c:�=2N,
Mz ¼

P
khχ
y

kσzχki=2N, mk ¼
P

k½V
�
khc
y

kσþckþQiVkþQ þ c:c:�=2N,
and mz ¼

P
kV
�
khc
y

kσzckiVk=2N. To obtain the values of the varia-
tional parameters, we minimize the mean-field free energy as de-
tailed in the Supplementary Materials (32).

Figure 2A shows the calculated mean-field phase diagram in the
plane x versus JH/tW. The evolution of the mean-field parameters
along the line cut, red line in Fig. 2A, is displayed in Fig. 2B. In
the small doping regime x < xc, the mean-field minimum describes
a magnetic solution with in-plane 120° AFM (AFM-xy). The AFM
sign of JK means that the conduction electron staggered magnetiza-
tion m∥ is directed oppositely to M, shown as the orange line in
Fig. 2B. As doping x increases, ρεF JK grows, as shown in the inset
of Fig. 2B, driving a transition of the general type discussed by
Doniach (38) to a nonmagnetic Kondo lattice state in which the
system becomes paramagnetic M = 0 and the localized moments
hybridize with the conduction electrons, giving rise to a large FS
of heavy quasiparticles.

The transition between the AFM-xy phase and the HFL is first
order: Both the AFM-xy order parameter and the hybridization
change discontinuously, and the computed energies cross
(Fig. 2C). Across the phase transition, the topology of the FS
changes from electron-like in the magnetic phase to hole-like in
the HFL phase. To gain insight on the nature of the transition, it
is instructive to compare the low-doping behavior ρεF JK � 1 of
the two energy scales in the Kondo lattice model: the Kondo tem-
perature TK and the magnetic energy EAFM. Expanding to close to
the bottom of the conduction band, we have
TK ≃ εFexp½� 1=ðρεF JKÞ�, where for a quadratic dispersion the
DOS is constant ρεF ≃ ρ0 ¼ 3

ffiffiffi
3
p
a2
MmW=ð4πh2Þ, ϵF ≃ x/(2ρ0), and

mW ¼ h� 2=ð9tWa2
MÞ. On the other hand, in the magnetic state, the

Kondo coupling leads to a staggered polarization of conduction
electrons, which lowers the energy of the magnetic state:
EAFM ≃ � 3JHM2=2 � J2KρεFM

2=2 (M = 1/2). The linear depen-
dence of JK on doping x (Eq. 2) implies that the scaling of the mag-
netic to paramagnetic transition is different from the standard
Doniach scaling (38). Last, Fig. 2C shows the evolution of the
average over the FS of the quasiparticle mass m� in
logarithmic scale, where m* is defined as m* = ℏ∣kF∣/∣vF∣,
m� ¼

Þ

FSdktm
�=ð2πkFÞ, where vF and kF are the Fermi velocity

and momentum, respectively. The transition is signaled by a
drastic change of the quasiparticle mass. We find a diminution of
m� increasing the doping x and a splitting of the quasiparticle
mass in the magnetic regime.

Physical properties
The HFL is characterized by the quasiparticle band structure in
Fig. 3A. In this regime, the local moments in Mo layer participate
to the total volume (39) enclosed by the FS and give rise to a large
hole-like FS, which encircles the κ′(κ) point for ↑(↓) electrons in the
moiré Brillouin zone, as shown by the solid red line in Fig. 3B. We
also show the variation of the quasiparticle mass around the FS in
Fig. 3C. In addition, we find quite unconventional properties that
trace back to the form factor Vk in the Kondo coupling Jk,p.
The chiral nature of Vk gives rise to a chiral
hybridization order parameter whose amplitude is
proportional to hcyκþk"χ κþk"i/Φðkx � ikyÞ for spin up and
hcyκ0þk#χ κ0þk#i/ � Φðkx þ ikyÞ for spin down and results into the
topological character of the hybridization gap. The color code in
Fig. 3B shows the Berry curvature Ωk↑ = −2 Im〈∂kxuk↑∣∂kyuk↑〉 of
the lower HFL band, which is characterized by bright peaks at the
position of the bare conduction electron FS. The opposite winding
of spin ↑ and ↓ hybridization gap results in an opposite Berry cur-
vature for the two-spin Ωk↑ = −Ω−k↓. The Berry curvature

Fig. 2. Competition between HFL andmagnetic order. (A) Phase diagram in plane of WSe2 filling x versus JH/tW calculated from solution of mean-field equations. Black
dots (white background) indicate regions of small FS metallic phase coexisting with 120° AFMmetallic order; red points (orange background) indicate regions of large FS
HFL phase. (B) Line cut at JH/tW = 0.025 showing x dependence of the mean-field order parameters: hybridization Φ, local moment staggered magnetization M∥, and
itinerant electron staggered magnetization ∣m∥∣.m∥ is opposite toM∥; we plot the absolute value of both quantities. The inset shows the effective Kondo exchange as a
function of the doping x. A first-order transition happens at the critical doping xc ≃ 0.45 corresponding to ρεF JK ≃ 0:14. (C) Energy of the two different phases as a
function of x. (D) Evolution of the average quasiparticle mass as a function of x in logarithmic scale. The data are obtained setting JK/tW = 1 (bandwidth 9tW).

Guerci et al., Sci. Adv. 9, eade7701 (2023) 17 March 2023 3 of 7

SC I ENCE ADVANCES | R E S EARCH ART I C L E



originates from the chiral interlayer hybridization between χ and c
fermions. Expanding the HFL Hamiltonian around the electron
pocket at κ for ↑ gives in the basis Ψ = (χ, c)

H"ð κþ kÞ ≃
λ � ΔKðkx � ikyÞ

� Δ�Kðkx þ ikyÞ ħ2k2=ð2mWÞ � μ

 !

ð3Þ

with ΔK = 3JKaMΦ/2 and due to time-reversal symmetry
H#ð κ0 þ kÞ ¼ H�"ð κ � kÞ. The HFL is adiabatically connected to
a topological compensated Kondo semimetal at total filling n = 2
with a nonquantized spin Hall effect (40). The topological gap
found here is distinct from the topological Kondo gap in bulk
heavy fermion systems (41, 42) such as SmB6 (43–46), which is
induced by the strong SOC and the opposite parity of d and f orbit-
als. In the system considered here, the orbitals of conduction elec-
trons and local moments have identical parity character, and the
topological hybridization gap originates from the nonlocal ex-
change involving nearest neighbor sites and the Ising SOC.

In the opposite regime, at x < xc, the ground state has a 120° AFM
order with a small FS. The spin-flip scattering processes mediated
by the modulation Q connecting the spin ↑ and ↓ FSs give rise to a
SOC term in the conduction electron Hamiltonian. As detailed in
the Supplementary Materials (32), the expansion of the Hartree-
Fock Hamiltonian close to the origin of the magnetic Brillouin
zone gives

HcðkÞ ¼
h� 2k2

2mW
� εF

� �

σ0 þ
9JKa2

M
8

X

a
daðkÞσa ð4Þ

where dzðkÞ ¼ Mzðk2x þ k
2
yÞ, dxðkÞ ¼ � M

kðk2x � k
2
yÞ, and dy(k) =

2M∥kxky. The SOC splits the conduction electron FS, giving rise
to two different Fermi momenta k+F . A nonzero in-plane M∥ com-
ponent in the Hamiltonian (Fig. 4) induces a 2π-Berry phase
winding around the origin of the magnetic Brillouin zone. In the
presence of a nonzero Zeeman field, we have a Berry curvature
whose momentum space distribution depends on the value of the
parameters in the Hamiltonian (Fig. 4).

Last, we study the evolution of the mean-field solution in an ex-
ternal out-of-plane magnetic field. The spin-valley locking in the
AB-stacked configuration implies that the magnetic field B acts as
a spin-valley Zeeman field (3) Hz ¼ � hMo

P
r[Mo χyrσ

zχr=2þ
hW
P

r[W cyrσzcr=2; where hα = gαμBB and gα is the gyromagnetic
ratio for the two different TMDs [here, we use gMo = gW = 10 (3,
47)]. The phase diagram in the plane x versus B is shown in
Fig. 4A. At low doping, a small magnetic field introduces an out-
of-plane magnetization Mz, giving rise to a canted AFM-xy.
Above the second-order transition line (magenta line in Fig. 4A),
that in the limit of vanishing doping takes the value 9JH/2, the
canted AFM-xy turns into a ferromagnetic solution along z (FM-
z). For larger fillings, blue region in Fig. 4A starting at xc ≃ 0.488
in the limit hW → 0, the small-field solution is the HFL. The line
cut Fig. 4B, red line at x = 0.52 in Fig. 4A, shows the evolution of
the variational parameters in magnetic field. In the HFL, a small
magnetic field induces a net magnetization Mz in the localized
orbital χ. On the other hand, the Kondo hybridization is slightly af-
fected by the external field. At a critical field, displayed as a solid
green line in Fig. 4A, we find a first-order transition that is accom-
panied by an abrupt jump in the magnetization as well as by a dis-
continuous change in the conduction electron FS. The state above
the first-order line is a canted AFM-xy for x < 0.56 and an FM-z for
x > 0.56.

Transport in magnetic field
We use a Boltzmann equation approach to describe the transport of
electrons in the different regimes of the phase diagram in Fig. 4A;
for details, we refer to the Supplementary Materials (32). The Hall
conductivity has contribution from an ohmic part σOhm

xy , which
depends on the extrinsic impurity scattering rate, and also has an
intrinsic geometric contribution (48, 49) σAH

xy determined by the
Berry curvature. In the HFL regime, the nonvanishing hybridization
implies that the neutral χ-spinon also contributes to the charge
transport properties (50, 51). Approximating the HFL FS shown
in Fig. 3B with a circular FS with effective massm�, the ohmic con-
tribution takes the simple form σxx ¼ e2τð1 � xÞ=m� and
σOhm
xy ¼ � e3Bτ2ð1 � xÞ=m�2. Conversely, in the magnetic regime,

only the concentration x of conduction electrons contributes to
the charge transport properties. Assuming a single momentum-
and band-independent transport time, we find that σxx = e2τx/
(∑λ mλ/2) and σOhm

xy ¼ e3τ2Bx=ðmW
P

λmλ=2Þ with mλ = mW/[1
− λJK∣M∣/(4tW)] (λ = ± ). As a result, increasing the magnetic
field across the first-order transition line (green line in Fig. 4, A
and B), we find a drastic jump in electrical conductivities, while
in the HFL we have 1 − x hole-like carriers in the AFM-xy phase
a density of x electrons. We observe that the normal Hall effect
has been used in HFL systems (52–54) as a proxy for the FS change.

Moreover, the AFM-xy and the HFL are characterized by differ-
ent intrinsic anomalous Hall conductivity σAH

xy . Figure 4C shows the
evolution of σAH

xy along different line cuts at constant Zeeman field
as a function of doping x in the phase diagram (Fig. 4A). In the AFM
regime, σAH

xy originates from the dx(k) and dy(k) terms in Eq. 4
induced by the in-plane component of the magnetic ordering,
which gives rise to the anomalous Hall effect (AHE) shown in
Fig. 4C. As we increase the doping, the AHE decreases because of
the smaller Berry curvature flux imbalance between the two FSs

Fig. 3. Properties of the HFL. (A) Band structure of the HFL along high-symmetry
directions where the chiral Kondo coupling opens a topological hybridization gap
between the upper (orange) and lower (blue) bands. The energy is measured with
respect to the chemical potential. (B) Berry curvature of the lower HFL band, where
the red circles denote the hole FS. The flux ofΩk↑ in the entire Brillouin zone gives
Chern number C↑ = 1 =−C↓. (C) Quasiparticle effectivemassm*/mWas a function of
the angle ϕ on the heavy electrons FS. The calculation has been performed at x =
0.46 and JK/tW = 1 (bandwidth 9tW).
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with momenta kλF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mλεF=h� 2
q

. The AHE is enhanced by inter-
action effects between conduction electrons, which favor the out-of-
plane canting of the AFM spin texture. Last, above a critical density
shown by the solid green line in the phase diagram (Fig. 4A), a first-
order transition from the canted AFM-xy to the HFL occurs. The
transition is signaled by a jump in the AHE effect, as displayed in
Fig. 4C. A nonquantized jump of the AHE across the HFL transition
can also originate from a chiral spin liquid state (55). In the HFL
regime, the AHE originates from the chiral hybridization gap
with opposite sign for spin up and down electrons, which results
in a nonquantized spin Hall effect. See the Supplementary Materials
(32) for details. A nonzero Zeeman field induces a flux imbalance
between ↑ and ↓, which gives a finite AHE in the HFL, as shown in
Fig. 4C. In Fig. 4D, we consider different concentration in the W
layer, and we study the evolution as a function of hW. We highlight
that in the large field regime, we enter in the FM-z regime where the
AHE vanishes, as displayed in the regions above the solid vertical
lines in Fig. 4C. The transition from the HFL to the FM-z is char-
acterized by a drastic jump in the AHE effect, which can reach
values of the order of ∼e2/h depending on the flux imbalance
between the two FSs. On the other hand, in the small FS regime,

the AHE evolves, smoothly vanishing when the local moments
are aligned to the external field.

DISCUSSION
We present a microscopic theory to explain the competition
between AFM and the HFL in MoTe2/WSe2. A crucial finding is
that the Kondo exchange is chiral, which gives rise to predictions
that can be directly tested in experiments. Among them, we empha-
size the topological character of the hybridization gap in the HFL
regime and the Berry phase winding induced by spin-flip processes
in the magnetic one. Both effects give rise to AHE, which can be
measured by transport experiments in magnetic field. We show
how transport measurements can clearly distinguish the
various phases.

We find two different first-order transitions: either as a function
of the doping x at zero magnetic field or by tuning a magnetic field
(metamagnetism). The first-order character of either transition is
generically robust for a finite region of fluctuation corrections to
mean-field theory. However, while symmetry implies that the mag-
netic field–tuned transition is first order, there is no symmetry ar-
gument known to us that constrains the order of the doping-tuned
transition.

Fig. 4. Phase diagram and transport in magnetic field. (A) Phase diagram plotted as a function of theW-layer carrier concentration x and the out-of-plane magnetic
field hW. The blue region denotes the HFL regime where the hybridization order parameter is finite. The color code before the green line shows the value of the in-plane
AFM order parameterM∥. The solid green line shows the first-order phase transition line. On the other hand, themagenta one shows the second-order transition from the
canted AFM-xy to the FM-z. (B) Evolution of the variational parameter along the line cut at x = 0.52 as a function of hW/tW. (C) Intrinsic contribution to the anomalous Hall
conductivity for three different values of the Zeeman field. The vertical dashed lines denote the critical filling where the first-order transition takes place. (D) Intrinsic AHE
for different values of the filling x as a function of the Zeeman field. The vertical dashed line denotes the first-order transition between the magnetic and the HFL phase,
while the solid one denotes the second-order transition from a canted AFM to the FM-z. Above this line, the AHE vanishes. The calculation has been performed at JK/tW =
1, JH/tW = 0.05 (bandwidth 9tW).
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Our theory for the field-tuned transition is in agreement with
recent experimental observations (56) where at a critical field Bc
the HFL undergoes a metamagnetic transition with a sharp jump
in the carrier concentration from x − 1 to x and an abrupt variation
of the quasiparticle mass at a critical magnetic field Bc. We also find
that at Bc the transition between the magnetic state and the HFL is
signaled by a drastic jump of the AHE. Additional experiments are
needed to unveil the nature of the transition as a function of the
doping at zero field.

We observe that the paramagnetic HFL solution becomes, at
filling n = 2, a compensated topological Kondo semimetal with non-
quantized quantum spin Hall effect. We also notice that in the mag-
netic regime the AHE can be further enhanced by spontaneous FM
induced by accounting the on-site interaction between conduction
electrons. Last, the effect of quantum fluctuations beyond the mean-
field approach as well as the role of anisotropic effects in the Kondo
exchange coupling are important questions for future research.

These results highlight several concrete experimental predictions
relevant for current and future experimental studies in TMD bilay-
ers. More broadly, this work provides a controlled route to realize a
topological selective Mott transition.
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